
Computer Engineering and
Networks Laboratory

—— NSG, DISCO & DYNAMO ——

HS 2022 Prof. L. Josipović, Prof. L. Vanbever, Prof. R. Wattenhofer

Discrete Event Systems
Sample Solution

Wednesday, 15th of February 2023, 08:30–10:30.

Do not open or turn before the exam starts!
Read the following instructions!

The exam takes 120 minutes and there is a total of 120 points. The maximum
number of points for each subtask is indicated in brackets. Justify all your
answers unless the task explicitly states otherwise. Mark drawings precisely.
Answers which we cannot read are not awarded any points!
At the beginning, fill in your name and student number in the corresponding fields
below. You should fill in your answers in the spaces provided on the exam. If you
need more space, we will provide extra paper for this. Please label each extra sheet
with your name and student number.

Name Legi-Nr.

Points

Topic Achieved Points Max. Points

1 Multiple Choice on Languages & Automata 8

2 Regular Languages 18

3 Context-Free Languages 14

4 Random Bitstrings 20

5 Boxes 20

6 Binary Decision Diagrams 9

7 CTL Model Checking 10

8 Petri Nets 13

9 Time Petri Net 8

Total 120

2

1 Multiple Choice on Languages & Automata (8 points)
For each of the following statements, indicate whether they are TRUE or FALSE. No justifi-
cation is needed. There is always one correct answer. Each block of questions is awarded up to
4 points: 4 points for 4 correct answers, 2 points for 3 correct answers, and 0 points otherwise.

1.1 Regular Languages [4 points]

Let Σ � t0, 1u and consider the automaton A:

q1start q2 q3 A

0

1

1
0

ε

0, 1

0, 1

TRUE FALSE

a) Making q2 an accepting state does not change the language
LpAq recognized by the automaton.
The changed automaton would accept words ending in 1.

l Xl

b) The given automaton A is irreducible.
Since this is an NFA, the A-state can be safely deleted.

l Xl

c) The language LpAq interpreted as unsigned binary numbers
describes all positive even numbers.
The changed automaton would newly accept 0�1� as well.

Xl l

d) L
�
A
�
� 0�1�p0Y 10q�.

The automaton accepts 10110, but the REX does not.
l Xl

1.2 Context-Free Languages [4 points]

Let Σ � ta, p, qu and consider the context-free grammar G:
S Ñ pS q | T | ε

T Ñ TT | a

TRUE FALSE

a) The language LpGq is finite.
a� � LpGq; hence, LpGq is not finite.

l Xl

b) There is a GNFA accepting LpGq.
LpGq is not regular. It is the language of valid parenthesis
expressions; c.f. L � t1n02n | n ¥ 0u from the lecture with
slight modifications in the proof.

l Xl

c) The grammar G is ambiguous.
To produce TTT , we need to apply the production T Ñ TT
twice, with two choices which T to double up in the second
step. Hence, T Ñ� aaa has at least two derivation trees.

Xl l

d) L(G) is equivalent to the grammar: S Ñ pS q | S a | ε.
This language contains ()a while LpGq does not.

l Xl

3

2 Regular Languages (18 points)
a) Consider the following DFA A with Σ � ta, bu:

q1start q2 q3 q4

b

a

a

b

b

a

a

b

(i) [3] Describe the language LpAq with your own words.

(ii) [5] Consider the following right-linear grammar G:

S Ñ A

AÑ bA | aB

B Ñ aB | bC

C Ñ bC | aD

D Ñ aD | bA

Is LpAq � LpGq? If yes, argue the equality formally. If no, fix the grammar G and
argue the equality afterwards.

4

b) [10] Let Σ � t0, 1u. One of the following languages is regular, while the other is not:

• L1 � t0kw | w P Σ�,#0pwq � ku

• L2 � t0kw | w P Σ�, 1 ¤ k ¤ #0pwqu

State which language is regular, and prove your claim by giving a corresponding DFA,
NFA, or REX. Prove that the other language is not regular using the pumping lemma.
Make sure to consider all necessary cases.
Recall: #0pwq denotes the number of occurrences of the symbol 0 P Σ in a word w P Σ�.

5

Model solution

a) (i) LpAq � tw | w contains the substring ”ab” an even number of times u.
(ii) Without changes, LpGq � H because there is no production that results in only

terminal symbols. We can fix the equality LpGq � LpAq by adding the productions
AÑ ε and B Ñ ε. To see this, recall that a DFA consists of 5 elements:

i. The grammar G is defined on the same alphabet Σ � ta, bu.
ii. The non-terminal symbols A, B, C, and D represent the states q1, ..., q4 of A.
iii. S represents the starting state of the automaton which is set to A �̂ q1.
iv. The given production rules for A, B, C, and D define exactly one transition to

another state when reading either a or b, respectively. It can be observed that
the transitions coincide with the transition function δ of A.

v. The two additional productions A Ñ ε and B Ñ ε represent the accepting
states of A.

b) • We prove that L1 is not regular using the pumping lemma.
1. Assume for contradiction that L1 was regular.
2. There must exist some p, s.t. any word s P L with |s| ¥ p is pumpable.
3. Choose the string s � 0p1p0p P L1 with length |s| ¡ p.
4. Consider all ways to split s � xyz s.t. |xy| ¤ p and |y| ¥ 1.
Ñ Hence, y P 0�.

5. Observe that xy0z R L1 – a contradiction to p being a valid pumping length.
6. Consequently, L1 cannot be regular.

• L2 is regular. To see that, observe that we can assume k � 1 to be fixed, as any
word 0kw which satisfies the condition for a larger k also satisfies it for the split 0w1
where w1 � 0k�1w. Hence, L1 can be described as 01�0p0Y 1q� and is thus regular.

6

3 Context-Free Languages (14 points)
A WORD-PDA is a push-down automaton that can recognize either entire words (i.e., a fixed
sequence of terminal symbols) on a single transition, or a single symbol from ta, b, ..., z, A, ..., Zu
by using the special transition-label 1a..Z 1. For example, a WORD-PDA over Σ � ta, ..., Zu
accepting words that start with 1foo1 or 1bar1 looks like this:

q0start q1

foo, εÑ ε
bar, εÑ ε

a..Z, εÑ ε

We will apply WORD-PDAs to the problem of syntax checking for the Hypertext Markup
Language (HTML). We consider the following (simplified) set of tags:

<html>loomoon
opening tag

... </html>looomooon
closing tag

<title> ... </title> <h1> ... </h1>

<head> ... </head> <body> ... </body> <p> ... </p>

a) [6] Ignoring the real HTML semantics, draw a WORD-PDA using the minimal number
of states required to check whether all given HTML tags are opened and closed in a
correct nesting order. In a correct nesting order, any opened tag must be closed before
any previously opened tag is closed. All opened tags must be closed eventually. The
WORD-PDA should allow any text between and around the HTML tags.

7

b) [8] As a variant, consider the 1-WORD-PDA, which is a WORD-PDA that supports at
most one transition from any state qi to qj (including i � j), with a single transition-
label. Note that a valid 1-WORD-PDA with Σ � ta, ..., Zu accepting all words starting
with 1foo1 or 1bar1 requires at least 3 states. For example:

q0start q1

q2

foo, εÑ ε

bar, εÑ ε

a..Z, εÑ ε

ε, εÑ ε

ε, εÑ ε

We will use a 1-WORD-PDA to check the syntax of real HTML documents, for example:
<html>

<head>
<title>Discrete Event Systems</title>

</head>
<body>

<h1>Regular languages are fun</h1>
<p>It is no secret that regular languages are fun</p>

</body>
</html>

Draw a 1-WORD-PDA using at most 6 states for the following grammar of HTML:
S Ñ <html>D </html> Σ � t<, >, /, 1, a, ..., Zu
D Ñ <head>H </head> <body>B </body>
H Ñ <title>T </title>
B Ñ <h1>T </h1>P B | ε
P Ñ <p>T </p>
T Ñ T T | a | b | ... | Z

(You will be awarded up to 4 points if your solution uses at most 10 states.)

8

Model solution

a) A minimal WORD-PDA checking the correctness of nesting orders must have at least two
states as it cannot recognize all the (infinitely many) combinations with finitely many
transitions. A solution with two states for Σ � t<, >, /, a, ..., Zu looks as follows:

q0start q1

a..Z, εÑ ε
ε, εÑ $

a..Z, εÑ ε
<html>, εÑ α
</html>, αÑ ε
<head>, εÑ β
</head>, β Ñ ε
<body>, εÑ γ
</body>, γ Ñ ε
<title>, εÑ τ
</title>, τ Ñ ε

<h1>, εÑ θ
</h1>, θ Ñ ε
<p>, εÑ ρ
</p>, ρÑ ε

ε, $ Ñ ε

b) A 1-WORD-PDA with five states that recognizes the language looks as follows:

q0start

q1

q2 q3

q4

<html><head><title>, εÑ ε

a..Z, εÑ α

</title><body><h1>, αÑ α

</title><body></body></html>, αÑ α

a..Z, εÑ β

</h1><p>, β Ñ β
a..Z, εÑ γ

</p><h1>, γ Ñ γ

</p></body></html>, γ Ñ γ

Note how we utilize the stack to ensure that the page title, headings and paragraphs can-
not be empty by requiring to read the symbols α, β, or γ on any outgoing edge from the
states q1, q2, and q3, respectively.

9

4 Random Bitstrings (20 points)
You are given two random binary strings a and b, both of length 3, e.g. a � “011”. In each
round an index i, where 1 ¤ i ¤ 3, is chosen uniformly at random. If the ith bits of strings a
and b are different, we flip the ith bit of string a.

a) [6] What is the expected time (number of rounds) until string a equals string b for the
first time? Show all your work.

Let us now change the game a bit: You are given two random binary strings c and d of length
3. In each round an index i, where 1 ¤ i ¤ 3, is chosen uniformly at random and the ith bit of
string c is flipped (regardless of the ith-bit of string d). You stop when c � d.

b) [3] Model the game as a Markov Chain.

10

c) [7] What is the expected time until c � d? Show all your work.

Finally, you are again given two random binary strings e and f of length 3. In each round, two
indices i and j, where 1 ¤ i, j ¤ 3, are chosen uniformly at random. You flip both the ith bit
of string e and the jth bit of string f .

d) [4] What is the expected time until e � f? Show all your work.

11

Model solution

a) The expected number of rounds of the game is

Ernumber rounds games �
3̧

i�1
Prprobabilitys differ in i bitss �Xi,

where Xi is the expected number of rounds of the game if they initially differ in i bits.
The probability that the initial strings differ in i positions, where 0 ¤ i ¤ 3, is

�3
i

� 1
23 . To

go from a state in which a and b differ in i bits, where 1 ¤ i ¤ 3, to a state where they
differ in i� 1 bits, one of the bits in which they differ needs to be selected. This happens
with probability i

3 . Thus, in expectation, we remain 3
i rounds in the state where the two

strings differ by i bits, before going to a state where they differ in i � 1 bits. Thus the
total amount of rounds to go from i different bits to 0 different bits is

°i
j�1

3
j . Thus

Ernumber rounds games �
3̧

i�1

�
3
i

1
23 �

i̧

j�1

3
j
�

7
2

b) The Markov chain consists of 4 states, indicating the number of bits that differ between
two strings. The transitions correspond to the probability that a bit in which the two
strings differ respectively equal is selected.

3 2 1 0

1 2
3

2
3

1
3

1
3

Figure 1: Markov chain for the game in part a).

c) For the expected value, we need to determine two things: 1) the initial distribution,
and 2) the hitting time from any state to the state that represents a difference of 0 bits
between the two strings.
The probability that the two states are equal or complement is 1

23 �
1
8 . The probability

that they differ in 1 or 2 bits is
�3

1
� 1

23 � 3
8 . Therefore, the starting distribution is

σ � p1
8 ,

3
8 ,

3
8 ,

1
8q.

To compute the hitting times we need to solve the following linear system of equations:

h3 � 1� h2 h2 � 1� 2
3
h1 �

1
3
h3 h1 � 1� 2

3
h2

To solve this we can substitute the first and third equations into the second which gives

h2 � 1� 2
3

�
1� 2

3
h2

�

1
3
p1� h2q ðñ h2 � 9

Substituting this into the first and third equation gives h1 � 7 and h3 � 10 This implies
that the expected number of rounds until strings c and d are equal is

1
8
� 10� 3

8
� 9� 3

8
� 7 � 7.25.

d) In any round, the number of bits that differ between the two strings either remains the
same or changes by two. Therefore, if we start with 1 or 3 different bits, it is not possible
to reach equality. Thus the expected number of steps until the two strings are equal is
unbounded.

12

5 Boxes (20 points)
You play the following game consisting of n rounds: In each round you receive a single box
with a number written on it that indicates how much money is inside the box. Unfortunately,
you only have a limited amount of space available. More precisely, you have enough space to
keep a single box in storage, we call this the stored box from now on. Therefore, at each step
i you have to decide if you want to stick with your currently stored box or exchange it with
the box that you receive in the ith round. If you decide to discard a box, you will never have
access to it again.
At the end of the n rounds you will receive the money inside the stored box. Your goal is to
maximize the amount of money you can win. The number of rounds n is known to you before
the game.

Since we maximize the amount of money, we are interested in “gain” instead of “cost”. Recall
the definition: An online algorithm A is strictly r-competitive if for all finite input sequences I

costApIq ¤ r � costoptpIq, or r � gainApIq ¥ gainoptpIq.

a) [4] What is the best deterministic online algorithm and what is its strictly competitive
ratio? Prove your claim.

We change the game slightly: Only two boxes will arrive, so n � 2. However, this time one
of the boxes is a “trap”, in the sense that it does not contain any money (no matter what is
written on it). The optimal offline algorithm knows which box is the trap.

b) [3] Is there a deterministic online algorithm that is strictly constant competitive? Prove
your claim.

13

c) [4] Can you design a randomized online algorithm that is strictly 2-competitive? Prove
your claim.

d) [5] Show that there is no randomized online algorithm that is better than strictly 2-
competitive. Prove your claim.

Now you will receive a lot of boxes, so n will be very large. Again, one of the boxes is a trap
that does not contain any money. But this time you are guaranteed that all boxes have “10”
written on them.

e) [4] Can you design a randomized online algorithm with best possible strictly competitive
ratio as n goes to infinity? Prove your claim.

14

Model solution

a) The algorithm always picks the box with the highest value and puts it as the stored box.
So if a new box has a larger value written on it, it will be exchanged with the stored box.
This strategy is strictly 1-competitive because the gain corresponds to the largest of the
n boxes. Furthermore, this is best possible as no algorithm can get more money than
written on any of the boxes.

b) There is no deterministic algorithm that is strictly constant competitive. Let’s look at
the sequence of two boxes a, b. Wlog. we can assume that the algorithm always pick box
a to be stored first, so we can choose between keeping the box with a or b written on
it. Because the algorithm is deterministic we know in advance which of the two boxes
will be chosen. So an adversary can remove the money from the chosen box and the
deterministic algorithm will always have gain 0 whereas the optimal algorithm could
always choose the box containing the money. Therefore, no deterministic algorithm can
be strictly (constant) competitive.

c) We keep the first box and then compare it to the second box that arrives. With probability
1
2 we exchange the boxes (no matter what is written on them). The strategy is 2-
competitive in expectation. Let x be the value written on the box which contains money.
Clearly, the optimal player could gain at most x so x ¥ gainOPT pIq holds. Using our
proposed algorithm, we pick the box containing x money and the box with no money
with equal probability. Our expected gain is 1

2x�
1
20. Therefore, r � gainApIq � 2 � 1

2x �
x ¥ gainOPT pIq holds and the expected competitive ratio is 2.

d) No, use the Yao principle with the following input distribution consisting of two inputs
which are each chosen with probability 1

2 . The first box a has value va, the second box
b has value vb. In the first input box a is the trap, in the second input box b is the trap.
Note that any deterministic algorithm will always choose either a or b for both inputs.
Therefore, its total gain will be either va or vb, compared to the optimal offline algorithm
who will have a gain of va � vb. Therefore the competitive ratio is either va�vb

va
or va�vb

vb
.

By choosing va � vb, we get that va�vb
va

� va�vb
vb

� 2 is a lower bound on the competitive
ratio for all deterministic algorithms on the chosen input distribution. By Yao it then
follows that there is no randomized algorithm which is better than 2 competitive.

e) Choosing one of the boxes in the beginning with equal probability gets you a n
n�1 -

competitive algorithm. All the boxes have the same amount of money in them and
the probability that you choose one of them is n�1

n . Because all boxes with money con-
tain the same amount of money we have: 10 ¥ gainOPT pIq and our expected gain is
n�1
n 10� 1

n0. We put this together to match the definition of the competitive ratio with
r � n

n�1 : r � gainApIq ¥ n
n�1 �

n�1
n 10 ¥ gainOPT pIq. As n goes to infinity the ratio tends

towards one, i.e. will be as good as the optimum algorithm.

15

6 Binary Decision Diagrams (9 points)
The following truth table represents a Boolean function fpa, b, cq.

a b c f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 1: Truth table.

a) [2] Given the Boolean expression of f in the table above and the ordering of variables
a Ñ b Ñ c (i.e., a is the top node), construct the non-reduced (i.e., with 7 nodes and
8 leaves) ordered binary decision diagram (OBDD) of f .
Note: In all questions, use solid lines for True arcs and dashed lines for False arcs.

16

b) [2] Create the reduced ordered binary decision diagram (ROBDD) of f by merging equiv-
alent nodes and leaves of the OBDD obtained in the previous question.

c) [2] Would another variable ordering produce a smaller ROBDD? If yes, show the ROBDD
for this order. If no, elaborate on your answer.

17

d) [3] Build a BDD for g � @b : f . Use the same variable order as in question 6-a).

18

Model solution

a) OBDD of the Boolean function in Table 1.

af

b b

c c c c

1 1 1 0 1 0 0 0

b) ROBDD of f

af

b b

c

1 0

c) No, the ROBDD will not become smaller: we apply logic simplification to f

fpa, b, cq � a � b� b � c� a � c, (1)

which is fully symmetrical, i.e., switching the labels preserves the expression.

d) We apply the definition of the universal quantifier

@b : fpa, b, cq :� fpa, 0, cq � fpa, 1, cq, (2)

@b : fpa, b, cq � pa � cq � pa� cq � a � c. (3)

af

c

1 0

19

20

7 CTL Model Checking (10 points)

{a}
s₁

{b}
s₂

{a,d}
s₃

{c}
s₄

{a,b}
s₀

Figure 2: State transition diagram.

Consider a state transition diagram illustrated in Figure 2, with the set of atomic propositions
ta, b, c, du, the set of states ts0, s1, s2, s3, s4u, and the set of initial states ts0u. The transition
relations are given as edges between the states; each state is labeled with a set of atomic
propositions that are true at the state.

a) [2] Describe the meaning of each of the following CTL formulas over the set of atomic
propositions in plain language.

• AG pa_ bq.

• A rpa_ bq U ds.

b) [2] For each of the formulas above, give the set of states that satisfies the formula.

21

c) [6] Formulate an iterative procedure to find the set of states that satisfy the CTL formula
AF EG d. Indicate the initial set of states and all visited sets of states until you reach
a fixed point.
Note: For a given set of states Q, we define the predecessor function P pQq as a function
that returns the set of all direct predecessor states of set Q; we define the successor
function SpQq as a function that returns the set of all direct successor states of set Q.

22

Model solution

a) Translate CTL formula to plain language:

• AG pa_ bq: In all reachable states, either a or b holds.
• A rpa_ bq U ds: For all paths, either a or b has to hold until d holds.

b) Set of states that satisfy the CTL formula:

• AG pa_ bq: ts0, s1, s2, s3u.
• A rpa_ bq U ds: ts0, s1, s2, s3u.

c) CTL Model Checking:
We first compute the set of states that satisfy EG d. We start from the set of states that
satisfy d:

Q0 � ts3u. (4)

We then compute P pQ0q, the set of all direct predecessors of Q0, and compute the
intersection between Q0 and P pQ0q:

Q1 � Q0 X P pQ0q � ts3u X ts3, s1, s4u � ts3u, (5)

and here we have detected that a fix-point is reached (Q1 � Q0), therefore the set of
states that satisfy EG d is ts3u. We define a new atomic proposition φ as the set of
states that satify EG d.
Now we compute the set of states that satisfy AF φ. We use the relation AF φ �
 EG φ. We start the procedure by identifying the set of states that satisfy φ, which
is given as

Q0 � ts0, s1, s2, s4u. (6)

We then compute P pQ0q, the set of all direct predecessors of Q0, and compute the
intersection between Q0 and P pQ0q, which is given as

Q1 � Q0 X P pQ0q � ts0, s1, s2, s4u X ts0, s1, s2u � ts0, s1, s2u. (7)

Since a fixed-point is not reached, we repeat the process to obtain Q2:

Q2 � Q1 X P pQ1q � ts0, s1, s2u X ts0, s1, s2u � ts0, s1, s2u, (8)

and here we have detected that a fix-point is reached (Q2 � Q1). Therefore, the set of
states that satisfy EG φ is ts0, s1, s2u. We then compute the complement of this set,
which is given as

AF EG d � AF φ � EG φ � ts3, s4u. (9)

23

8 Petri Nets (13 points)

Liveness and Capacity

a) [2] Consider the Petri net in Figure 3. Determine the highest liveness level of all transi-
tions (t1 to t4) and concisely elaborate on your answers.

p1

p2 p3

p4p5

t1 t2

t3 t4

Figure 3: Petri net for liveness analysis.

Note: A transition t in a Petri net is

• dead iff t cannot be fired in any firing sequence,
• L1-live iff t can be fired at least once in some firing sequence,
• L2-live iff, @k P N�, t can be fired at least k times in some firing sequence,
• L3-live iff t appears infinitely often in some infinite firing sequence,
• L4-live iff t is L1 live for every marking that is reachable from M0.

Lj�1 liveness implies Lj liveness.

24

b) [1] Figure 4 repeats the Petri net of Figure 3. Modify the Petri net in the figure to create
a capacity constraint of 2 tokens in place p5.

p1

p2 p3

p4p5

t1 t2

t3 t4

Figure 4: Petri net for capacity constraint.

c) [2] Determine the liveness level of all transitions (t1 to t4) in the modified Petri net (i.e.,
with a capacity constraint of 2 tokens in place p5) and concisely elaborate on your answers.

25

Model solution

a) • t1 is L1-live.
• t2 is dead.
• t3 is L4 live.
• t4 is L1 live.

b) We add an extra place p15 with two initial tokens and an arc from p15 to t3.

p1

p2 p3

p4p5p15

t1 t2

t3 t4

c) • t1 is L1-live.
• t2 is dead.
• t3 is L1 live.
• t4 is L1 live.

26

Reachability

Consider a Petri net with four places, p1 to p4, and three transitions, t1 to t3, characterized by
the following initial marking M0 and incidence matrix A.

M0 �

�
������

m1

m2

m3

m4

�
������
�

�
������

1

1

1

0

�
������

A �

�
������

�1 1 0

0 �1 1

1 0 �1

0 1 1

�
������

(10)

a) [2] Draw the Petri net described by M0 and A. Clearly label all places and transitions.
Indicate the initial token marking.
Note: In a marking M , element mi denotes the number of tokens in place pi. In the
incidence matrix A, element Ai,j describes the “gain” of tokens at place pi when transition
tj fires.

27

b) [3] Is the marking M1 �

�
������

2

1

0

4

�
������

reachable from M0? Justify your answer.

c) [3] Is the marking M2 �

�
������

2

3

0

4

�
������

reachable from M0? Justify your answer.

28

Model solution

a) The Petri net described by M0.

p1

p2p3

p4

t1

t2

t3

b) The marking is reachable. We prove reachability by giving a firing sequence. The follow-
ing two sequences are all valid solutions:

• tt2, t3, t2, t1, t3u.
• tt2, t3, t1, t2, t3u.

c) The marking is not reachable. We have two approaches:

• We can identify a place invariant: mpp1q � mpp2q � mpp3q � 3. And the given
marking does not satisfy the invariant.

• The system of linear equations given by M0 �A � x �M2 has no solution.

29

9 Time Petri Net (8 points)
Consider the Petri net in Figure 5.

p1 p2

t1
dpt1q � 1

t2
dpt2q � 2

t3
dpt3q � 22

22

2

Figure 5: Time Petri net at simulation step 0 (τ � 0).

The transitions are associated with the following delays between their activation and firing:
dpt1q � 1, dpt2q � 2, dpt3q � 2.

a) [8] Simulate the behavior of the time Petri net by filling in the table below. For each
simulated step, corresponding to a firing of the Petri net, indicate the simulation time τ ,
the transition tfired that fires in τ , the resulting marking M τ , and the updated event list
Lτ . The first two simulation steps are already indicated in the table.

Note: If there are several transitions enabled at the same time, they fire in the order of
their index, i.e., the transition with the smallest index fires first.

step τ tfired M τ Lτ

0 0 - r0, 1s (t3, 2)

1 2 t3 r2, 1s (t1, 3), (t3, 4)

2

3

4

5

30

Model solution

a) Simulation of the Petri net:

step τ tfired M τ Lτ

0 0 - r0, 1s (t3, 2)

1 2 t3 r2, 1s (t1, 3), (t3, 4)

2 3 t1 r0, 2s (t3, 4), (t2, 5)

3 4 t3 r2, 2s (t1, 5), (t3, 6),
(t2, 6)

4 5 t1 r0, 3s (t3, 6), (t2, 6)

5 6 t2 r2, 1s (t3, 8), (t1, 7)

31

32

