Discrete Event Systems

Exercise Session 2

Roland Schmid

nsg.ee.ethz.ch

ETH Zurich (D-ITET)
28 September 2023

https://nsg.ee.ethz.ch

1 Nondeterministic Finite Automata

a)

b)

c)
d)

Consider the alphabet {a,b}. Construct an NFA that accepts all strings containing the
substring abba at least twice. (This means that words containing abbabba as a substring
should also be accepted!)

Construct an NFA which accepts the following regular expression: (00U (0(0U 1)*))*.
Construct an NFA accepting 1*0*17 with as few states as possible. (cf. Exercise 1.1.a)

Consider a machine M := (Q, %, 0, qp, Q). Is it possible to make a statement about the
strings being accepted by M7 Does it make a difference whether M is deterministic or
not?

REX = NFA

e Proof: The proof works by induction, using the recursive definition of
regular expressions. First we need to show how to accept the base case
regular expressions a€X, € and J. These are respectively accepted by the
NFA’s:

No——@

e Finally, we need to show how to inductively accept regular expressions
formed by using the regular operations. These are just the constructions
that we saw before, encapsulated by:

A
: .
e

\Q/
So

NFA: Concatenation

e The concatenation AeB is formed by putting the automata in serial.
The start state comes from A while the accept states come from B.

A’s accept states are turned off and connected via e-edges to B’s
start state:

/0

2 Exam question [2018]

Assume that the alphabet ¥ is {0,1} and consider the language L = {w | there exist two zeros
in w that are separated by a string whose length is 4i for some 7 > 0}. For example, the strings
1001 and 10110101 belong to L, whereas the strings 101 and 010101 do not. Design an NFA that
recognizes L with 6 states or less.

3 De-randomization

a) Give a regular expression for the following NFA and construct an equivalent NFA without

e-transitions.
0 1 2
—

b) Finally, transform the machine into a deterministic automaton.

Determinizing NFA’s: Example

e |dea: We might keep track of all parallel active states as the input is
being called out. If at the end of the input, one of the active states
happened to be an accept state, the input was accepted.

e Example, consider the following NFA, and its deterministic FA.

NFA’s have 3 types of non-determinism

I\ie:;f;(i)r;e o -function | Easy to fix? | Formally
Crash | No output yess,;;]{:”_ 5(g,a)|=0
o | Wb | o e
Pavse | Reteine | 1o | g

One-Slide-Recipe to Derandomize

e |Instead of the states in the NFA, we consider the power-states in the FA.
(If the NFA has n states, the FA has 2" states.)

e First we figure out which power-states will reach which power-states in
the FA. (Using the rules of the NFA.)

e Then we must add all epsilon-edges: We redirect pointers that are initially
pointing to power-state {a,b,c} to power-state {a,b,c,d,e,f}, if and only if
there is an epsilon-edge-only-path pointing from any of the states a,b,c to
states d,e,f (a.k.a. transitive closure). We do the very same for the starting
state: starting state of FA = {starting state of NFA, all NFA states that can
recursively be reached from there}

e Accepting states of the FA are all states that include a accepting NFA
state.

4 States Minimization

Simplify the following automaton. Explain why your changes are allowed. Finally, give the
corresponding regular expression.

Minimization

e Definition: An automaton is irreducible if
— it contains no useless states, and
— no two distinct states are equivalent.

e By just following these two rules, you can arrive at an “irreducible”
FA. Generally, such a local minimum does not
have to be a global minimum.

e |t can be shown however, that these minimization rules actually
produce the global minimum automaton.

e The idea is that two prefixes u,v are indistinguishable iff for all
suffixes x, ux € Liff vx € L. If uand v are distinguishable, they cannot
end up in the same state. Therefore the number of states must be at
least as many as the number of pairwise distinguishable prefixes.

6 “Regular” Operations in UNIX

In this exercise you are asked to provide a UNIX command to output all lines in a file ending
with “password” or “passwort”, followed by an unknown number (potentially zero) of vowels.

