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Temporal Logic

• Verify properties of a finite automaton, for example
• Can we always reset the automaton?

• Is every request followed by an acknowledgement?

• Are both outputs always equivalent?

• Specification of the query in a formula of temporal logic. 

• We use a simple form called Computation Tree Logic (CTL).

• Let us start with a minimal set of operators. 
• Any atomic proposition is a CTL formula.

• CTL formula are constructed by composition
of other CTL formula.

There exists 
other logics

(e.g. LTL, CTL*)

Formula Examples

Atomic
proposition

The printer is busy.
The light is on.

Boolean logic 𝜙1 + 𝜙2 ; ¬𝜙1

CTL logic EX 𝜙1
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Formulation of CTL properties

Based on atomic propositions (𝜙) and quantifiers

A𝜙 → «All 𝜙», 𝜙 holds on all paths

E𝜙 → «Exists 𝜙», 𝜙 holds on at least one path

X𝜙 → «NeXt 𝜙», 𝜙 holds on the next state

F𝜙 → «Finally 𝜙», 𝜙 holds at some state along the path

G𝜙 → «Globally 𝜙», 𝜙 holds on all states along the path

𝜙1U𝜙2 → «𝜙1Until 𝜙2», 𝜙1 holds until 𝜙2 holds

implies that 𝜙2 has to hold eventually

Quantifiers 
over paths

Path-specific quantifiers
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… …… … …

CTL quantifiers work in pairs: we need one of each! {A,E} {X,F,G,U}𝜙



a counter-example

So… what is model-checking exactly?

Model-checking is an algorithm
which takes two inputs

▪ a DES model 𝑴
▪ a formula 𝝓

It explores the state space of 𝑴 such as to either

▪ prove that 𝑴 ⊨ 𝝓, or
▪ return a trace where the formula does not hold in 𝑴. 

Extremely useful! ▪ Debugging the model
▪ Searching a specific execution sequence
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Finite automato
Petri nets
Kripke machine
...

CTL, LTL, ...
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Petri Nets: Motivation

In contrast to state machines, state transitions in Petri nets are asynchronous. 
The ordering of transitions is partly uncoordinated; it is specified by a partial order. 

Therefore, Petri nets can be used to model concurrent distributed systems.

Many flavors of Petri nets are in use, e.g. 
▪ Activity charts (UML)

▪ Data flow graphs, signal flow graphs and marked graphs

▪ GRAFCET (programming language for programming logic controllers)

▪ Specialized languages for workflow management and business processes

Invented by Carl Adam Petri in 1962 in his thesis “Kommunikation mit Automaten”
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Definition

Properties

Analysis

▪ Semantics
▪ Token game

▪ Safety
▪ Liveness

▪ Coverability tree
▪ Incidence matrix



Petri Net: Definition

A Petri net is a bipartite, directed graph 

defined by a 4-tuple (S, T, F, M0), where
p1 p3

p5 p4

p2

t1 t2

t1, t2  ∈ T

p1, p2, p3, p4, p5  ∈ S

p1, t1 , p2, t1 , t1, p5 , …  ∈ F
9

▪ S is a set of places p

▪ T is a set of transitions t

▪ F is a set of edges (flow relations) f

▪ M0 : S → N; the initial marking



Token Marking

▪ Each place pi is marked with a certain number of tokens.

▪ The initial distribution of the tokens is given by M0.

▪ M(s) denotes the marking of a place s.

▪ The distribution of tokens on places defines the state of a Petri net.

▪ The dynamics of a Petri net is defined by a token game.

p1

p2

t1
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M(p1) = 2

M(p2) = 1



Token Game of Petri Nets

A marking M activates a transition t ∈ T if each place p 
connected through an edge f towards t contains at least one token.

If a transition t is activated by M, 
a state transition to M’ fires (happens) eventually.

Only one transition is fired at any time.

When a transition fires

p3 p4

p1 p2

t1
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▪ it consumes a token from each of its input places,

▪ it adds a token to each of its output places.
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Token Game of Petri Nets
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Always one transition fires at a time! 

Consume a token from each input place and add token to each output place.



Non-Deterministic Evolution

Any activated transactions can fire.

The evolution of 
Petri nets is 

not deterministic.

p3 p4

p1 p2

t1t2
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p3 p4

p1 p2

t1t2
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p3 p4

p1 p2

t1t2

p3 p4

p1 p2

t1t2



Non-Deterministic Evolution

Any activated transactions can fire.

The evolution of 
Petri nets is 

not deterministic.

p3 p4

p1 p2

t1t2t2 t1
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p3 p4

p1 p2

t1t2

p3 p4

p1 p2

t1t2



Syntax Exercise (1)

A B C D E

F G H I

▪ Is it a valid Petri Net?     

▪ Which transitions 
are activated?

▪ What is the  marking 
after firing?

19
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✓ ꭗ ꭗ

✓ ✓ ✓ ✓

✓ ✓

Edge must connect 
transition and place

Edge must connect 
transition and place



Syntax Exercise (2)

J K

L

t2
t1

▪ Is it a valid Petri Net?     

▪ Which transitions 
are activated?

▪ What is the  marking 
after firing?

t1 t2 t3
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Syntax Exercise (2)

J K

L

t2
t1

▪ Is it a valid Petri Net?     

▪ Which transitions 
are activated?

▪ What is the  marking 
after firing?

t1 t2 t3

22

✓ ✓

✓



Weighted Edges

▪ Weights can be associated to edges.

▪ Each edge f has an associated weight W(f) (defaults to 1).

▪ A transition t is activated if each place p connected 
through an edge f to t contains at least W(f) token.

▪ When transition t fires, then W(f) token are transferred. 

H2
O2

2

2

H2O

H2 O2

2

2

H2O

chemical reaction
2 H2 + O2 → 2H2O
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State Transition Function

• Using the previous definitions, we can now define the state transition function δ of a Petri net:

• Suppose that in a given Petri net (S, T, F, W, M0) the 
transition t is activated. Before firing the marking is M. 

• Then after firing t, the new marking is M’ = δ(M, t) with

• We also write sometimes M’ = M · t instead of M’ = δ(M, t).

M(p) – W(p, t) if (p, t) ∈ F and (t, p) ∉ F 

M(p) + W(t, p) if (t, p) ∈ F and (p, t) ∉ F 

M(p) – W(p, t) + W(t, p) if (t, p) ∈ F and (p, t) ∈ F 

M(p) otherwise

M’(p) = 
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p1 p3

p5 p4

p2

t1

t2

Starting from M0, t1 fires: M’(p1) = 2 – 1 = 1, M’(p2) = 1 – 1 = 0, M’(p3) = 3 – 1 = 2,  M’(p4) = 1 + 1 = 2, M’(p5) = 1 + 1 = 2

Starting from M0, t2 fires: M’(p4) = 1 – 1 + 1 = 1



Finite Capacity Petri Net

▪ Each place p can hold maximally K(p) token.

▪ A transition t is only active if all output places pi of t cannot exceed K(pi) after firing t. 

p1

p2 K(2)=1

t1

t2

p1

p2 K(2)=1

t1

t2

p1

p2 K(2)=1

t1

t2
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where “equivalent” means “Both nets have 
the same set of possible firing sequences.”

▪ Finite capacity Petri Nets can be transformed 
into equivalent infinite capacity Petri Nets 
(without capacity restrictions)

p1

p2 K(2)=1

t1

t2

p1

p2 K(2)=1

t1

t2

t1  fires Only t2 active t2 fires t1 active



Removing Capacity Constraints

▪ For each place p with a capacity constraint K(p), add a complementary place 
p’ with initial marking M0(p’) = K(p) – M0(p).

▪ For each outgoing edge f = (p, t), add an edge f’ from t to p’ with weight W(f).

▪ For each incoming edge f = (t, p), add an edge f’ from p’ to t with weight W(f).

p1

p2 K(2)=3

t1

t2

p1

p2

t1

t2

p2’

2 2

2

remove capacity
constraint
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Your turn!

Remove the capacity constraint from place p3.

p2

p3
K(3)=3

t2

t3

p1

p4

t4

t1

t5

2
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For each place p with a capacity constraint K(p), add a 
complementary place p’ with initial marking M0(p’) = K(p) – M0(p).

For each outgoing edge f = (p, t), add an edge f’ from t to p’ with 
weight W(f).

For each incoming edge f = (t, p), add an edge f’ from p’ to t with 
weight W(f).



Your turn!

Remove the capacity constraint from place p3.

p2

p3
K(3)=3

t2

t3

p1

p4

t4

t1

t5

2

p2

p3

t2

t3

p1

p4

t4

t1

t5

2 p3’
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For each place p with a capacity constraint K(p), add a 
complementary place p’ with initial marking M0(p’) = K(p) – M0(p).

For each outgoing edge f = (p, t), add an edge f’ from t to p’ with 
weight W(f).

For each incoming edge f = (t, p), add an edge f’ from p’ to t with 
weight W(f).



Your turn!

Remove the capacity constraint from place p3.

p2

p3
K(3)=3

t2

t3

p1

p4

t4

t1

t5

2

p2

p3

t2

t3

p1

p4

t4

t1

t5

2 p3’

2
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For each place p with a capacity constraint K(p), add a 
complementary place p’ with initial marking M0(p’) = K(p) – M0(p).

For each outgoing edge f = (p, t), add an edge f’ from t to p’ with 
weight W(f).

For each incoming edge f = (t, p), add an edge f’ from p’ to t with 
weight W(f).



Modeling Finite Automata 

Finite automata can be represented by a subclass of Petri nets, 

where each transition has exactly one incoming edge and one outgoing edge.

p1

p2

p4

p5

D

Q

Q

p3

D

p4

D|Q

Q

D
p6

D

Q D

p4

Q

D|Q

Soda

10 ¢

40 ¢

30 ¢20 ¢

≥ 45 ¢

35 ¢

25 ¢

Coke costs 45 ¢.
Customer pays with 
▪ Dime (10 ¢) or 
▪ Quarter (25 ¢).
Overpaid money is lost.

Coke vending machine
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Concurrent Activities

Finite Automata allow the representation of decisions, but no concurrency.

Petri nets support concurrency with intuitive notations:

fork join / synchronization

Concurrency

decision / conflict

Decision
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Petri Net Languages

▪ Transitions are labeled with (not necessarily distinct) symbols.

▪ Final state is reached if no transition is activated.

▪ Any sequence of firing generates a string of symbols, i.e. a word of the language.

  

a b c

L(M0) = ?
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a fires n times



Petri Net Languages

▪ Transitions are labeled with (not necessarily distinct) symbols.

▪ Final state is reached if no transition is activated.

▪ Any sequence of firing generates a string of symbols, i.e. a word of the language.

  

a b c

L(M0) = ?

38

a fires n times
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a fires n times
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a fires n times b fires m times
(m ≤ n)
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a fires n times b fires m times
(m ≤ n)



Petri Net Languages
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a fires n times b fires m times
(m ≤ n)

c fires m times



Petri Net Languages

▪ Transitions are labeled with (not necessarily distinct) symbols.

▪ Final state is reached if no transition is activated.

▪ Any sequence of firing generates a string of symbols, i.e. a word of the language.

▪ Every finite-state machine can be modeled by a Petri net.

  

a b c

L(M0) = {an bm cm | n ≥ m ≥ 0 }

Every regular language 
is a Petri net language.

Not every Petri net 
language is regular.
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a fires n times b fires m times
(m ≤ n)

c fires m times



Common Extensions

Colored Petri nets Tokens carry values (colors).

A Petri net with finite number of colors 
can be transformed into a regular Petri net.

Continuous Petri nets The number of tokens can be a real number (not only an integer).

Cannot be transformed into a regular Petri net.

Inhibitor Arcs Enable a transition if a place contains no tokens.

Cannot be transformed to a regular Petri net

  

a b c

L(M0) = {an bn cn | n ≥ 0 }

44

Time Petri nets
See next week
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Definition

Properties

Analysis

▪ Semantics
▪ Token game

▪ Safety
▪ Liveness

▪ Coverability tree
▪ Incidence matrix



Behavioral Properties (1)

Reachability

A marking Mn is reachable from M0 iff there exists a sequence of firings 

{t1, t2, … tn} such that Mn = M0 · t1 · t2 · … · tn

K-Boundedness

A Petri net is K-bounded if the number of tokens in every place never exceeds K. The number 
of states is finite in this case.

Safety

1-Boundedness: Every node holds at most 1 token at any time.
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Behavioral Properties (2)
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Liveness

A transition t in a Petri net is
▪ dead     iff t cannot be fired in any firing sequence,

▪ L1-live   iff t can be fired at least once in some firing sequence,

▪ L2-live   iff,  k  N+, t can be fired at least k times in some firing sequence,

▪ L3-live   iff t appears infinitely often in some infinite firing sequence,

▪ L4-live (live)  iff t is L1-live for every marking that is reachable from M0.

Lj+1-liveness implies Lj-liveness.

A Petri net is free of deadlocks iff there is no reachable marking 

from M0 in which all transitions are dead.



Behavioral Properties (2)
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p3
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Behavioral Properties (2)
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p1

p2

t1

t2

p3

t3

All transitions are L4-live.

Petri net is free of deadlocks.

Liveness
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t3
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t3
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p1

p2

p3

t1

t2

t3

Liveness

A transition t in a Petri net is
▪ dead     iff t cannot be fired in any firing sequence,

▪ L1-live   iff t can be fired at least once in some firing sequence,

▪ L2-live   iff,  k  N+, t can be fired at least k times in some firing sequence,

▪ L3-live   iff t appears infinitely often in some infinite firing sequence,

▪ L4-live (live)  iff t is L1-live for every marking that is reachable from M0.

Lj+1-liveness implies Lj-liveness.

A Petri net is free of deadlocks iff there is no reachable marking 

from M0 in which all transitions are dead.



Behavioral Properties (2)

Liveness

A transition t in a Petri net is
▪ dead     iff t cannot be fired in any firing sequence,

▪ L1-live   iff t can be fired at least once in some firing sequence,

▪ L2-live   iff,  k  N+, t can be fired at least k times in some firing sequence,

▪ L3-live   iff t appears infinitely often in some infinite firing sequence,

▪ L4-live (live)  iff t is L1-live for every marking that is reachable from M0.

Lj+1-liveness implies Lj-liveness.

A Petri net is free of deadlocks iff there is no reachable marking 

from M0 in which all transitions are dead.
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p1

p2

p3

t1

t2

t3

t1 is L3-live.

t2 is L2-live.

t3 is L1-live.

Petri net is not free of 
deadlocks.
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Definition

Properties

Analysis

▪ Semantics
▪ Token game

▪ Safety
▪ Liveness

▪ Coverability tree
▪ Incidence matrix



Analysis Methods

Coverability tree

Enumeration of all reachable markings, limited to small nets if done by explicit enumeration. 
Reachability analysis similar to that of finite automata can be done if the net is bounded.

Incidence Matrix

Describes the token-flow and state evolution by a set of linear equations. 
This method allows to derive necessary but not sufficient conditions for reachability.
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Coverability Tree

Problem There might be infinitely many reachable markings, but we must avoid an infinite tree.

Question What token distributions are reachable?

Solution Introduce a special symbol  to denote an arbitrary number of tokens.
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p2

t3

t2

p1

p3

t1

t0



Coverability Tree

Problem There might be infinitely many reachable markings, but we must avoid an infinite tree.

Question What token distributions are reachable?

Solution Introduce a special symbol  to denote an arbitrary number of tokens.
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p2

t3

t2

p1

p3

t1

t0

M0 = [1 0 0]

M1 = [0 0 1]

t1 t3

M3 = [1 1 0]

t3

M6 = [1 2 0]

deadlock

tree

p1 p2 p3

= [1  0]

= [1  0]



Coverability Tree

Problem There might be infinitely many reachable markings, but we must avoid an infinite tree.

Question What token distributions are reachable?

Solution Introduce a special symbol  to denote an arbitrary number of tokens.
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p2

t3

t2

p1

p3

t1

t0

M0 = [1 0 0]

M1 = [0 0 1]

t1 t3

M3 = [1  0]

M4 = [0  1]

t2

M5 = [0  1]

t1 t3

M6 = [1  0]

deadlock

old

old

tree

p1 p2 p3



Coverability Tree

p2

t3

t2

p1

p3

t1

t0

M0 = [1 0 0]

M1 = [0 0 1]

t1 t3

M3 = [1  0]

M4 = [0  1]

t2

M5 = [0  1]

t1 t3

M6 = [1  0]

deadlock

old

old

Graph: merge equivalent 
markings into a node

M0 = [1 0 0]

M1 = [0 0 1]

M4 = [0  1]

M3 = [1  0]

t1 t3
t3

t1

t2

Problem There might be infinitely many reachable markings, but we must avoid an infinite tree.

Question What token distributions are reachable?

Solution Introduce a special symbol  to denote an arbitrary number of tokens.
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tree

p1 p2 p3



Coverability Tree: Algorithm

Special symbol , similar to : nN:  > n;  =  ± n;  ≥ 

Label initial marking M0 as root and tag it as new

while new tags exist, pick one, say M

▪ Remove tag new from M;

▪ If M is identical to an already existing marking, tag it as old; continue;

▪ If no transitions are enabled at M, tag it as deadlock; continue;

▪ For each enabled transition t at M do

▪ Obtain marking M' = M · t

▪ If there exists a marking M'' on the path from the root to M s.t. M'(p) ≥ M''(p) for 
each place p and M'  M'', replace M'(p) with  for p where M'(p) > M''(p).

▪ Introduce M' as a node, draw an arc with label t from M to M' and tag M' new. 66



Results from the Coverability Tree T

▪ The net is bounded iff  does not appear in any node label of T. If the coverability tree T does 
not contain , it is also called reachability tree, as all reachable markings are contained in it.

▪ The net is safe iff only ‘0’ and ‘1’ appear in the node labels of T.

▪ A transition t is dead iff it does not appear as an arc in T.

▪ If M is reachable from M0, then there exists a node M' s.t. M ≤ M'. 
This is a necessary, but not sufficient condition for reachability.
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Example: For M  = [1 2 0] to be reachable, in the coverability tree, there must be a node 
M or some node that covers it (e.g., M’ = [1  0]). However, the presence of M’ does 
not guarantee that M is reachable (e.g.,  includes odd numbers only, or  ≥ 3, …).
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Definition

Properties

Analysis

▪ Semantics
▪ Token game

▪ Safety
▪ Liveness

▪ Coverability tree
▪ Incidence matrix



Incidence Matrix

p1

t2
p2

t3

p3

p4

t1

2

2
2
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Describe a Petri net with a set of linear equations

▪ A marking M is written as a m  1 column vector.

p1

p2

p3

p4



Incidence Matrix

p1

t2
p2

t3

p3

p4

t1

2

2
2
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Describe a Petri net with a set of linear equations

▪ The incidence matrix A describes the token-flow for a Petri net with n transitions and 
m places in a m × n matrix.

▪ A marking M is written as a m  1 column vector.

Aij corresponds to the “gain” of tokens 
at place pi when transition tj fires. 

Aij = W(tj , pi) - W(pi , tj) with W(p,t) = 0 or W(t, p)=0 
when the corresponding edges do not exist

p1

p2

p3

p4

p1

p2

p3

p4

t1 t2 t3



State Equation

▪ The firing vector u describes the firing of a transition t. 
If transition 𝑡𝑖 fires, then 𝑢𝑖 consists of all ‘0’, except for 
the 𝑖-th row, where it has a ‘1’:

𝑢1 =
1
0
0

𝑢2=
0
1
0

𝑢3=
0
0
1
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p1

t2
p2

t3

p3

p4

t1

2

2
2



State Equation

▪ The firing vector u describes the firing of a transition t. 
If transition 𝑡𝑖 fires, then 𝑢𝑖 consists of all ‘0’, except for 
the 𝑖-th row, where it has a ‘1’:

𝑢1 =
1
0
0

𝑢2=
0
1
0

𝑢3=
0
0
1

▪ A state transition from M to M’ due to firing it is written as 

M’ = δ(M, ti) = M + A · ui
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State Equation

▪ The firing vector u describes the firing of a transition t. 
If transition 𝑡𝑖 fires, then 𝑢𝑖 consists of all ‘0’, except for 
the 𝑖-th row, where it has a ‘1’:

𝑢1 =
1
0
0

𝑢2=
0
1
0

𝑢3=
0
0
1

▪ A state transition from M to M’ due to firing it is written as 

M’ = δ(M, ti) = M + A · ui

▪ For example, M1 is obtained from M0 by firing t3:
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t3
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State Equation: Reachability

▪ A marking 𝑀𝑘 is reachable from 𝑀0 if there is a 
sequence σ of k transitions {𝑡𝜎[1], 𝑡𝜎[2], …, 𝑡𝜎[k]} 
such that 𝑀𝑘 = 𝑀0 · 𝑡𝜎 [1] · 𝑡𝜎 [2] · … · 𝑡𝜎 [k].

▪ Expressed with the incidence matrix:

which can be rewritten as

▪ If 𝑀𝑘 is reachable from 𝑀0, eq. (2) must 
have a solution where all components of 𝑥
are non-negative integers. 
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This is a necessary but not sufficient 
condition for reachability.

p1

t2
p2

t3

p3

p4

t1

2

2
2

𝑀𝑘 = 𝑀0 + 𝐴𝑢1+𝐴𝑢2+ …

Number of firings of 
each transition 𝑥 =

1
0
1

→ t1 fired once

→ t3 fired once



Reachability: Example

▪ Is                         reachable? 
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▪ Is                        reachable? 

p1

t2
p2

t3

p3

p4

t1

2

2
2

𝑀𝑘 =

2
1
0
4

𝑀𝑘 =

1
0
0
2



Reachability: Example
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▪ Is                        reachable? 

p1

t2
p2

t3

p3

p4

t1

2

2
2

▪ Is                         reachable? 𝑀𝑘 =

2
1
0
4

Possibly yes.

withis a solution to𝑥 =
1
0
2

∆𝑀 =

0
1
−1
4

𝑀𝑘 −𝑀0 = ∆𝑀 = 𝐴𝑥

𝑀𝑘 =

1
0
0
2



Reachability: Example
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▪ Is                        reachable? 

p1

t2
p2

t3

p3

p4

t1

2

2
2

▪ Is                         reachable? 𝑀𝑘 =

2
1
0
4

Possibly yes.

withis a solution to

It is actually reachable, 
e.g., with the sequence {t1, t3, t3}.

𝑥 =
1
0
2

∆𝑀 =

0
1
−1
4

𝑀𝑘 −𝑀0 = ∆𝑀 = 𝐴𝑥

𝑀𝑘 =

1
0
0
2



Reachability: Example
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▪ Is                        reachable? 

p1

t2
p2

t3

p3

p4

t1

2

2
2

▪ Is                         reachable? 𝑀𝑘 =

2
1
0
4

Possibly yes.

withis a solution to

It is actually reachable, 
e.g., with the sequence {t1, t3, t3}.

𝑥 =
1
0
2

∆𝑀 =

0
1
−1
4

𝑀𝑘 −𝑀0 = ∆𝑀 = 𝐴𝑥

𝑀𝑘 =

1
0
0
2



Reachability: Example

▪ Is                         reachable? 
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▪ Is                        reachable? 

p1

t2
p2

t3

p3

p4

t1

2

2
2

𝑀𝑘 =

2
1
0
4

Possibly yes.

withis a solution to

It is actually reachable, 
e.g., with the sequence {t1, t3, t3}.

𝑥 =
1
0
2

∆𝑀 =

0
1
−1
4

𝑀𝑘 −𝑀0 = ∆𝑀 = 𝐴𝑥

𝑀𝑘 =

1
0
0
2



Reachability: Example
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There is no solution for 𝑥 for with

No.▪ Is                        reachable? 

p1

t2
p2

t3

p3

p4

t1

2

2
2

𝑀𝑘 =

1
0
0
2

∆𝑀 =

−1
0
−1
2

𝑀𝑘 −𝑀0 = ∆𝑀 = 𝐴𝑥

▪ Is                         reachable? 𝑀𝑘 =

2
1
0
4

Possibly yes.

withis a solution to

It is actually reachable, 
e.g., with the sequence {t1, t3, t3}.

𝑥 =
1
0
2

∆𝑀 =

0
1
−1
4

𝑀𝑘 −𝑀0 = ∆𝑀 = 𝐴𝑥

Try solving the 
system of equations!



Invariants
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From the incidence matrix, one can derive some system invariants.

AG p

▪ A linear combination of transitions that does not change the net’s marking

▪ A linear combination of places’ marking that sums up to the same amount of tokens

p1

p2

t1

t2

p3

t3

𝑀𝑘 =
1
1
1

Sum of tokens in Petri net is always 1 

→ marking                 is not reachable
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Properties
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▪ Semantics
▪ Token game

▪ Safety
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▪ Incidence matrix



Your turn to practice!
after the break

83

1. Familiarise yourself with the token game

2. Use Petri Nets to model simple 
computation structures (mutual exclusion)

3. Analyse Petri Nets with using 
coverability graphs and incidence matrices



Any feedback?
Please fill out this short (anonymous) form! 
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The form will be available throughout the lecture—feel free to provide feedback at any point.

Thanks for your attention and see you next week! ☺

https://forms.gle/7VUaidEVreS9uswa9

https://forms.gle/7VUaidEVreS9uswa9

	Introduction
	Slide 1: Discrete Event Systems Petri Nets

	part 2
	Slide 2
	Slide 3: Temporal Logic
	Slide 4: Formulation of CTL properties
	Slide 5: So… what is model-checking exactly?
	Slide 6
	Slide 7: Petri Nets: Motivation
	Slide 8
	Slide 9: Petri Net: Definition
	Slide 10: Token Marking
	Slide 11: Token Game of Petri Nets
	Slide 12: Token Game of Petri Nets
	Slide 13: Token Game of Petri Nets
	Slide 14: Non-Deterministic Evolution
	Slide 15: Non-Deterministic Evolution
	Slide 16: Non-Deterministic Evolution
	Slide 17: Non-Deterministic Evolution
	Slide 18: Non-Deterministic Evolution
	Slide 19: Syntax Exercise (1)
	Slide 20: Syntax Exercise (1)
	Slide 21: Syntax Exercise (2)
	Slide 22: Syntax Exercise (2)
	Slide 23: Weighted Edges
	Slide 24: State Transition Function
	Slide 25: State Transition Function
	Slide 26: Finite Capacity Petri Net
	Slide 27: Removing Capacity Constraints
	Slide 28: Removing Capacity Constraints
	Slide 29: Removing Capacity Constraints
	Slide 30: Your turn!
	Slide 31: Your turn!
	Slide 32: Your turn!
	Slide 33: Modeling Finite Automata 
	Slide 34: Concurrent Activities
	Slide 35: Petri Net Languages
	Slide 36: Petri Net Languages
	Slide 37: Petri Net Languages
	Slide 38: Petri Net Languages
	Slide 39: Petri Net Languages
	Slide 40: Petri Net Languages
	Slide 41: Petri Net Languages
	Slide 42: Petri Net Languages
	Slide 43: Petri Net Languages
	Slide 44: Common Extensions
	Slide 45
	Slide 46: Behavioral Properties (1)
	Slide 47: Behavioral Properties (2)
	Slide 48: Behavioral Properties (2)
	Slide 49: Behavioral Properties (2)
	Slide 50: Behavioral Properties (2)
	Slide 51: Behavioral Properties (2)
	Slide 52: Behavioral Properties (2)
	Slide 53: Behavioral Properties (2)
	Slide 54: Behavioral Properties (2)
	Slide 55: Behavioral Properties (2)
	Slide 56: Behavioral Properties (2)
	Slide 57: Behavioral Properties (2)
	Slide 58: Behavioral Properties (2)
	Slide 59: Behavioral Properties (2)
	Slide 60
	Slide 61: Analysis Methods
	Slide 62: Coverability Tree
	Slide 63: Coverability Tree
	Slide 64: Coverability Tree
	Slide 65: Coverability Tree
	Slide 66: Coverability Tree: Algorithm
	Slide 67: Results from the Coverability Tree T
	Slide 68
	Slide 69: Incidence Matrix
	Slide 70: Incidence Matrix
	Slide 71: State Equation
	Slide 72: State Equation
	Slide 73: State Equation
	Slide 74: State Equation: Reachability
	Slide 75: Reachability: Example
	Slide 76: Reachability: Example
	Slide 77: Reachability: Example
	Slide 78: Reachability: Example
	Slide 79: Reachability: Example
	Slide 80: Reachability: Example
	Slide 81: Invariants
	Slide 82
	Slide 83: Your turn to practice! after the break
	Slide 84: Any feedback? Please fill out this short (anonymous) form! 


