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ABSTRACT
In this paper we investigate distributed computation in dynamic
networks in which the network topology changes from round to
round. We consider a worst-case model in which the communica-
tion links for each round are chosen by an adversary, and nodes do
not know who their neighbors for the current round are beforethey
broadcast their messages. The model captures mobile networks and
wireless networks, in which mobility and interference render com-
munication unpredictable. In contrast to much of the existing work
on dynamic networks, we do not assume that the network eventu-
ally stops changing; we require correctness and termination even
in networks that change continually. We introduce a stability prop-
erty calledT -interval connectivity(for T ≥ 1), which stipulates
that for everyT consecutive rounds there exists a stable connected
spanning subgraph. ForT = 1 this means that the graph is con-
nected in every round, but changes arbitrarily between rounds.

We show that in 1-interval connected graphs it is possible for
nodes to determine the size of the network and compute any com-
putable function of their initial inputs inO(n2) rounds using mes-
sages of sizeO(log n+ d), whered is the size of the input to a sin-
gle node. Further, if the graph isT -interval connected forT > 1,
the computation can be sped up by a factor ofT , and any function
can be computed inO(n + n2/T ) rounds using messages of size
O(log n+d). We also give two lower bounds on the token dissem-
ination problem, which requires the nodes to disseminatek pieces
of information to all the nodes in the network.

The T-interval connected dynamic graph model is a novel model,
which we believe opens new avenues for research in the theoryof
distributed computing in wireless, mobile and dynamic networks.

Categories and Subject Descriptors:
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms and Problems—computations on dis-
crete structures
G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms
G.2.2 [Discrete Mathematics]: Graph Theory—network problems

General Terms: Algorithms, Theory

Keywords: distributed algorithms, dynamic networks
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1. INTRODUCTION
The study of dynamic networks has gained importance and pop-

ularity over the last few years. Driven by the growing ubiquity
of the Internet and a plethora of mobile devices with communi-
cation capabilities, novel distributed systems and applications are
now within reach. The networks in which these applications must
operate are inherently dynamic; typically we think of them as being
large and completely decentralized, so that each node can have an
accurate view of only its local vicinity. Such networks change over
time, as nodes join, leave, and move around, and as communication
links appear and disappear.

In some networks, e.g., peer-to-peer, nodes participate only for a
short period of time, and the topology can change at a high rate. In
wireless ad-hoc networks, nodes are mobile and move around un-
predictably. Much work has gone into developing algorithmsthat
are guaranteed to work in networks that eventually stabilize and
stop changing; this abstraction is unsuitable for reasoning about
truly dynamic networks.

The objective of this paper is to make a step towards understand-
ing the fundamental possibilities and limitations for distributed al-
gorithms in dynamic networks in which eventual stabilization of
the network is not assumed. We introduce a general dynamic net-
work model, and study computability and complexity of essential,
basic distributed tasks. Under what conditions is it possible to elect
a leader or to compute an accurate estimate of the size of the sys-
tem? How efficiently can information be disseminated reliably in
the network? To what extent does stability in the communication
graph help solve these problems? These and similar questions are
the focus of our current work.

1.1 The Dynamic Graph Model
In the interest of broad applicability our dynamic network model

makes few assumptions about the behavior of the network, andwe
study it from the worst-case perspective. In the current paper we
consider a fixed set of nodes that operate in synchronized rounds
and communicate by broadcast. In each round the communication
graph is chosen adversarially, under an assumption ofT -interval
connectivity: throughout every block ofT consecutive rounds there
must exist a connected spanning subgraph that remains stable.

We consider the range from 1-interval connectivity, in which the
communication graph can change completely from one round to
the next, to∞-interval connectivity, in which there exists some
stable connected spanning subgraph that is not known to the nodes
in advance. We note that edges that do not belong to the stable
subgraph can still change arbitrarily from one round to the next, and
nodes do not know which edges are stable and which are not. We
do not assume that a neighbor-discovery mechanism is available to



the nodes; they have no means of knowing ahead of time which
nodes will receive their message.

In this paper we are mostly concerned with deterministic algo-
rithms, but we also include a randomized algorithm and a random-
ized lower bound. The computation model is as follows. In every
round, the adversary first chooses the edges for the round; for this
choice it can see the nodes’ internal states at the beginningof the
round. At the same time and independent of the adversary’s choice
of edges, each node tosses private coins and uses them to generate
its message for the current round. Deterministic algorithms gener-
ate the message based on the interal state alone. In both cases the
nodes do not know which edges were chosen by the advesary. Each
message is then delivered to the sender’s neighbors, as chosen by
the adversary; the nodes transition to new states, and the next round
begins. Communication is assumed to be bidirectional, but this is
not essential. We typically assume that nodes initially know noth-
ing about the network, and communication is limited toO(log n)
bits per message.

To demonstrate the power of the adversary in the dynamic graph
model, consider the problem oflocal token circulation: each node
u has a local Boolean variabletokenu, and iftokenu = 1, nodeu
is said to “have the token”. In every round exactly one node inthe
network has the token, and it can either keep the token or passit to
one of its neighbors. The goal is for all nodes to eventually have
the token in some round. This problem is impossible to solve in
1-interval connected graphs: in every round, the adversarycan see
which nodeu has the token, and provide that node with only one
edge{u, v}. Nodeu then has no choice except to eventually pass
the token tov. After v receives it, the adversary can turn around
and remove all ofv’s edges except{u, v}, so thatv has no choice
except to pass the token back tou. In this way the adversary can
prevent the token from ever visiting any node exceptu, v.

Perhaps surprisingly given our powerful adversary, even in1-
interval connected graphs it is possible to reliably compute any
computable function of the initial states of the nodes, and even have
all nodes output the result at the same time (simultaneity).

The dynamic graph model we suggest can be used to model var-
ious dynamic networks. Perhaps the most natural scenario ismo-
bile networks, in which communication is unpredictable dueto the
mobility of the agents. There is work on achieving continualcon-
nectivity of the communication graph in this setting (e.g.,[14]), but
currently little is known about how to take advantage of sucha ser-
vice. The dynamic graph model can also serve as an abstraction
for static or dynamic wireless networks, in which collisions and
interference make it difficult to predict which messages will be de-
livered, and when. Finally, dynamic graphs can be used to model
traditional communication networks, replacing the traditional as-
sumption of a bounded number of failures with our connectivity
assumption.

Although we assume that the node set is static, this is not a fun-
damental limitation. We defer in-depth discussion to future work;
however, our techniques are amenable to standard methods such as
logical time, which could be used to define the permissible outputs
for a computation with a dynamic set of participants.

1.2 Contribution
In this paper we focus on two problems in the context of dynamic

graphs. The first problem iscounting, in which nodes must deter-
mine the size of the network. The second isk-token dissemination,
in which k pieces of information, calledtokens, are handed out to
some nodes in the network, and all nodes must collect allk tokens.

We are especially interested in the variant ofk-token dissemina-
tion where the number of tokens is equal to the number of nodes

in the network, and each node starts with exactly one token. This
variant of token dissemination allows any function of the initial
states of the nodes to be computed. However, it requires counting,
since nodes do not know in advance how many tokens they need
to collect. We show that both problems can be solved inO(n2)
rounds in1-interval connected graphs. Then we extend the algo-
rithm for T -interval connected graphs with knownT > 1, obtain-
ing anO(n+n2/T )-round protocol for counting or all-to-all token
dissemination. WhenT is not known, we show that both problems
can be solved inO(min

˘

n2, n + n2 log(n)/T
¯

) rounds. Finally,
we give a randomized algorithm for approximate counting that as-
sumes anobliviousadversary, and terminates with high probability
in almost-linear time.

We also give two lower bounds, both concerning token-forwar-
ding algorithms for token dissemination. Atoken-forwarding al-
gorithm is one that does not combine or alter tokens, only stores
and forwards them. First, we give anΩ(n log k) lower bound on
k-token dissemination in 1-interval connected graphs. Thislower
bound holds even against centralized algorithms, in which each
node is told which token to broadcast by some central authority
that can see the entire state of the network. We also give anΩ(n +
nk/T ) lower bound onk-token dissemination inT -interval con-
nected graphs for a restricted class of randomized algorithms, in
which the nodes’ behavior depends only on the set of tokens they
knew in each round up to the current one. This includes the algo-
rithms in the paper, and other natural strategies such as round robin,
choosing a token to broadcast uniformly at random, or assigning a
probability to each token that depends on the order in which the
tokens were learned.

For simplicity, the results we present here assume that all nodes
start the computation in the same round. It is generally not pos-
sible to solve any non-trivial problem if some nodes are initially
asleep and do not participate. However, if 2-interval connectivity
is assumed, it becomes possible to solvek-token dissemination and
counting even when computation is initiated by one node and the
rest of the nodes are asleep.

1.3 Related Work
For static networks, information dissemination and basic net-

work aggregation tasks have been extensively studied (see e.g. [5,
20, 34]). In particular, the token dissemination problem isanalyzed
in [40], where it is shown thatk tokens can always be broadcast in
time O(n + k) in a static graph. The various problems have also
been studied in the context of alternative communication models.
A number of papers look at the problem of broadcasting a single
message (e.g. [9, 27]) or multiple messages [13, 30] in wireless
networks. Gossiping protocols are another style of algorithm in
which it is assumed that in each round each node communicates
with a small number of randomly-chosen neighbors. Various infor-
mation dissemination problems for the gossiping model havebeen
considered [21, 23, 25]; gossiping aggregation protocols that can
be used to approximate the size of the system are described in[24,
36]. The gossiping model differs from our dynamic graph model in
that the neighbors for each node are chosen at random and not ad-
versarially, and in addition, pairwise interaction is usually assumed
where we assume broadcast.

A dynamic network topology can arise from node and link fail-
ures; fault tolerance, i.e., resilience to a bounded numberof faults,
has been at the core of distributed computing research from its very
beginning [5, 34]. There is also a large body of previous work
on general dynamic networks. However, in much of the existing
work, topology changes are restricted and assumed to be “well-
behaved” in some sense. One popular assumption is eventual sta-



bilization (e.g., [1, 7, 8, 41, 22]), which asserts that changes even-
tually stop occuring; algorithms for this setting typically guarantee
safety throughout the execution, but progress is only guaranteed
to occur after the network stabilizes. Self-stabilizationis a useful
property in this context: it requires that the system converge to a
valid configuration from any arbitrary starting state. We refer to
[15] for a comprehensive treatment of this topic. Another assump-
tion, studied for example in [26, 28, 35], requires topologychanges
to be infrequent and spread out over time, so that the system has
enough time to recover from a change before the next one occurs.
Some of these algorithms use link-reversal [18], an algorithm for
maintaining routes in a dynamic topology, as a building block.

Protocols that work in the presence of continual dynamic changes
have not been as widely studied. Early work (e.g., [6]) considered
the problem of end-to-end message delivery in continually chang-
ing networks under an assumption ofeventual connectivity, which
asserts that the source and the destination are connected bya path
whose links appear infinitely often during the execution. There is
some work on handling nodes that join and leave continually in
peer-to-peer overlay networks [19, 31, 33]. Most closely related
to the problems studied here is [37], where a few basic results in a
similar setting are proved; mainly it is shown that in1-interval con-
nected dynamic graphs (the definition in [37] is slightly different),
if nodes have unique identifiers, it is possible to globally broadcast
a single message and have all nodes eventually stop sending mes-
sages. The time complexity is at least linear in the value of the
largest node identifier. In [2], Afek and Hendler give lower bounds
on the message complexity of global computation in asynchronous
networks with arbitrary link failures.

The time required for global broadcast has been studied in a
probabilistic version of the edge-dynamic graph model, where edges
are independently formed and removed according to simple Markov
processes [10, 11, 12]. Similar edge-dynamic graphs have also
been considered in control theory literature, e.g. [38, 39]. In [12]
the authors also consider a worst-case dynamic graph model which
is similar to ours, except that the graph is not always connected and
collisions are modelled explicitly. This lower-level model does not
admit a deterministic algorithm for global broadcast; however, [12]
gives a randomized algorithm that succeeds with high probability.

A variant ofT -interval connectivity was used in [29], where two
of the authors studied clock synchronization inasynchronousdy-
namic networks. In [29] it is assumed that the network satisfies
T -interval connectivity for a small value ofT , which ensures that
a connected subgraph exists long enough for each node to send
one message. This is analogous to 1-interval connectivity in syn-
chronous dynamic networks.

Finally, a somewhat related computational model results from
population protocols, introduced in [3], where the system is mod-
eled as a collection of finite-state agents with pairwise interactions.
Population protocols typically (but not always) rely on a strong fair-
ness assumption which requires every pair of agents to interact in-
finitely often in an infinite execution. We refer to [4] for a survey.
Unlike our work, population protocols compute some function in
the limit, and nodes do not know when they are done. This can
make sequential composition of protocols challenging, since it is
not possible to execute a protocol until it terminates, thentake the
final result and use it as input for some other computation. (In-
stead, one may useself-stabilizingpopulation protocols, which are
resilient to inputs that fluctuate and eventually stabilizeto some
value; but this is not always possible [16]). In our model nodes
must eventually output the result of the computation, and sequen-
tial composition is straightforward.

2. PRELIMINARIES
We assume that nodes have unique identifiers (UIDs) drawn from

a namespaceU . We usexu(r) to denote the value of nodeu’s local
variablex at the beginning of roundr.

A synchronous dynamic network is modeled as a dynamic graph
G = (V, E), whereV is a static set of nodes, andE : N →
{{u, v} | u, v ∈ V } is a function mapping a round numberr ∈ N

to a set of undirected edgesE(r). We make the following assump-
tion about connectivity in the network graph.

DEFINITION 2.1 (T -INTERVAL CONNECTIVITY). We say a
dynamic graphG = (V, E) is T -interval connectedfor T ≥ 1

if for all r ∈ N, the static graphGr,T := (V,
Tr+T−1

i=r E(r)) is
connected. The graph is said to be∞-interval connectedif there
is a connected static graphG′ = (V, E′) such that for allr ∈ N,
E′ ⊆ E(r).

For the current paper we are mainly interested in the following
problems.

Counting. An algorithm is said to solve the counting problem if
whenever it is executed in a dynamic graph comprisingn nodes, all
nodes eventually terminate and outputn.

k-verification. Closely related to counting, thek-verification
problem requires nodes to determine whether or notn ≤ k. All
nodes begin withk as their input, and must eventually terminate
and output “yes” or “no”. Nodes must output “yes” if and only if
there are at mostk nodes in the network.

k-token dissemination. An instance ofk-token dissemination
is a pair(V, I), whereI : V → P (T ) assigns a set of tokens
from some domainT to each node, and|

S

u∈V I(v)| = k. An
algorithm solvesk-token dissemination if for all instances(V, I),
when the algorithm is executed in any dynamic graphG = (V, E),
all nodes eventually terminate and output

S

u∈V I(u). We assume
that each token in the nodes’ input is represented usingO(log n)
bits. Nodes may or may not knowk, depending on the context.

All-to-all token dissemination. A restricted class ofk-token dis-
semination in whichk = n and for allu ∈ V we have|I(u)| = 1.
The nodes know that each node starts with a unique token, but they
do not known.

k-committee election. As a useful step towards solving count-
ing and token dissemination we introduce a new problem called
k-committee election. In this problem, nodes must partitionthem-
selves into sets, calledcommittees, such that

(a) The size of each committee is at mostk, and
(b) If k ≥ n, then there is just one committee containing all nodes.

Each committee has a unique committee ID, and the goal is for
all nodes to eventually output a committee ID such that the two
conditions are satisfied.

3. BASIC FACTS
In this section we state several basic properties of the dynamic

graph model, which we later use in our algorithms. The first key
fact pertains to the way information spreads in connected dynamic
networks.

PROPOSITION 3.1. It is possible to solve1-token dissemina-
tion in 1-interval connected graphs inn − 1 rounds, if nodes are
not required to halt after they output the token.1

1Prop. 3.1 is intended only as an illustration; in the rest of our al-
gorithms nodes can halt after they perform the output action.



PROOF SKETCH. We simply have all nodes that know the to-
ken broadcast it in every round; when a node receives the token, it
outputs it immediately, but continues broadcasting it. In any given
round, consider a cut between the nodes that already received the
token and those that have not. From1-interval connectivity, there
is an edge in the cut; the token is broadcast on that edge and some
new node receives it. Since one node initially knows the message
and there aren nodes, aftern− 1 rounds all nodes have the token.

To make this intuition more formal we use Lamport’s causal or-
der [32], which formalizes the notion of one node “influencing”
another through a chain of messages originating at the first node
and ending at the latter (possibly going through other nodesin be-
tween). We use(u, r) ; (v, r′) to denote the fact that nodeu’s
state in roundr influences nodev’s state in roundr′, and the formal
definition is as follows.

DEFINITION 3.1 (LAMPORT CAUSALITY ). Given a dynamic
graph G = (V, E) we define an order→⊆ (V × N)2, where
(u, r) → (v, r′) iff r′ = r + 1 and {u, v} ∈ E(r). Thecausal
order;⊆ (V × N)2 is defined to be the reflexive and transitive
closure of→.

The following lemma shows that 1-interval connectivity is suffi-
cient to guarantee that the number of nodes that have influenced
a nodeu grows by at least one in every round, and so does the
number of nodes thatu itself has influenced.

LEMMA 3.2. For any nodeu ∈ V and roundr ≥ 0 we have

(a) | {v ∈ V : (u, 0) ; (v, r)} | ≥ min {r + 1, n}, and

(b) | {v ∈ V : (v, 0) ; (u, r)} | ≥ min {r + 1, n}.

The proof of the lemma is similar to that of Proposition 3.1, and it
is omitted here. We can now re-state the principle behind Proposi-
tion 3.1 as a corollary of Lemma 3.2.

COROLLARY 3.3. For all u, v ∈ V it holds that (v, 0) ;

(u, n− 1).

PROOF. Lemma 3.2 shows that in roundr = n − 1 we have
| {v ∈ V : (v, 0) ; (u, n− 1)} | ≥ n, and the claim follows.

If we have an upper bound on the size of the network, we can use
Corollary 3.3 to compute simple functions which serve as building
blocks for algorithms.

PROPOSITION 3.4. Given an upper boundN on the size of the
network, functions such as the minimum or maximum of inputs to
the nodes can be computed inN − 1 rounds.

Corollary 3.3 guarantees that if nodes always broadcast thesmall-
est (resp. largest) value they have heard, all nodes will have the true
min or max value aftern− 1 rounds; the upper boundN is needed
for nodes toknowwhen they have the true min or max. One ap-
plication is leader election, which can be implemented by choosing
the node with the smallest UID as the unique leader. We also note
that having an upper bound on the size allows the use of random-
ized algorithms for data aggregation which rely on computing the
max or the min of random variables chosen by the nodes [17, 36];
see Section 7.

The remainder of the paper focuses on counting and solving the
token dissemination problem. The two problems are intertwined,
and both are useful as a starting point for distributed computing
in dynamic networks. We remark that when message sizes are not
limited, both problems can be solved in linear time by havingnodes
constantly broadcast all the information they have collected so far.

PROPOSITION 3.5. Counting and all-to-all token dissemina-
tion can be solved inO(n) rounds in 1-interval connected graphs,
using messages of sizeO(n log n).

PROOF. Consider a simple protocol for counting. Each node
maintains a setA containing all the UIDs it has heard about so far,
where initiallyAu(0) = {u} for all u ∈ V . In each roundr, node
u broadcastsAu and adds toAu any UIDs it receives from other
nodes. Ifr > |Au|, nodeu halts and outputs|Au|; otherwise node
u continues on to the next round.

It is not hard to see that for allu, v ∈ V and roundsr, if (v, 0) ;

(u, r) thenv ∈ Au(r). Thus,{v ∈ V : (v, 0) ; (u, r)} ⊆ Au(r).
Correctness of the protocol follows from Lemma 3.2: if nodeu
halts in roundr, thenr > |Au(r)| ≥ | {v ∈ V : (v, 0) ; (u, r)} |,
and Lemma 3.2 shows thatr > n. Next, using Corollary 3.3 we
have that in this caseV ⊆ Au(r). And finally, since obviously
Au(r) ⊆ V , it follows thatAu(r) = V and nodeu’s output is cor-
rect. Termination also follows from Lemma 3.2 and the fact that
Au(r) ⊆ V in every roundr.

To solve all-to-all token dissemination, we have nodes attach ev-
ery token they have heard so far to every message they send.

In the sequel we describe solutions which use onlyO(log n) bits
per message.

4. COUNTING THROUGH k-COMMITTEE
In this section we show howk-committee election can be used

to solve counting and token dissemination.
Our counting algorithm works by successive doubling: at each

point the nodes have a guessk for the size of the network, and
attempt to verify whether or notk ≥ n. If it is discovered that
k < n, the nodes doublek and repeat; ifk ≥ n, the nodes halt
and output the count. We defer the problem of determining the
exact count until the end of the section, and focus for now on the
k-verification problem, that is, checking whether or notk ≥ n.

Suppose that nodes start out in a state that represents a solution to
k-committee election: each node has a committee ID, such thatno
more thank nodes have the same ID, and ifk ≥ n then all nodes
have the same committee ID. The problem of checking whether
k ≥ n is then equivalent to checking whether there is more than
one committee: ifk ≥ n there must be one committee only, and if
k < n there must be more than one. Nodes can therefore check if
k ≥ n by executing a simplek-round protocol that checks if there
is more than one committee in the graph.

Thek-verification protocol.Each node has a local variable
x , which is initially set to1. While xu = 1, nodeu broadcasts its
committee ID. If it hears from some neighbor a different committee
ID from its own, or the special value⊥, it setsxu ← 0 and broad-
casts⊥ in all subsequent rounds. Afterk rounds, all nodes output
the value of theirx variable.

LEMMA 4.1. If the initial state of the execution represents a
solution tok-committee election, at the end of thek-verification
protocol each node outputs 1 iffk ≥ n.

PROOFSKETCH. First suppose thatk ≥ n. In this case there
is only one committee in the graph; no node ever hears a different
committee ID from its own. Afterk rounds all nodes still have
x = 1, and all output 1.

Next, supposek < n. We can show that after theith round of
the protocol, at leasti nodes in each committee havex = 0. In
any round of the protocol, consider a cut between the nodes that
belong to a particular committee and still havex = 1, and the rest



of the nodes, which either belong to a different committee orhave
x = 0. From 1-interval connectivity, there is an edge in the cut,
and some nodeu in the committee that still hasxu = 1 hears either
a different committee ID or⊥. Nodeu then setsxu ← 0, and the
number of nodes in the committee that still havex = 1 decreases
by at least one. Since each committee initially contains at mostk
nodes, afterk rounds all nodes in all committees havex = 0, and
all output0.

Our strategy for solving the counting problem is as follows:for
k = 1, 2, 4, 8, . . ., solve thek-committee election problem, then
execute thek-verification protocol. Ifk ≥ n, terminate and output
the count; else, continue to the next value ofk. Here we use the
fact that our model is amenable to sequential composition.

The strategy outlined above requires all nodes to begin thek-
verification protocol in the same round. Our protocol for solving
k-committee election ensures that this occurs. The protocolalso
has the useful property that ifk ≥ n, every node knows the UIDs
of all other nodes in the graph at the end of the protocol. Thus,
whenk ≥ n, nodes can determine the exact count.

5. A k-COMMITTEE PROTOCOL FOR
1-INTERVAL CONNECTED GRAPHS

To solvek-committee election in 1-interval connected graphs,
we imagine that there is a unique leader in the network, and this
leader invitesk nodes to join its committee. Of course we do not
truly have a pre-elected leader in the network; we will soon show
how to get around this problem. The protocol proceeds ink cycles,
each consisting of two phases.
• Polling phase: For k − 1 rounds, all nodes in the network

propagate the UID of the smallest node they have heard about
that has not yet joined a committee. Initially each node broad-
casts its own UID if it has not joined a committee, or⊥ if it
has; in each round nodes remember the smallest value they
have sent or received so far in the execution, and broadcast
that value in the next round.
• Invitation phase: The leader selects the smallest UID it

heard during the polling phase, and issues a message invit-
ing that node to join its committee. The message carries the
UID of the leader and of the invited node. The invitation is
propagated by all nodes fork − 1 rounds. At the end of the
invitation phase, a node that received an invitation joins the
leader’s committee.

At the end of thek cycles, nodes that have joined the leader’s com-
mittee output the leader’s UID as their committee ID. Any node that
has not been invited to join a committee joins its own committee,
using its UID as the committee ID.

Because we do not initially have a unique leader in the network,
all nodes start out thinking they are the leader, and continue toplay
the role of a leader until they hear a UID smaller than their own. At
that point they switch to playing the role of a non-leader. However,
once nodes join a committee they do not change their minds.

THEOREM 5.1. The protocol sketched above solvesk-committee
election inO(k2) rounds.

PROOF SKETCH. The first condition ofk-committee election
requires each committee to be of size at mostk. This condition is
satisfied because no node ever invites more thank nodes to join its
committee (each node issues at most one invitation per cycle). For
the second condition we must show that ifk ≥ n then all nodes
join the same committee. Thus, suppose thatk ≥ n. The polling
phase of the first cycles lasts fork − 1 ≥ n− 1 rounds, and from

Corollary 3.3, this is sufficient for all nodes to hear the UIDof
the smallest node in the network. Thus, after the first polling phase
there is only one leader, and no other node ever issues an invitation.

Using Corollary 3.3 we see that thek− 1 rounds of each polling
phase are sufficient for the leader to successfully identifythe small-
est node that has not yet joined its committee. Similarly, the invi-
tation phase is long enough for that node to receive the leader’s
invitation, so in every cycle one node joins the leader’s committee.
Since there arek ≥ n cycles, all nodes join the leader’s committee,
and all output the leader’s UID as their committee ID.

We remark that whenk ≥ n, thek-committee election protocol
can also be used to solve all-to-all token dissemination. Todo so we
simply have nodes attach their token to their UID in every message
they send. Each node is “singled out” fork − 1 ≥ n − 1 rounds
during which it is invited to join the leader’s committee, and the
invitation reaches all nodes in the graph. Thus, nodes can collect
all the tokens by recording the tokens attached to all invitations
they hear. In particular, if node UIDs are used as tokens, nodes can
collect all the UIDs in the network.

COROLLARY 5.2. When used together with thek-verification
protocol from Section 4, thek-committee election protocol yields
an O(n2)-round protocol for counting or all-to-all token dissemi-
nation.

6. COUNTING AND TOKEN DISSEMINA-
TION IN MORE STABLE GRAPHS

In this section we show that inT -interval connected graphs the
computation can be sped up by a factor ofT . To do this we employ
a neat pipelining effect, using the temporarily stable subgraphs that
T -interval connectivity guarantees; this allows us to disseminate
information more quickly. For convenience we assume that the
graph is2T -interval connected for someT ≥ 1.

6.1 FastT -Token Dissemination in2T -Interval
Connected Graphs

Proceduredisseminate gives an algorithm for exchanging at
leastT pieces of information inn rounds when the dynamic graph
is 2T -interval connected. The procedure takes three arguments:a
set of tokensA, the parameterT , and a guessk for the size of the
graph. Ifk ≥ n, each node is guaranteed to learn theT smallest
tokens that appeared in the input to all the nodes.

The execution of proceduredisseminate is divided into⌈k/T ⌉
phases, each consisting of2T rounds. During each phase, each
node maintains the setA of tokens it has already learned and a set
S of tokens it has already broadcast in the current phase (initially
empty). In each round of the phase, the node broadcasts the small-
est token it has not yet broadcast in the current phase, then adds
that token toS.

S ← ∅
for i = 0, . . . , ⌈k/T ⌉ − 1 do

for r = 0, . . . , 2T − 1 do
if S 6= A then

t← min (A \ S)
broadcastt
S ← S ∪ {t}

receivet1, . . . , ts from neighbors
A← A ∪ {t1, . . . , ts}

S ← ∅

return A

Proceduredisseminate(A,T, k)



Because the graph is2T -interval connected, in each phasei there
is a stable connected subgraphGi that persists throughout the phase.
We useAi

u(r), Si
u(r) for the values of nodeu’s local variablesA, S

at the beginning of roundr of phasei. We say thatu knowstoken
t whenevert ∈ Au.

Let Ki(t) denote the set of nodes that knowt at the beginning
of phasei, and lettdisti(u, t) denote the minimal distance inGi

between nodeu and any node inKi(t). Correctness hinges on the
following property.

LEMMA 6.1. For any nodeu ∈ V , tokent ∈
S

v∈V Av(0)

and roundr such thattdisti(u, t) ≤ r ≤ 2T , eithert ∈ Si
u(r+1)

or Su(r + 1) includes at least(r − tdisti(u, t)) tokens that are
smaller thant.

The intuition behind Lemma 6.1 is that ifr ≥ tdisti(u, t), thenr
rounds are “enough time” foru to receivet. If u has not receivedt
and sent it on, the path betweenu and the nearest node that knowst
must have been blocked by smaller tokens, which nodeu received
and sent on.

Using Lemma 6.1 we can show:

LEMMA 6.2. If k ≥ n, at the end of proceduredisseminate
the setAu of each nodeu contains theT smallest tokens.

PROOF SKETCH. Let Nd
i (t) := {u ∈ V | tdisti(u, t) ≤ d}

denote the set of nodes at distance at mostd from some node that
knowst at the beginning of phasei, and lett be one of theT small-
est tokens.

From Lemma 6.1, for each nodeu ∈ NT
i (t), eithert ∈ Si

u(2T+
1) or Si

u(2T + 1) contains at least2T − T = T tokens that are
smaller thant. But t is one of theT smallest tokens, so the second
case is impossible. Therefore all nodes inNT

i (t) know tokent at
the end of phasei. BecauseGi is connected we have|NT

i (t)| ≥
min {n− |Ki(t)|, T}; that is, in each phaseT new nodes learnt,
until all the nodes knowt. Since there are no more thank nodes
and we have⌈k/T ⌉ phases, at the end of the last phase all nodes
know t.

Remark 1. If each stable subgraphGi enjoys good expansion
thendisseminate requires fewer thann phases. For example,
if Gi is alwaysf -connected for some parameterf , then each token
is learned byf · T new nodes in each phase until all nodes know
it, and we only require⌈n/f⌉ phases. Similarly, ifGi is always a
vertex expander we only requireO(log n) phases.

6.2 Counting and Token Dissemination
To solve counting and token dissemination with up ton tokens,

we use Proceduredisseminate to speed up thek-committee
election protocol from Section 5. Instead of inviting one node in
each cycle, we can usedisseminate to have the leader learn the
UIDs of theT smallest nodes in the polling phase, and use proce-
duredisseminate again to extend invitations to allT smallest
nodes in the selection phase. Thus, inO(k + T ) rounds we can
increase the size of the committee byT .

THEOREM 6.3. It is possible to solvek-committee election in
O(k + k2/T ) rounds inT -interval connected graphs. When used
in conjunction with thek-verification protocol, this approach yields
anO(n+n2/T )-round counting all-to-all token dissemination pro-
tocol.

6.3 Unknown Interval Connectivity
The protocol sketched above assumes that all nodes know the

degree of interval connectivity present in the communication graph;

if the graph is not2T -interval connected, invitations may not reach
their destination, and the committees formed may contain less than
k nodes even whenk ≥ n. However, even when the graph is not
2T -interval connected, no committee ever containsmore than k
nodes, simply because no node ever issues more thank invitations.
Thus, if nodes guess a value forT and use the protocol to check if
k ≥ n, their error is one-sided: if their guess forT is too large they
may falsely conclude thatk < n when in factk ≥ n, but they will
never conclude thatk ≥ n whenk < n.

This one-sided error allows us to try different values fork andT
without fear of mistakes. We can count inO(n log n+n2 log n/T )
time in graphs whereT is unknownby iterating over various com-
binations ofk andT until we reach a pair(k, T ) such thatk ≥ n
and the graph isT -interval connected.

In the worst case, the graph is 1-interval connected, and we
need to try all the valuesT = 1, 2, 4, . . . , k for eachk; we pay
a log n factor in the round complexity. This only improves upon
the originalO(n2) algorithm when the graph isω(log n)-interval
connected. However, we can execute the original algorithm in par-
allel with the adaptive one, and terminate when the first of the two
terminates. In this way we can solve counting or token dissemi-
nation inO(min

˘

n2, n log n + n2 log n/T
¯

) rounds whenT is
unknown.

Using similar ideas we can also adapt to unknown expansion
of the graph, e.g., we might guess that it is alwaysf -connected
for some initial value off , and decreasef until we find the right
value.

7. APPROXIMATE COUNTING
In this section we show that under certain restrictions on the

dynamic-graph adversary, it is possible to use randomization to
compute an approximate count in almost-linear time, even when
the dynamic graph is only 1-interval connected. The techniques we
use are based on a gossiping protocol from [36]. We assume that
nodes know some (potentially loose) upper boundN on the sizen
of the network; this upper bound determines the message size.

For anyε > 0, the algorithm computes a(1 + ε)-approximation
of the number of nodesn. There are two variants of the algorithm:
the first terminates inO(n) time with high probability (inN ) and
uses messages of sizeO(log N · (log log N + log(1/ε)/ε2)); the
second requiresO(n·(log log N+log(1/ε)/ε2)) rounds with high
probability, but uses messages of size onlyO(log N).

Both versions of the algorithm assume that the dynamic graph
is generated by anobliviousadversary, which determines the com-
plete sequence of graphs before the execution begins. In particular,
the adversary is not privy to the results of the nodes’ coin tosses in
previous rounds, and it also cannot see their states and their mes-
sages, which reveal the results of those coin tosses.

For simplicity, we describe here only the algorithm that runs in
O(n) rounds w.h.p. but uses slightly larger messages.

The algorithm relies on the following lemma from [36], which
shows how the size of the network can be estimated by computing
the minimum of exponential random variables (and repeatingthis
procedure to decrease the error probability).

LEMMA 7.1 ([36]). LetS be a set ofℓ-tuples of independent

exponential variables with rate 1:S =
n“

Y
(1)
1 , . . . , Y

(1)
ℓ

”

, . . . ,
“

Y
(m)
1 , . . . , Y

(m)
ℓ

”o

. Define

n̂(S) :=
ℓ

Pℓ
i=1 min1≤j≤|S| Y

(j)
i

.



Then

Pr

„

˛

˛n̂(S)− |S|
˛

˛ >
2

3
ǫ · |S|

«

≤ 2e−ε2ℓ/27.

For parametersε ∈ (0, 1/2) andc > 0, we defineℓ := ⌈(2 +
2c) · 27 ln(N)/ε2⌉.

The scheme for approximate counting is given in Alg 2. The
main idea is as follows. Initially, each nodev ∈ V computesℓ in-
dependent exponential random variablesY

(v)
1 , . . . , Y

(v)
ℓ with rate

1. The objective of all nodes is to computen̂(V ), which is a good
estimate forn with high probability. To do this they must compute
minv∈V Y

(v)
i for eachi ∈ [ℓ].

From Proposition 3.4 we know that nodes can findminv∈V Y
(v)

i

by propagating the smallest value they have heard so far forn− 1
rounds. However,n is not known to the nodes (we could waitN −
1 rounds, butN may be a very loose upper bound). We use a
combination of Lemma 3.2 and Lemma 7.1 to decide when to stop.

Let Cu(r) := {v ∈ V : (v, 0) ; (u, r)} be the set of nodes
whose valueY (v)

i has reachedu by roundr. In roundr nodeu

is able to computeminv∈Cu(r) Y
(v)

i , but it cannot “see” values

Y
(v)

i for v 6∈ Cu(r). Therefore we want nodeu to halt only when
Cu(r) = V .

From Lemma 3.2 we know that|Cu(r)| ≥ r + 1 for all r ≤
n − 1. Because we assume an oblivious adversary, the setCu(r)
is chosen before the nodes choose their random variables. Wecan
use Lemma 7.1 to show that with high probability, if(1 − ε)r >
n̂u(Cu(r)), thenCu(r) = V . We use this criterion to know when
to terminate. (Recall that in Proposition 3.5 we used a deterministic
version of this test: we halted exactly whenr > |Cu(r)|.)

Sending exact values forY (v)
i would require nodes to send real

numbers, which cannot be represented using a bounded numberof
bits. Instead nodes send rounded and range-restricted approxima-
tionsỸ

(v)
i for Y

(v)
i ; we omit the technical details here. Each value

Ỹ
(v)

i can be represented usingO(log log N + log(1/ε)) bits.

Z(u) ← (Ỹ
(u)
1 , . . . , Ỹ

(u)
ℓ )

for r = 1, 2, . . . do
broadcastZ(u)

receiveZ(v1), . . . , Z(vs) from neighbors
for i = 1, . . . , ℓ do

Z
(u)
i ← min

n

Z
(u)
i , Z

(v1)
i , . . . , Z

(vs)
i

o

ñu(r)← ℓ/
Pℓ

i=1 Z
(u)
i

if (1− ε)r > ñu(r) then terminate and output̃nu(r)

Algorithm 2 : Randomized approximate counting in linear time
(code for nodeu)

For lack of space, the following theorem is given without proof.

THEOREM 7.2. For ε ∈ (0, 1/2) and c > 0, with probability
at least1− 1/Nc,

(a) every node in the graph computes the same valueñv(r) =: ñ,
and furthermore,

(b) |ñ− n| ≤ εn.

8. LOWER BOUNDS ON TOKEN
DISSEMINATION

Our algorithms for token dissemination do not combine tokens
or alter them in anyway, only store and forward them. We call
this style of algorithm atoken-forwarding algorithm. Formally, let

Au(r) denote the set of messages nodeu has received by the be-
ginning of roundr, plus nodeu’s input I(u). A token-forwarding
algorithm satisfies: (a) for allu ∈ V andr ≥ 0, the message sent
by u in roundr is a member ofAu(r) ∪ {⊥}, where⊥ denotes
the empty message; and (b) nodeu cannot halt in roundr unless
Au(r) =

S

v∈V I(v), that is, nodeu has received all the tokens
either in messages from other nodes or in its input.

In this section we give two lower bounds on token dissemination
with token-forwarding algorithms.

8.1 Lower Bound on Centralized Token
Dissemination

For this lower bound we assume that in each roundr, some cen-
tral authority provides each nodeu with a valuetu(r) ∈ Au(r) to
broadcast in that round. The centralized algorithm can see the state
and history of the entire network, but it does not know which edges
will be scheduled in the current round. Centralized algorithms are
more powerful than distributed ones, since they have accessto more
information. To simplify, we begin with each of thek tokens known
to exactly one node (this restriction is not essential).

We observe that while the nodes only know a small number of
tokens, it is easy for the algorithm to make progress; for example,
in the first round of the algorithm at leastk nodes learn a new token,
because connectivity guarantees thatk nodes receive a token that
was not in their input. However, as nodes learn more tokens, it
becomes harder for the algorithm to provide them with tokensthey
do not already know.

Accordingly, our strategy is to charge a cost of1/(k − i) for the
i-th token learned by each node: the first token each node learns
comes at a cheap1/k, and the last token learned costs dearly (a
charge of1). Formally, the potential of the system in roundr is
given by

Φ(r) :=
X

u∈V

|Au(r)|−1
X

i=0

1

k − i
.

In the first round we haveΦ(0) = 1, becausek nodes know
one token each. If the algorithm terminates in roundr then we
must haveΦ(r) = n ·Hk = Θ(n log k), because alln nodes must
know allk tokens. We construct an execution in which the potential
increase is bounded by a constant in every round; this gives us an
Ω(n log k) bound on the number of rounds required.

THEOREM 8.1. Any deterministic centralized algorithm fork-
token dissemination in 1-interval connected graphs requires at least
Ω(n log k) rounds to complete in the worst case.

PROOF. We construct the communication graph for each round
r in three stages (independently of previous or future rounds).

Stage I: adding the free edges.An edge{u, v} is said to
be free if tu(r) ∈ Av(r) andtv(r) ∈ Au(r); that is, if when we
connectu andv, neither node learns anything new. LetF (r) de-
note the set of free edges in roundr; we add all of them to the
graph. LetC1, . . . , Cℓ denote the connected components of the
graph(V, F (r)). Observe that any two nodes in different compo-
nents must send different values, otherwise they would be inthe
same component.

We choose representativesv1 ∈ C1, . . . , vℓ ∈ Cℓ from each
component arbitrarily. Our task now is to construct a connected
subgraph overv1, . . . , vℓ and pay only a constant cost. We assume
that ℓ ≥ 12, otherwise we can connect the nodes arbitrarily for a
constant cost. Letmissing(u) := k − |Au(r)| denote the number
of tokens nodeu does not know at the beginning of roundr.



Stage II. We split the nodes into two sets,Top andBottom , ac-
cording to the number of tokens they know, with nodes that know
many tokens “on top”:Top := {vi |missing(vi) ≤ ℓ/6} and
Bottom := {vi |missing(vi) > ℓ/6}.

Since top nodes know many tokens, connecting to them could
be expensive. We will choose our edges in such a way that no top
node will learn a new token. Bottom nodes are cheaper, but still not
free; we will ensure that each bottom node will learn at most three
new tokens (see Fig. 1).

We begin by bounding the size ofTop. To that end, notice that
P

u∈Top
missing(u) ≥

`

|Top|
2

´

: for all i, j such thatu, v ∈ Top,
eithertu(r) 6∈ Av(r) or tv(r) 6∈ Au(r), otherwise{u, v} would
be a free edge andu, v would be in the same component. Therefore
each pairu, v ∈ Top contributes at least one missing token to
the sum, and

P

u∈Top
missing(u) ≥

`

|Top|
2

´

. On the other hand,
since each node inTop is missing at mostℓ/6 tokens, it follows
that

P

u∈Top
missing(u) ≤ |Top| · (ℓ/6). Putting the two facts

together we obtain|Top| ≤ ℓ/3 + 1, and consequently also

|Bottom | − |Top| ≥ ℓ− 2|Top| ≥ ℓ−
2ℓ

3
− 2

(ℓ≥12)

≥
ℓ

6
.

Next we show that because there are many more bottom nodes than
top nodes, we have enough flexibility to use only “cheap” edges to
connect to top nodes.

Stage III: Connecting the nodes.The bottom nodes are rel-
atively cheap to connect to, so we connect them in an arbitrary line
(see Fig. 1). In addition we want to connect each top node to a
bottom node, such that no top node learns something new, and no
bottom node is connected to more than one top node. That is, we
are looking for a matching betweenTop andBottom , using only
edges inP = {{u, v} : u ∈ Top, v ∈ Bottom andtv ∈ Au(r)}.

Since each top node is missing at mostℓ/6 tokens, and each bot-
tom node broadcasts a different value from all other bottom nodes,
for each top node there are at least|Bottom | − ℓ/6 edges inP
to choose from. To construct the matching, we go through the top
nodes in arbitrary orderv0, . . . , vp ∈ Top, and choose for each
vi some unmatched bottom nodeui such that{vi, ui} ∈ P and
ui 6= uj for all j < i. Before each stepi the number of unmatched
bottom nodes is at least|Bottom |− i > |Bottom |− |Top| ≥ ℓ/6.
We already saw that each top node is connected to all butℓ/6 bot-
tom nodes inP , so there is always some unmatchedP -neighbor of
vi to choose in stepi.

What is the total cost of the graph? Top nodes learn no tokens,
and bottom nodes learn at most two tokens from other bottom nodes
and at most one token from a top node. Thus, the total cost is
bounded by

X

u∈Bottom

min{3,missing(u)}
X

i=1

1

missing(u)− (i− 1)

≤ |Bottom | ·
6
ℓ
6

≤ ℓ ·
36

ℓ
= 36.

8.2 Lower Bound on Token Dissemination
with Knowledge-Based Algorithms

A token-forwarding randomized algorithm fork-token dissemi-
nation is said to beknowledge-basedif the distribution that deter-
mines which token is broadcast by nodeu in roundr is a function
of the UID of u, the sequenceAu(0), . . . , Au(r − 1), whereAi

Top (nodes missing at mostℓ/6 tokens)

Bottom (nodes missing more thanℓ/6 tokens)

Figure 1: Illustration for the proof of Theorem 8.1

is the set of tokens received byu by the beginning of roundi (in-
cluding its input), and the sequence ofu’s coin tosses up to round
r (inclusive).

Knowledge-based algorithms can base their decisions on theset
of tokens currently known, the order in which tokens were ac-
quired, and even the round in which each token was acquired; how-
ever, they cannot rely on other factors, such as the number oftimes
a particular token was heard, or which tokens were received in
the previous round. Nevertheless, the class of knowledge-based
algorithms includes many natural strategies for solving the token
dissemination problem, and it includes the algorithms in this pa-
per. (Other knowledge-based strategies include round-robin over
the known tokens, choosing a token to broadcast uniformly atran-
dom, and choosing each token with a probability that dependson
how long ago that token was acquired.)

Knowledge-based algorithms have the property that once a node
learns all the tokens, the distribution of tokens broadcastin future
rounds is fixed and does not depend on the dynamic graph. We use
this property to show the following lower bound.

THEOREM 8.2. Any knowledge-based algorithm fork-token dis-
semination inT -interval connected graphs requiresΩ(n + nk/T )
rounds to succeed with probability1/2. Further, if the size of the
namespace for UIDs|U| = Ω(n2k/T ), then deterministic algo-
rithms requireΩ(n + nk/T ) rounds even when each node starts
with exactly one token.

PROOF SKETCH. An Ω(n) lower bound is trivially demonstra-
ted in a static line graph where some token starts at one end ofthe
line. Thus we assume thatk > 1. For simplicity, we choose an
input assignment in which some nodeu knows all the tokens, and
the other nodes have no tokens.

Let r0 = (n − 1)(k − 1)/(4T ) − 2 = Θ(nk/T ). We say that
a tokent is infrequentin a given execution if nodeu broadcastst
less than(n− 1)/(2T ) times in rounds0, . . . , r0 of the execution.

Since nodeu knows all the tokens, its behavior is determined:
regardless of the dynamic graph we choose in rounds0, . . . , r0,
the distribution of tokens broadcast by nodeu in these rounds is
fixed. In particular, sincer0 < (n − 1)(k − 1)/(4T ) − 1, the
linearity of expectation and Markov’s inequality show thatthere
is some tokent such that in any dynamic graph, tokent will be
infrequent with probability at least1/2. We will construct a specific
dynamic graphG in which whenevert is infrequent, the algorithm
does not terminate by roundr0. Thus, in the graph we construct,
the algorithm requiresΩ(nk/T ) rounds w.p. at least1/2.

Initially there aren− 1 nodes that do not knowt (all nodes but
u). Our goal in constructingG is to ensure that every time node
u broadcastst, at most2T new nodes learnt. Recall thatt is said
to be infrequent when it is broadcast less than(n− 1)/(2T ) times
by roundr0. Hence, whenevert is infrequent, some node inG has
still not learnedt by roundr0 and algorithm cannot terminate.

We construct the dynamic graph in phases of two types. When



u has not broadcastt for a while (T rounds to be precise), the
network is in aquiet phase. A quiet phase extends until the first
time u broadcastst (including that round). During quiet phases
the communication graph remains static and comprises two com-
ponents (see Fig. 2(a)): componentU (for “unaware”, shown as
white nodes in Fig. 2(a)) contains nodes that are guaranteednot to
know t, arranged in a linevi1 , . . . , viℓ

. The first node in the line,
vi1 , is connected to nodeu. (Note thatu 6∈ U , becauseu knows
t from the start). The other component,K (for “knowledgeable”),
contains the remaining nodes. These nodes may or may not know
t, and we connect them to each other arbitrarily. Initially,K = {u}
andU = V \ {u}, with the nodes inU ordered arbitrarily.

A quiet phase ends immediately afteru broadcasts tokent. At
this point vi1 ∈ U knows t; if we leave the network static, the
nodes inU may forwardt to each other, until in|U | − 1 rounds
all nodes inU know t. Recall that we want to ensure that at most
2T nodes learnt after every timeu broadcasts it. To contain the
propagation oft, we begin anactive phase.

If we wanted to satisfy only 1-interval connectivity, we would
simply movevi1 from U to K and connectu to vi2 instead. This
would preventvi1 from spreadingt to other nodes inU , but it vi-
olatesT -interval connectivity forT > 1. In order to move nodes
from U to K we need more edges, so that we can remove some
without breaking connectivity.

Thus, at the beginning of an active phase we connectu to viℓ
,

closing the line to form a ring (see Fig. 2(b)). Then we wait for T
rounds. Finally, we remove edge

˘

vi2T
, vi2T+1

¯

(see Fig. 2(c)).
This ends the active phase. Note thatT -interval connectivity is
preserved along the linevi2T +1

, vi2T+2
, . . . , viℓ

, u, vi1 , . . . , vi2T

(shown in bold lines in the figures). This is why we use a ring
instead of a line.

At the beginning of an active phase, tokent may be known only
by nodesvi1 , . . . , viT

in the ring. (If the preceding phase was quiet,
only nodevi1 knows t; if the preceding phase was active more
nodes may knowt, see below.) An active phase lastsT rounds.
During this time, tokent propagates in one of two ways:
(1) Nodesvi1 , . . . , viT

may forwardt to nodesviT+1
, . . . , vi2T

.
(2) Nodeu may broadcastt again during the phase, in which case

nodesviℓ
, . . . , viℓ−T

(indicated in cross-hatching in Fig. 2(c))
may also learn it.

At the end of the phase we remove the link
˘

vi2T
, vi2T +1

¯

, cut-
ting off the propagation oft along that side of the ring, and set
U ← U \ {vi1 , . . . , vi2T

}. Notice that now the only node inU to
which u is connected isviℓ

. To retain consistency in notation we
reverse the line, renaming as follows:ℓ′ ← ℓ− 2T, i′1 ← iℓ, i

′
2 ←

iℓ−1, . . . , i
′
ℓ ← i2T+1.

If u did not broadcastt during the phase (that is, case (2) above
did not occur), then no remaining node inU knowst, and we be-
gin another quiet phase. Ifu did broadcastt, at mostvi′

1
, . . . , vi′

T

(which were labelledvℓ, . . . , vℓ−T before the renaming) know it,
and we begin another active phase.

The construction above allows us to charge at most2T nodes to
each timeu broadcastst: an active phase is only triggered when
u broadcastst, and each active phase ends with the removal of2T
nodes fromU . If t is infrequent in an execution, then there are
less than(n− 1)/(2T ) active phases by roundr0 of the execution;
since initially |U | = n − 1, by roundr0 = Ω(nk/T ) there is
still some node inU which does not knowt, and the algorithm is
not done. Sincet is infrequent w.p. at least1/2, this shows that
any knowledge-based algorithm fork-token dissemination requires
Ω(nk/T ) rounds w.p. at least1/2.

vi1

vi2

u
viℓ

U

K

(a) The network in a quiet phase.

vi2T

vi1

vi2

u
viℓ

viℓ−T

(b) The beginning of an active phase.

u

U

(c) The end of an active phase.

u vi′
ℓ

vi′
1

vi′
2

(d) The beginning of the next active phase.

Figure 2: The construction for Theorem 8.2, withT = 2. Nodes
that do not know t are shown in white, nodes that may knowt
are shown in grey. Edges along whichT -interval connectivity
is preserved are shown in bold.

9. CONCLUSION
In this work we consider a model for dynamic networks which

makes very few assumptions about the network. The model can
serve as an abstraction for wireless or mobile networks, to reason
about the fundamental unpredictability of communication in this
type of system. We do not restrict the mobility of the nodes except
for retaining connectivity, and we do not assume that geographical
information or neighbor discovery are available. Nevertheless, we
show that one can efficiently compute any computable function in
our model, taking advantage of stability if it exists in the network.

We believe that theT -interval connectivity property provides a
natural and general way to reason about dynamic networks. Itis
easy to see that without any connectivity assumption no non-trivial
function can be computed, except possibly in the sense of compu-
tation in the limit (as in [3]). However, our connectivity assumption
is easily weakened to only require connectivity once every constant
number of rounds, or to only require eventual connectivity in the
style of Prop. 3.1, with a known bound on the number of rounds.



There are many open problems related to the model. We hope
to strengthen our lower bounds for token dissemination and ob-
tain anΩ(nk/T ) general lower bound, and to determine whether
counting is in fact as hard as token dissemination. Other natural
problems, such as consensus and leader election, can be solved in
linear time once a (possibly approximate) count is known, but can
they be solved more quickly without first counting? Is it possible to
compute an approximate upper bound for the size of the network in
less than the time required for counting exactly? These and other
questions remain intriguing open problems.
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[21] J. Hromkovǐc, R. Klasing, B. Monien, and R. Peine. Dissemination
of information in interconnection networks (broadcasting&
gossiping).Combinatorial Network Theory, pages 125–212, 1996.

[22] R. Ingram, P. Shields, J. E. Walter, and J. L. Welch. An asynchronous
leader election algorithm for dynamic networks. InProc. of 23rd
IEEE Int. Symp. on Parallel and Distributed Processing (IPDPS),
pages 1–12, 2009.

[23] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized
rumor spreading. InProc. of 41st Symp. on Foundations of Computer
Science (FOCS), pages 565–574, 2000.

[24] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of
aggregate information. InProc. of 44th Symp. on Foundations of
Computer Science (FOCS), pages 482–491, 2003.

[25] D. Kempe and J. Kleinberg. Protocols and impossibilityresults for
gossip-based communication mechanisms. InProc. of 43rd Symp. on
Foundations of Computer Science (FOCS), pages 471–480, 2002.

[26] A. Korman. Improved compact routing schemes for dynamic trees. In
Proc. of 27th Symp. on Principles of Distributed Computing
(PODC), pages 185–194, 2008.

[27] D. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio
networks. InProc. of 22nd Symp. on Principles of Distributed
Computing (PODC), pages 73–82, 2003.

[28] D. Krizanc, F. Luccio, and R. Raman. Compact routing schemes for
dynamic ring networks.Theory of Computing Systems, 37:585–607,
2004.

[29] F. Kuhn, T. Locher, and R. Oshman. Gradient clock synchronization
in dynamic networks. InProc. of 21st ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), pages 270–279, 2009.

[30] F. Kuhn, N. A. Lynch, and C. C. Newport. The abstract MAC layer.
In Proc. of 23rd Conference on Distributed Computing (DISC), pages
48–62, 2009.

[31] F. Kuhn, S. Schmid, and R. Wattenhofer. A self-repairing
peer-to-peer system resilient to dynamic adversarial churn. In Proc.
of 4th Int. Workshop on Peer-To-Peer Systems (IPTPS), 2005.

[32] L. Lamport. Time, clocks, and the ordering of events in adistributed
system.Commun. ACM, 21(7):558–565, 1978.

[33] X. Li, M. J, and C. Plaxton. Active and Concurrent Topology
Maintenance. InProc. of 18th Conference on Distributed Computing
(DISC), 2004.

[34] N. A. Lynch.Distributed Algorithms. Morgan Kaufmann Publishers,
1996.

[35] N. Malpani, J. L. Welch, and N. Vaidya. Leader election algorithms
for mobile ad hoc networks. InDIALM ’00: Proceedings of the 4th
international workshop on Discrete algorithms and methodsfor
mobile computing and communications, pages 96–103, New York,
NY, USA, 2000. ACM.

[36] D. Mosk-Aoyama and D. Shah. Computing separable functions via
gossip. InProc. of 25th Symp. on Principles of Distributed
Computing (PODC), pages 113–122, 2006.

[37] R. O’Dell and R. Wattenhofer. Information dissemination in highly
dynamic graphs. InProc. of 9th Joint Workshop on Foundations of
Mobile Computing (DIALM-POMC), pages 104–110, 2005.

[38] R. Olfati-Saber and R. M. Murray. Consensus problems innetworks
of agents with switching topology and time-delays.IEEE
Transactions on Automatic Control, 49(9):1520–1533, 2004.

[39] W. Ren and R. W. Beard. Consensus of information under
dynamically changing interaction topologies. InProc. of American
Control Conference, pages 4939–4944, 2004.

[40] D. M. Topkis. Concurrent broadcast for information dissemination.
IEEE Transactions on Software Engineering, SE-11(10), 1985.

[41] J. E. Walter, J. L. Welch, and N. H. Vaidya. A mutual exclusion
algorithm for ad hoc mobile networks.Wireless Networks,
7(6):585–600, 2001.


