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Abstract

In this paper we investigate distributed computation inaigic networks in which the
network topology changes from round to round. We considepestacase model in which
the communication links for each round are chosen by an adigrand nodes do not know
who their neighbors for the current round are before thegdicast their messages. The model
allows the study of the fundamental computation power ofasiyic networks. In particular,
it captures mobile networks and wireless networks, in windbility and interference render
communication unpredictable. In contrast to much of thetag work on dynamic networks,
we do not assume that the network eventually stops changiegiequire correctness and
termination even in networks that change continually. Wioituce a stability property called
T-interval connectivityfor T" > 1), which stipulates that for eveflj consecutive rounds there
exists a stable connected spanning subgraphi'Ferl this means that the graph is connected
in every round, but changes arbitrarily between rounds.oAigms for the dynamic graph
model must cope with these unceasing changes.

We show that in 1-interval connected graphs it is possibledaes to determine the size of
the network and compute any computable function of theliaihinputs inO(n?) rounds using
messages of siz8@(logn + d), whered is the size of the input to a single node. Further, if the
graph isT-interval connected fdf' > 1, the computation can be sped up by a factdf'pand
any function can be computed@(n+n?/T) rounds using messages of s@fog n+d). We
also give two lower bounds on the gossip problem, which megithe nodes to disseminate
pieces of information to all the nodes in the network. We sho#2(n log k) bound on gossip
in 1-interval connected graphs against centralized alyos, and af2(n 4+ nk/T') bound on
exchangingt pieces of information irif-interval connected graphs for a restricted class of
randomized distributed algorithms.

The T-interval connected dynamic graph model is a novel medeéch we believe opens
new avenues for research in the theory of distributed coimgun wireless, mobile and dy-
namic networks.



1 Introduction

The study of dynamic networks has gained importance andladfyuover the last few years.
Driven by the growing ubiquity of the Internet and a plethofanobile devices with communica-
tion capabilities, novel distributed systems and appbeat are now within reach. The networks
in which these applications must operate are inherenthauhyo; typically we think of them as
being large and completely decentralized, so that each caxidhave an accurate view of only its
local vicinity. Such networks change over time, as nodes, jldave, and move around, and as
communication links appear and disappear.

In some networks, e.g., peer-to-peer, nodes participaie fona short period of time, and
the topology can change at a high rate. In wireless ad-hagonk$, nodes are mobile and move
around unpredictably. Much work has gone into developiggrthms that are guaranteed to work
in networks that eventually stabilize and stop changinig; dbstraction is unsuitable for reasoning
about truly dynamic networks.

The objective of this paper is to make a step towards undwlistg the fundamental possibili-
ties and limitations for distributed algorithms in dynamigtworks in which eventual stabilization
of the network is not assumed. We introduce a general dynaatiwork model, and study com-
putability and complexity of essential, basic distributagks. Under what conditions is it possible
to elect a leader or to compute an accurate estimate of ta@bthe system? How efficiently can
information be disseminated reliably in the network? To iddent does stability in the commu-
nication graph help solve these problems? These and siguikstions are the focus of our current
work.

The dynamic graph model. In the interest of broad applicability our dynamic networbkdel
makes few assumptions about the behavior of the networkwarsdudy it from the worst-case per-
spective. In the current paper we consider a fixed set of nibde®perate in synchronized rounds
and communicate by broadcast. In each round the commuomicgtaph is chosen adversarially,
under an assumption @f-interval connectivity throughout every block df’ consecutive rounds
there must exist a connected spanning subgraph that restabis.

We consider the range from 1-interval connectivity, in vwhtbe communication graph can
change completely from one round to the nextpteinterval connectivity, in which there exists
some stable connected spanning subgraph that is not knatlue tiodes in advance. We note that
edges that do not belong to the stable subgraph can stilgeharbitrarily from one round to the
next, and nodes do not know which edges are stable and wheamoar We do not assume that a
neighbor-discovery mechanism is available to the nodey; lave no means of knowing ahead of
time which nodes will receive their message.

In this paper we are mostly concerned with deterministiotigms, but our lower bounds
cover randomized algorithms as well. The computation maas follows. In every round, the
adversary first chooses the edges for the round; for thisehibtan see the nodes’ internal states
at the beginning of the round. At the same time and indepdnaofetihe adversary’s choice of
edges, each node tosses private coins and uses them totgdtsenaessage for the current round.
Deterministic algorithms generate the message based dnténal state alone. In both cases the
nodes do not know which edges were chosen by the advesarl. nisgsage is then delivered to



the sender’s neighbors, as chosen by the adversary; the tradeition to new states, and the next
round begins. Communication is assumed to be bidirectidmalthis is not essential. We typically
assume that nodes know nothing about the network, not evsizé, and communication is limited
to O(log n) bits per message.

To demonstrate the power of the adversary in the dynamidgrequlel, consider the problem of
local token circulation each node: has a local Boolean variableken,,, and if token, = 1, node
u is said to “have the token”. In every round exactly one nodinénnetwork has the token, and it
can either keep the token or pass it to one of its neighbors.gbal is for all nodes to eventually
have the token in some round. This problem is impossiblelteso 1-interval connected graphs:
in every round, the adversary can see which nedi@s the token, and provide that node with only
one edge{u,v}. Nodewu then has no choice except to eventually pass the token tafter v
receives it, the adversary can turn around and remove alsadges excepfu, v}, so thatv has
no choice except to pass the token back.tén this way the adversary can prevent the token from
ever visiting any node except v.

Perhaps surprisingly given our powerful adversary, evefr-interval connected graphs it is
possible to reliably compute any computable function ofittigal states of the nodes, and even
have all nodes output the result at the same time (simuttgnei

The dynamic graph model we suggest can be used to model satyoamic networks. Perhaps
the most natural scenario is mobile networks, in which comication is unpredictable due to the
mobility of the agents. There is work on achieving contincahnectivity of the communication
graph in this setting (e.g., [12]), but currently little isdwn about how to take advantage of such a
service. The dynamic graph model can also serve as an ahsirfar static or dynamic wireless
networks, in which collisions and interference make it difft to predict which messages will be
delivered, and when. Finally, dynamic graphs can be usedtiehiraditional communication net-
works, replacing the traditional assumption of a boundeudlmer of failures with our connectivity
assumption.

Although we assume that the node set is static, this is nohdafmental limitation. We defer
in-depth discussion to future work; however, our technigaee amenable to standard methods
such as logical time, which could be used to define the peitoléssutputs for a computation with
a dynamic set of participants.

Contribution.  In this paper we mainly study the following problems in thextext of dynamic
graphs.

e Counting in which nodes must determine the size of the network.

e k-gossip in which k pieces of information, calletbkens are handed out to some nodes in
the network, and all nodes must collect/aliokens.

We are especially interested in the variankegossip where the number of tokens is equal to the
number of nodes in the network, and each node starts withtlgxame token. This variant of
gossip allows any function of the initial states of the nottebe computed. However, it requires
counting, since nodes do not know in advance how many tokeysteed to collect. We show that
both problems can be solved @(n?) rounds inl-interval connected graphs. Then we extend the
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algorithm forT-interval connected graphs with knowh > 1, obtaining anO(n + n?/T)-round
protocol for counting or all-to-all gossip. Whéhis not known, we show that both problems can
be solved inO(min {n? n + n?logn/T'}) rounds.

We also give two lower bounds, both concerning token-fodivey algorithms for gossip. A
token-forwarding algorithms one that does not combine or alter tokens, only stores@mdfds
them. First, we give af(n log k) lower bound ork-gossip in 1-interval connected graphs. This
lower bound holds even against centralized algorithms, hiickveach node is told which token
to broadcast by some central authority that can see theeesitite of the network. We also give
an Q(n + nk/T) lower bound onk-gossip inT-interval connected graphs for a restricted class
of randomized algorithms, in which the nodes’ behavior delseonly on the set of tokens they
knew in each round up to the current one. This includes theritigns in the paper, as well as
other natural strategies such as round robin, choosingemtiskbroadcast uniformly at random, or
assigning a probability to each token that depends on ther andvhich the tokens were learned.

For simplicity, the results we present here assume thatodks start the computation in the
same round. It is generally not possible to solve any namatrproblem if some nodes are initially
asleep and do not participate. However, if 2-interval catinity is assumed, it becomes possible
to solvek-gossip and counting even when computation is initiatedr®y mode and the rest of the
nodes are asleep.

Related work. For static networks, information dissemination and basitwork aggregation
tasks have been extensively studied (see e.g. [5, 16, 29]paitticular, thek-gossip problem is
analyzed in [35], where it is shown thattokens can always be broadcast in tifién + k) in
a static graph. The various problems have also been studidtkicontext of alternative com-
munication models. A number of papers look at the problemroadicasting a single message
(e.g. [8, 23]) or multiple messages [11, 26] in wireless meks. Gossiping protocols are an-
other style of algorithm in which it is assumed that in eaameach node communicates with a
small number of randomly-chosen neighbors. Various infiitom dissemination problems for the
gossiping model have been considered [17, 19, 21]; goss@jgregation protocols that can be
used to approximate the size of the system are describe®r8]3. The gossiping model differs
from our dynamic graph model in that the neighbors for eaderare chosen at random and not
adversarially, and in addition, pairwise interaction isalyy assumed where we assume broadcast.
A dynamic network topology can arise from node and link fak) fault tolerance, i.e., re-
silience to a bounded number of faults, has been at the codisoibuted computing research
from its very beginning [5, 29]. There is also a large body cdvipus work on general dy-
namic networks. However, in much of the existing work, tagyl changes are restricted and
assumed to be “well-behaved” in some sense. One populamasisn is eventual stabilization
(e.q.,[1, 6, 7, 36, 18]), which asserts that changes eviiyatap occuring; algorithms for this set-
ting typically guarantee safety throughout the executimn,progress is only guaranteed to occur
after the network stabilizes. Self-stabilization is a usgfoperty in this context: it requires that
the system converge to a valid configuration from any antyitstarting state. We refer to [13] for
a comprehensive treatment of this topic. Another assumpsiudied for example in [22, 24, 30],
requires topology changes to be infrequent and spread eutiawe, so that the system has enough
time to recover from a change before the next one occurs. Sdrtese algorithms use link-
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reversal [14], an algorithm for maintaining routes in a dyi@atopology, as a building block.

Protocols that work in the presence of continual dynamicgbka have not been widely studied.
There is some work on handling nodes that join and leave roaaity in peer-to-peer overlay
networks [15, 27, 28]. Most closely related to the problemslied here is [32], where a few basic
results in a similar setting are proved; mainly it is showattim 1-interval connected dynamic
graphs (the definition in [32] is slightly different), if ned have unique identifiers, it is possible to
globally broadcast a single message and have all nodesuallgritop sending messages. The time
complexity is at least linear in the value of the largest nidéatifier. In [2], Afek and Hendler give
lower bounds on the message complexity of global computtaticasynchronous networks with
arbitrary link failures.

A variant of T-interval connectivity was used in [25], where two of theteus studied clock
synchronization imsynchronouslynamic networks. In [25] it is assumed that the networlsfiet
T-interval connectivity for a small value &F, which ensures that a connected subgraph exists
long enough for each node to send one message. This is analt@d-interval connectivity in
synchronous dynamic networks.

The time required for global broadcast has been studied ml@apilistic version of the edge-
dynamic graph model, where edges are independently formeédemoved according to simple
Markovian processes [9, 10]. Similar edge-dynamic grapve lalso been considered in control
theory literature, e.g. [33, 34].

Finally, a somewhat related computational model is pomraprotocols, introduced in [3],
where the system is modeled as a collection of finite-statatagvith pairwise interactions. Pop-
ulation protocols typically (but not always) rely on a stgofairness assumption which requires
every pair of agents to interact infinitely often in an infenéxecution. We refer to [4] for a sur-
vey. Unlike our work, population protocols compute somecfion in the limit, and nodes do not
know when they are done; this can make sequential composifiprotocols challenging. In our
model nodes must eventually output the result of the contiputaand sequential composition is
straightforward.

2 Network Model
2.1 Dynamic Graphs

A synchronous dynamic network is modelled by a dynamic g@ph (V, E), whereV is a static
set of nodes, anél : N — V(2 is a function mapping a round numbeg N to a set of undirected
edgesF(r). HereV?) := {{u,v} | u,v € V} is the set of all possible undirected edges dver

Definition 2.1 (T-Interval Connectivity) A dynamic graphG = (V, E) is said to bel-interval
connectedor 7" € N if for all » € N, the static grapldr,. 7 := (V, s E(r)) is connected. If

G is 1-interval connected we say th@tis always connected

Definition 2.2 (co-Interval Connectivity) A dynamic graphG = (V, E) is said to bexc-interval
connectedf there exists a connected static gragh= (V, E’) such that for alr € N, E’ C E(r).



Note that even though in as-interval connected graph there is some stable subgraph tha
persists throughout the execution, this subgraph is nowvkrio advance to the nodes, and can be
chosen by the adversary “in hindsight”.

Although we are generally interested in the undirected ,dase also interesting to consider
directed dynamic graphsvhere the communication links are not necessarily symmethe T'-
interval connectivity assumption is then replacedIbinterval strong connectivitywhich requires
that G, v be strongly connected (whete, r is defined as before). In this very weak model, not
only do nodes not know who will receive their message befoey broadcast, they also do not
know who received the messagter it is broadcast. Interestingly, all of our algorithms foeth
undirected case work in the directed case as well.

The causal order for dynamic graphs is defined in the standayd

Definition 2.3 (Causal Order) Given a dynamic grapli: = (V, E), we define an ordersC
(V x N)?, where(u,r) — (v,7) iff ' = r + 1 and{u,v} € E(r). Thecausal order~C
(V x N)? is the reflexive and transitive closure of. We also writeu ~ (v,r) if there exists
somer’ < r such that(u, ') ~ (v,7).

Definition 2.4 (Influence Sets)We denote byC\,(r ~ ') := {v € V| (v,7) ~ (u,7’")} the set
of nodes whose state in rounatausally influences nodein rounds’. We also use the short-hand
Cu(r) :=Cu(0~r)={v|v~ (u,r)}.

2.2 Communication and Adversary Model

Nodes communicate with each other usampnymous broadcastvith message sizes limited to
O(log(n)). At the beginning of rouna, each node: decides what message to broadcast based on
its internal state and private coin tosses; at the same tithén@ependently, the adversary chooses
a setE(r) of edges for the round. For this choice the adversary carhsesodes’ internal states at
the beginning of the round, but not the results of their cogsés or the message they have decided
to broadcast. (Deterministic algorithms choose a messaggdbonly on the internal state, and this
is equivalent to letting the adversary see the messageebitfeinooses the edges.) The adversary
then delivers to each nodeall messages broadcast by nodesich that{u, v} € E(r). Based on
these messages, its previous internal state, and possilsly enin tosses, the node transitions to a
new state, and the round ends. We call this anonymous brsidoieeause nodes do not know who
will receive their message prior to broadcasting it.

2.3 Sleeping Nodes

Initially all nodes in the network are asleep; computati@gibhs when a subset of nodes, chosen
by the adversary, is woken up. Sleeping nodes remain inithigal state and do not broadcast any
messages until they receive a message from some awake nadewoken up by the adversary.
Then they wake up and begin participating in the computatiomever, since messages are deliv-
ered at the end of the round, a node that is awakened in rowedds its first message in round
r+ 1.

We refer to the special case where all nodes are woken up atassgnchronous start
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2.4 Initial Knowledge

Each node in the network starts execution of the protocohimiial state which contains its own
ID, its input, and possibly additional knowledge about tleéwork. We generally assume one of
the following.

e No knowledge: nodes know nothing about the network, andhllyitcannot distinguish it
from any other network.

e Upper bound on size: nodes know some upper bangh the sizen of the network. The
upper bound is assumed to be bounded by some function ofuheitze, e.g.N = O(n).

e Exact size: nodes know the sizeof the network.

2.5 Computation Model

We think of each node in the network as running a specialia&ih@ machine which takes the
node’s UID and input from its input tape at the beginning daf flist round, and in subsequent
rounds reads the messages delivered to the node from thietagau In each round the machine
produces a message to broadcast on an output tape. On asepdpat tape, it eventually writes
the final output of the node, and then enters a halting state.

The algorithms in this paper are written in pseudo-code. ¥éery(r) to denote the value of
nodeu’s local variabler at the beginning of roung, andz,,(0) to denote the input to node

3 Problem Definitions

We assume that nodes have unique identifiers (UIDs) from samespacé. Let D be a problem
domain. Further, lefl — B denote the set of all partial functions framto B.

A problemover D is a relationP C (U — D)?, such that if(1,0) € P thendomain(I) is
finite anddomain (/) = domain(O). Each instancé € U/ — D induces a se¥’ = domain(I) of
nodes, and we say that an algoritlsmivesinstancel if in any dynamic graptG = (V, E), when
each node: € V starts with (u) as its input, eventually each node outputs a vale) € D such
that(Z,0) € P.

We are interested in the following problems.

Counting. In this problem the nodes must determine the size of the mktw&ormally, the
counting problem is given by

counting := {(V x {1},V x {n}) | Visfinite andn = |V|}.

k-Verification. Closely related to counting, in theverification problem nodes are given an inte-
gerk and must determine whether or riot> n, eventually outputting a Boolean value. Formally,

k-verification := {(V x {k},V x {b}) |b € {0,1} andb =1iff k > |V|}.



k-Committee. In this problem the nodes must form sets (“committees”), mleach committee
has a unique identifier that is known to all its members. Eaxten outputs a valueommittee,,,
and we require the following properties.

1. (“Safety”) The size of each committee is at mbsthat is, for allz € {committee, |u € V'}
we have| {u € V' | committee,, = xz}| < k.

2. (“Liveness”) Ifk > n then all nodes in the graph join one committee, that is, foral € V'
we havecommittee,, = committee,,.

k-Gossip. The gossip problem is defined over a token domyaireach node receives in its input
a set of tokens, and the goal is for all nodes to output allitek&ormally,

k-gossip := {(V — P (4),V — A) | Visfinite and|A| = k} .
We are particularly interested in the following variantgtod problem.

o All-to-All gossip: instanced wherek = n for all w € V we have|I(u)| = 1.

e k-gossip with knowrk: in this variant nodes know, i.e., they receivé: as part of the input.

Leader Election. In weak leader election all nodes must eventually outputta,bsuch that
exactly one node outputs = 1. In strong leader election, all nhodes must output the same ID
u € V of some node in the network.

4 Relationships

A problem P; is reducibleto P, if whenever all nodes start the computation in initial sdateat
represent a solution tB,, there is an algorithm that computes a solutiorPtaand requires linear
time in the parameter to the probler) (

4.1 Ek-Committee = k-Verification

Claim 4.1. k-verification reduces té-committee.

Proof. Suppose we start from a global state that is a solutidn¢ommittee, that is, each node
has a local variableommittee,, such that at most nodes belong to the same committee, and if
k > n then all nodes belong to one committee. We can verify whatheotk > n as follows. For
k rounds, each node maintains a Boolean #laghich is initially set tol. In rounds wheré = 1,
the node broadcasts its committee ID, and when0 the node broadcasts. If a node receives a
committee ID different from its own, or if it hears the spéasialue L, it setsb to 0. At the end of
the k rounds all nodes outpuit

First consider the case wheke> n. In this case all nodes have the same committee ID, and
no node ever sets itsflag to0. At the end of the protocol all nodes outpytas required. Next,



suppose that < n, and letu be some node. There are at mbst 1 nodes inu’s committee. In
every round, there is an edge between some nodésinommittee and some node in a different
committee (because the communication graph is conne@ed)therefore at least one nodeuis
committee sets its flag to 0. After at mostk rounds no nodes remain, and in particulaitself
must haveh, = 0. Thus, at the end of the protocol all nodes ouffut O

Claim 4.2. k-committee reduces to-verification.

Proof. Again, suppose the nodes are initially in a state that reptesa solution té-verification:
they have a Boolean flagwhich is set to 1 iffk > n. We solvek-committee as follows: ib = 0,
then each node outputs its own ID as its committee ID. This/adid solution because wheén< n
the only requirement is that no committee have more thawodes. Ifb = 1, then fork rounds
all nodes broadcast the minimal ID they have heard so faraanide end they output this ID as
their committee ID. Sincé = 1 indicates thakt > n, after k rounds all nodes have heard the
ID of the node with the minimal ID in the network, and they vdll join the same committee, as
required. O

4.2 Counting vs.k-Verification

Since we can solvk-verification inO(k + k2 /T) time in T-interval connected graphs, we can find
an upper bound on the size of the network by checking whethem for values ofk starting from

1 and doubling with every wrong guess. We know how to verifietilerk > n in O(k + k2/T)
time, and hence the time complexity of the entire procedsite(h + n?/T"). Once we establish
thatk > n for some value of;, to get an actual count we can then go back and do a binarylsearc
over the rangé: /2, ..., k (recall thatk/2 < n, otherwise we would not have reached the current
value ofk).

In practice, we use a variant ékcommittee where the ID of each committee is the set con-
taining the IDs of all members of the committee. Thgerification layer returns this set as well,
so that after reaching a value bf> n at nodeu, we simply return the size af's committee as
the size of the network. Sinde> n implies that all nodes join the same committee, nadeill
output the correct count.

4.3 Hierarchy of Problems

There is a hardness hierarchy among the problems consigetleis paper as well as some other
natural problems.

1. Strong leader election / consensus (these are equivalent
2. Decomposable functions such as Boolean AND / OR

3. Counting.
4

. n-gossip (with unknowm).



The problems in every level are reducible to the ones in thlélaeel, and we know that-gossip
can be solved i (n + n?/T) time in T-interval connected graphs f@r > 2, or T > 1 assuming
synchronous start. Therefore all the problems can be salvétn + n?/T) time, even with no
prior knowledge of the network, and even when the commuioicdinks are directed (assuming
strong connectivity).

5 Upper Bounds

In this section we give algorithms for some of the problenmoiuced in Section 3, always with
the goal of solving the counting problem. Our strategy isallgwas follows:

1. Solve some variant of gossip.
2. Use (1) as a building block to soldecommittee,

3. Solvingk-committee allows us to solveverification and therefore also counting (see Sec-
tion 4).

We initially focus on the case of synchronous start. The ffications necessary to deal with
asynchronous start are described in Section 5.5.

5.1 Always-Connected Graphs
5.1.1 Basic Information Dissemination

It is a basic fact that in 1-interval connected graphs, alsipgece of information requires at most
n — 1 rounds to reach all the nodes in the network, provided that fiorwarded by all nodes
that receive it. Formally, leD,(r) := {v € V |u~> (v,7)} denote the set of nodes thathas
“reached” by round-. If « knows a token and broadcasts it constantly, and all othezsbrbadcast
the token if they know it, then all the nodesiin, () know the token by round.

Claim 5.1. For any nodeu and roundr < n — 1 we have D, (r)| > r + 1.

Proof. By induction onr. Forr = 0 the claim is immediate. For the step, suppose {thair)| >
r + 1, and consider round + 1 < n. If D,(r) = V then the claim is trivial, because, (r) C
D, (r + 1). Thus, suppose thd?,(r) # V. SinceG(r) is connected, there is some edge y}
in the cut(D,(r),V \ D,(r)). From the definition of the causal order we have € D, (r + 1),
and thereforeD,,(r + 1)| > |Dy(r)| +1> 7+ 2. O

Note that we can employ this property even when there is ninane dne token in the network,
provided that tokens form a totally-ordered set and nodesgaia the smallest (or biggest) token
they know. Itis then guaranteed that the smallest (respesiy token in the network will be known
by all nodes after at most — 1 rounds. Note, however, that in this case nodes do not nedgssa
knowwhen they know the smallest or biggest token.



5.1.2 Counting in linear time with Q(n log n)-bit messages

We begin by describing a linear-time countingjossip protocol which uses messages of size
Q(nlogn). The protocol is extremely simple, but it demonstrates sofitke ideas used in some
of our later algorithms, where we eliminate the large messaging a stability assumptiofd’{
interval connectivity) which allows nodes to communicaiéhvat least one of their neighbors for
at leastl’ rounds.

In the simple protocol, all nodes maintain a getontaining all the IDs (or tokens) they have
collected so far. In every round, each node broadcdstsd adds any IDs it receives. Nodes
terminate when they first reach a rounth which |A| < r.

A« {self }
forr=1,2,...do
broadcastA
receiveBs, ..., B, from neighbors
A+ AUB;U...UB;s
if |JA| < r then terminate and outpyt4|
end

Algorithm 1: Counting in linear time using large messages

Claim 5.2. For any nodex and rounds- < 7/ < n we haveC,(r ~ r')| > ' —r.

Proof. By induction o’ — r. Forr’ — r = 0 the claim is immediate.

Suppose that for all nodesand rounds:, 7’ such that’ < n andr’ — r = i we have|C,, (r ~
r')| > i. Letr,r’ < n be two rounds such that — r =i + 1.

If |Cu((r + 1) ~ r)| = n then we are done, because— r < ' < n. Thus, assume that
Cu((r+1) ~ r) # V. Since the communication graph in rounds connected, there is some
edge{w,w’'} € E(r) such thatw ¢ C,((r +1) ~ r)andw’ € C,((r + 1) ~ r). We have
(w,r) = (w',r + 1) ~ (u,r’), and consequentlyw, ) ~ (u,r’) andw € Cy(r ~ r’). Also,
from the induction hypothesis(C, ((r + 1) ~ r)| > i. Together we obtainC,(r ~ r’)| >
|Cu((r+1) ~ )|+ 1>i+1, as desired. O

Claim 5.3. For any nodeu and roundr < n we havel A, (r)| > r.

Proof. It is easily shown that for alb € C,,(r) we havev € A, (r). From the previous claim we
have|C,,(r)| > r for all r < n, and the claim follows. O

The correctness of the protocol follows from Claim 5.3: sagmpthat for some round and
nodeu we have|A4,(r)| < r. From Claim 5.3, theny > n. Applying the claim again, we see
that|A,(n)| > n, and sinced, (r) C V for all r, we obtainA,(r) = V. This shows that nodes
compute the correct count. For termination we observe Heasize ofA,, never exceeds, so all
nodes terminate no later than round- 1.

10



5.1.3 k-committee with O(log n)-bit messages

We can solvek-committee inO(k?) rounds as follows. Each nodestores a local variabliader,,
in addition tocommittee,,. A node that has not yet joined a committee is calletive and a node
that has joined a committee iisactive Once nodes have joined a committee they do not change

their choice.
Initially all nodes consider themselves leaders, but thhawt the protocol, any node that hears

an ID smaller than its own adopts that ID as its leader. Théopobd proceeds irk cycles, each
consisting of two phasepplling andselection

1. Polling phase: fok — 1 rounds, all nodes propagate the ID of the smallest active dd
which they are aware.

2. Selection phase: in this phase, each node that constdelsa leader selects the smallest
ID it heard in the previous phase and invites that node toijsicommittee. An invitation
is represented as a pdir, y), wherez is the ID of the leader that issued the invitation, and
y is the ID of the invited node. All nodes propagate the smillestation of which they
are aware fok — 1 (invitations are sorted in lexicographic order, so thattations issued
by the smallest node in the network will win out over otheritistions. It turns out, though,
that this is not necessary for correctness; it is sufficienefich node to forward an arbitrary

invitation from among those it received).

At the end of the selection phase, a node that receives aatiowi to join its leader’s com-
mittee does so and becomes inactive. (Invitations issuedblbgs that are not the current
leader can be accepted or ignored; this, again, does naot afferectness.)

At the end of thek cycles, any node: that has not been invited to join a committee outputs
committee,, = u.

11



leader <+ self
committee < L
fori=0,...,kdo
/! Polling phase
if committee = L then
| min_active < self ; [l The node nominates itself for selection
else
| min_active + L
end
for j=0,...,k—1do
broadcastnin_active
receivery, ..., xs from neighbors
min_active < min {min_active, x1,...,Ts}
end
/1 Update | eader
leader < min {leader, min_active}
/1 Sel ection phase
if leader = self then
/'l Leaders invite the smallest ID they heard
invitation <— (self , min_active)
else
/'l Non-leaders do not invite anybody

vitation < L
end

forj=0,...,k—1do
broadcastnuvitation
receiveyy, ..., ys from neighbors
invitation <— min {invitation,y1,...,ys} ; /1 (in |exicographic
order)
end
/1 Join the leader’s conmittee, if invited
if invitation = (leader, self) then
| committee = leader
end
end

if committee = L then
| committee < self

end

Algorithm 2: k-committee in always-connected graphs

Claim 5.4. The protocol solves the-committee problem.

Proof. We show that after the protocol ends, the values of the lagalnittee,, variables constitute
a valid solution tak-committee.

12



1. In each cycle, each node invites at most one node to joicoitsmittee. Afterk cycles at
mostk nodes have joined any committee. Note that the first nod¢eninby a leader. to
join u's committee is always itself. Thus, if afterk cycles node: has not been invited to
join a committee, it follows that did not invite any other node to join its committee; when
it forms its own committee in the last line of the algorithme ttommittee’s size is 1.

2. Suppose that > n, and letu be the node with the smallest ID in the network. Following
the polling phase of the first cycle, all nodeshave leader, = u for the remainder of
the protocol. Thus, throughout the execution, only nadssues invitations, and all nodes
propagateu’s invitations. Sincek > n rounds are sufficient fon to hear the ID of the
minimal active node in the network, in every cycle nadsuccessfully identifies this node
and invites it to joinu’'s committee. Afterk cycles, all nodes will have joined.

O

Remark. The protocol can be modified easily to solwegossip ifk > n. Lett, be the token
nodew received in its input (orl if node « did not receive a token). Nodes attach their tokens to
their IDs, and send pairs of the forn, ¢,,) instead of just. Likewise, invitations now contain the
token of the invited node, and have the structUeader, (u,t,)). The min operation disregards
the token and applies only to the ID. At the end of each s@leqihase, nodes extract the token
of the invited node, and add it to their collection. By the efidhe protocol every node has been
invited to join the committee, and thus all nodes have sddnlans.

5.2 oco-interval Connected Graphs

We can count in linear time ino-interval connected graphs using the following algoritheach
node maintains two sets of ID4, andS. A is the set of all IDs known to the node, afds the
set of IDs the node has already broadcast. Initidllgontains only the node’s ID anflis empty.
In every round, each node broadcasiis: (A \ S) and adds this value t8. (If A = S, the node
broadcasts nothing.) Then it adds all the IDs it receivesfits neighbors toA.
While executing this protocol, nodes keep track of the aurreund number (starting from

zero). When a node reaches a round which |A| < |r/2], it terminates and outputs!| as the
count.

13



S+ 0
A« {self }
for r=0,...do
if S # Athen
t < min(A\S)
broadcast
S+ SuU{t}
end
receivety,...,ts from neighbors
A<—AU{t1,...,t5}
if |A| < |r/2] then terminate and output4|
end
return A

Algorithm 3: Counting inoo-interval connected graphs

5.2.1 Analysis

Let dist(u, v) denote the shortest-path distance betweandv in the stable subgrapf’, and let
N4(u) denote thel-neighborhood ofi in G/, that is,N¢(u) = {v € V| dist(u,v) < d}. We use
A, (r) andS,(r) to denote the values of local variabldsand S at nodezr € V' in the beginning of
roundr. Note the following properties:

1. Sy(r+1) C Ay(r) C Ay(r +1) for all z andr.

2. If w andv are neighbors ii7’, thenS, (r) C A,(r) for all r, because every value sent by
is received by and added to,,.

3. S and A are monotonic, that is, for alt andr we haveS,(r) C S,(r + 1) and A, (r) C
Ag(r+1).

Claim 5.5. For every two nodes;,w € V and roundr such thatr > dist(u,x), eitherz €
Su(r+1)or |Su(r+1)| >r — dist(u, x).

Proof. By induction onr. Forr = 0 the claim is immediate.

Suppose the claim holds for roumd- 1, and consider round. Let z,u be nodes such that
r > dist(u, z); we must show that either € S, (r + 1) or |S,(r + 1)| > r — dist(u, x).

If x = u, then the claim holdsu is broadcast in the first round, and thereafter we have
u € Sy(r)forallr > 1.

Otherwise, letv be a neighbor of; along the shortest path fromto = in G’; that is,v is a
neighbor ofu such thatlist(v, ) = dist(u, x) — 1. Sincer > dist(u, z) = dist(v, z) + 1 we have
r— 1> dist(v, z).

From the induction hypothesis anandz in roundr — 1, eitherz € S,(r) or |S,(r)| >
r — 1 —dist(v,z) = r — dist(u, ). Applying property 2 above, this implies the following.

() Eitherz € A,(r) or |Ayu(r)| > r — dist(u, x).
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If x € Sy(r)or|S,(r)| > r—dist(u, z) then we are done, becauSg(r) C S, (r+1). Suppose
then thatr ¢ S, (r) and|S,(r)| < r — dist(u, z). Itis sufficient to prove thatl, (r) # Su.(r):
this shows that in rouna nodew broadcastanin (A,(r) \ S.(r)) and adds it taS,, yielding
|Su(r+ 1) > [Su(r)| + 1 > r — dist(u, ) and proving the claim.

We show this usingx). If z € A,(r), thenA,(r) # S.(r), because we assumed that?
Su(r). Otherwise(x) states thatA,(r)| > r — dist(u, =), and since we assumed that,(r)| <
r — dist(u, z), this again shows that, (1) # S, (r). O

Claim 5.6. If » < n, then for all nodes: we have A,,(2r)| > r.

Proof. Letu € V. For any noder € N"(u), Claim 5.5 shows that either € S, (2r + 1) or
|Su(2r + 1)| > 2r — dist(u,x) > r. Thus, eithetS,(2r + 1)] > ror N"(u) C S,(2r + 1).
Sincer < n and@ is connected we hav&/"(u) > r, and therefore in both cases we have
|Au(2r)| > [Su(2r + 1) > 7. O

Claim 5.7. The algorithm terminates in linear time and outputs the eotrcount at all nodes.

Proof. Termination is straightforward: the sdtonly contains IDs of nodes that exist in the net-
work, so its size cannot exceed All nodes terminate no later than roud + 2.

Correctness follows from Claim 5.6. Suppose that in rounddeu has|A4,(r)| < |r/2], and
let' = |r/2]. We must show thatl,, (r) = V.

From Claim 5.6, ifr’ < n then|A,(2r")| > »'. By definition of »’ we haver > 2/’ and
hence from Property 3 we obtajd,, ()| > »/, which is not the case. Thus, > n andr > 2n.
Applying the same reasoning as in Claim 5.6 to roundve see that eithelS, (2n + 1)| >
or N"(u) € S,(2n + 1). Since the first cannot occur it must be the case that N™(u)
Su(2n+1) € A,(r), and we are done.

On s

5.3 Finite-Interval Connected Graphs

Next we generalize the protocol above, in order to sdvemmittee in27T-interval connected
graphs. The general protocol requi@$n + n?/T) rounds (and assumes th&tis known in
advance). The idea is the same as for always-connectedsgraptept that instead of selecting
one node at a time to join its committee, each leader selduééch ofT” nodes and disseminates
their IDs throughout the network. We generalize and refir@nthb.5 for the case where there are
initially up to n tokens, but only the smallegt tokens need to be disseminated.

5.3.1 T-gossip in2T-interval connected graphs

The “pipelining effect” we used in theo-interval connected case allows us to dissemifiatekens

in 2n rounds, given that the graph3g-interval connected. The idea is to use a similar protocol to
the co-interval connected case, except that the protocol isdrest” every2T rounds: all nodes
empty the setS' (but not A), which causes them to re-send the tokens they already ftarting
from the smallest and working upwards. ThHesmallest tokens will thus be propagated through
the network, and larger tokens will “die out” as they are msent.
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This is captured formally by the following protocol. The érls are now assumed to come from
a well-ordered setP, <). The input at each nodeis an initial setd,, C P of tokens. In addition,
it is assumed that all nodes have a common gueks the size of the network. The protocol
guarantees that tHE smallest tokens in the network are disseminated to all nqutesided that
the graph iT-interval connected and that> n.

S+ 0
fori=0,...,[k/T]—1do
for r=0,...,2T' do
if S# Athen
t < min(A\Y95)
broadcast
S+ SuU{t}
end
receivety,...,ts from neighbors
A<—AU{t1,...,t5}
end

S0
end

return A

Function di ssem nat e( 4,7, k)

We refer to each iteration of the inner loop aplase Since a phase lasd” rounds and the
graph is2T-interval connected, there is some connected subgrapkxtsis throughout the phase.
Let G, be a connected subgraph that exists throughout phdse: = 0, ..., [k/T] — 1. We use
dist;(u, v) to denote the distance between nodes € V' in G.

Let K;(r) denote the set of nodes that know tokeby the beginning of round, that is,
Ki(r) = {u € V|t € Ay(r)}. In addition, let/ be the set of” smallest tokens i), ., A,(0).
Our goal is to show that when the protocol terminates we téxe) = V for all ¢ € I.

For a nodeu € V, atokent € P, and a phasé we definetdist;(u, t) to be the distance af
from the nearest node ifi; that knowst at the beginning of phase

tdist(u, t) := min {dist;(u,v) |v € K (2T - i)} .

Here and in the sequel, we use the conventionittiat]) := co. For convenience, we us¥ (r) :=
S.(2T - i + r) to denote the value of,, in roundr of phasei. Similarly we denoted: (r) :=
A 2T i+ r)andKi(r) .= K, (2T -i + ).

The following claim characterizes the spread of each tokexach phase. Itis a generalization
of Claim 5.5, and the proof is similar.

Claim 5.8. For any nodeu € V, tokent € |,y A+(0) and roundr € {0,...,27 — 1} such that
r > tdist;(u, t), eithert € S (r + 1) or S (r + 1) includes at leastr — tdist;(u, t)) tokens that
are smaller thart.

Proof. By induction onr. Forr = 0 the claim is immediate.
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Suppose the claim holds for round— 1 of phasei, and consider round > tdist;(u,t).
If r = tdist;(u,t), thenr — tdist;(u,t) = 0 and the claim holds trivially. Thus, suppose that
r > tdist;(u,t). Hencey—1 > tdist;(u, t), and the induction hypothesis applies: either S¢ (r)
or S (r) includes at leastr — 1 — tdist;(u, t)) tokens that are smaller thanIn the first case we
are done, sinces’ (r) C S (r + 1); thus, assume that ¢ S(r), andS%(r) includes at least
(r — 1 — tdist;(u, t)) tokens smaller than However, if S (r) includes at leastr — tdist;(u,t))
tokens smaller that then so does’’ (r + 1), and the claim is again satisfied; thus we assume that
S¢ (r) includesexactly(r — 1 — tdist;(u, t)) tokens smaller thah

It is sufficient to prove thatin (A% (r) \ Si(r)) < ¢ if this holds, then in round- node
u broadcastsnin (A% (r) \ Si(r)), which is eithert or a token smaller thar thus, eithert €
Si(r + 1) or Si(r + 1) includes at leastr — tdist;(u,t)) tokens smaller than, and the claim
holds.

First we handle the case whetdist;(u,t) = 0. In this caset € A (0) C Al (r). Since we
assumed that¢ S}, (r) we havet € A% (r) \ Si(r), which implies thatnin (A4, (r) \ Si(r)) < t.

Next suppose thatlist; (u,t) > 0. Letz € K}(0) be a node such thaist;(u, z) = tdist(u, t)
(such a node must exist from the definitiontdist;(u, t)), and letv be a neighbor of: along the
path fromu to  in G, such thatlist;(v, z) = dist;(u, ) — 1 < r. From the induction hypothesis,
eithert € S!(r) or S¢(r) includes at leastr — 1 — tdist;(v,t)) = (r — tdist;(u,t)) tokens that
are smaller tha. Since the edge betweenandv exists throughout phase nodew receives
everythingv sends in phasg and hences? (r) C A (r). Finally, because we assumed ti94¢r)
contains exactlyr — 1 — tdist;(u, t)) tokens smaller thaty and does not includgitself, we have
min (4% (r) \ Si(r)) < t, as desired. O

Claim 5.9. For each of thel” smallest tokens € I and phases, we have K} (0)| > min {n, T - i}.

Proof. The proof is by induction on. Fori = 0 the claim is immediate. For the induction step,
suppose thatk;(0)| > min {n, T -4}, and consider phaset 1.

Let N(¢) denote thel-neighborhood ofK7 (0), that is, N (¢) := {u € V| tdist;(u,t) < T}.
From Claim 5.8 applied to rour2l’ of phase;, for all u € N (t), eithert € S (r+1) or S, (r+1)
includes at leas?T — T" = T tokens smaller than. Sincet is one of theT' smallest tokens in
the network, this latter case is impossible. Thus, evenenod N(t) hast € SL(2T + 1) C
Al (2T + 1), which implies thatV (t) € K;(0). In addition, K7(0) € K;™'(0), because nodes
never forget tokens they have learned.

SinceG’, is connected|N (¢) \ K;(0)] > T. Combining with the induction hypothesis we
obtain|N(t) U K}(0)| > min {n, T - (i + 1)}, and the claim follows. O

Proceduredi ssemi nat e terminates at the end of phage/T'| — 1, or, equivalently, at the
beginning of phasé¢k/T'|. By this time, if the guess for the size of the network was ectrrall
nodes have learned tiiesmallest tokens.

Corollary 5.10. If &k > n, thenKtWT] (0) = V for each of thel’ smallest tokens € I.

Proof. The claim follows from Claim 5.9, becaugeé- [k/T] > k > n. O
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5.3.2 k-committee in 2T-interval connected graphs

We can solve thé-committee problem irO(k + k?/T') rounds using Algorithm 5. The idea is
similar to Algorithm 2, except that leaders invifenodes to join their committee in every cycle
instead of just one node. Each node begins the protocol withigue 1D which is stored in the
local variableself .

leader <+ self
committee < L
fori=0,...,[k/T] —1do
if committee = L then
| A< {self}; /'l The node noninates itself for selection
else
| A+ 0
end
tokens <— di ssemi nat e(A, T, k)
leader < min ({leader} U tokens)
if leader = self then
/'l Leaders invite the T snmallest IDs they collected
/1 (or less in the final cycle, so that the total does not
exceed k)
if i < [k/T] —1then
| A <+ smallest?'(tokens)
else
m<+«k—([k/T]—1)-T
A < smallest?'(tokens)
end
else
/'l Non-leaders do not invite anybody

A0
end

tokens <— di ssemi nat e({self } x A,T,k)
/] Join the |eader’s conmittee, if invited

if (leader, self) € tokens then
| committee = leader

end
end

if committee = L then
| committee < self
end

Algorithm 5: k-committee in27-interval connected graphs

Claim 5.11. The protocol above solvéscommittee irO(k + k2/T) rounds.
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5.3.3 Counting in Graphs with Unknown Finite-Interval Connectivity

The protocol above assumes that all nodes know the degreéofal connectivity present in the
communication graph; if the graph is n@if’-interval connected, invitations may not reach their
destination, and the committees formed may contain lessihedes even ik > n. However,
even when the graph is n@f-interval connected, no committee contaim®re than k£ nodes,
simply because no node ever issues more thiamitations. Thus, if nodes guess a value Toand
use thek-committee protocol above to solveverification, their error is one-sided: if their guess
for T is too large they may falsely conclude that< n when in factk > n, but they will never
conclude thakt > n whenk < n.

This one-sided error allows us to try different values¥@ndT without fear of mistakes. We
can count inO(nlogn + n?log(n)/T) time in graphs wher@ is unknownusing the following
scheme. | assume the versionkeferification that returns the sé&t of all nodes ifk > n, or the
special valuel if k < n.

for i =1,2,4,8,...do
fork=1,2,4,...,ido
if k-verification assumingk? /i |-interval connectivity returny” # | then
return|V/|
end
end
end

Algorithm 6: Counting inO(nlogn + n?log(n)/T) in T-interval connected graphs where
T is unknown

The time required fok-verification assumingk? /i |-interval connectivity i<D (k2 /| k2 /i|) =
O(7) for all k, and thus the total time complexity of tli¢h iteration of the outer loop i© (i log 7).

If the communication graph i§-interval connected, the algorithm terminates the firsetine
reach values of andk such thatt > n and|k?/i] < T. Let N be the smallest power of 2 that
is no smaller tham; clearly N < 2n. Let us show that the algorithm terminates when we reach
i =max {N, [N?/T}.

First consider the case whetieax { N, [N?/T"|} = N, and hencd’ > N. When we reach
the last iteration of the inner loop, wheke= ¢ = N, we try to solveN-verification assuming
N-interval connectivity. This must succeed, and the alpariterminates.

Next, suppose thgtN?2/T] > N. Consider the iteration of the inner loop in whikh= N. In
this iteration, we try to solveV-verification assumingN? /[ N2 /T |-interval connectivity. Since
|N2/[N?/T7] < T, this again must succeed, and the algorithm terminates.

The time complexity of the algorithm is dominated by the lastation of the outer loop, which
requiresO(ilogi) = O(nlogn + n?log(n)/T) rounds.

The asymptotic time complexity of this algorithm only imges upon the originad(n?) al-
gorithm (which assumes only 1-interval connectivity) wien- w(log n). However, it is possible
to execute both algorithms in parallel, either by doubling inessage sizes or by interleaving the
steps, so that the original algorithm is executed in evends@and Alg. 6 is executed in odd rounds.
This will lead to a time complexity of (min {n?, nlogn + n*log(n)/T'}), because we terminate
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when either algorithm returns a count.

5.4 Exploiting Expansion Properties of the Communication Gaph

Naturally, if the communication graph is always a good exganthe algorithms presented here
can be made to terminate faster. We consider two examplesaphg with good expansion. As
before, when the expansion is not known in advance we carsgu@aying dog n factor.

5.4.1 f-Connected Graphs

Definition 5.1. A static graphG is f-connectedor f € N if the removal of any set of at most
f — 1 nodes from does not disconnect it.

Definition 5.2 (T-interval f-connectivity) A dynamic graphG = (V, E) is said to beT-interval
f-connectedor T, f € N if for all » € N, the static graplG, r := (V, ﬂ;";T‘lE(r)) is f-
connected.

Definition 5.3 (Neighborhoods) Given a static graplis = (V, E) and a setS C V of nodes,
the neighborhoodof S in G is the setl'¢(S) = SU{veV |Jue S: {u,v} € E}. Thed-
neighborhoodf S is defined inductively, with'%,(S) = S andl'4,(S) = Pg(FdG‘l(S)) ford > 0.
We omit the subscriptf when it is obvious from the context.

In f-connected graphs the propagation speed is multiplied, lnecause every neighborhood
is connected to at leagtexternal nodes (if there are fewer thAnemaining nodes, it is connected
to all of them). This is shown by the following lemma.

Lemma 5.12(Neighborhood Growth)If G = (V, E) is a static f-connected graph, then for any
non-empty se§ C V and integerd > 0, we havel'(S)| > min {|V|,|S| + fd}.

Proof. By induction ond. Ford = 0 the claim is immediate. For the step, suppose [i&tS)| >
min {|V|,|S| 4+ fd}. Suppose further that‘*!(S) # V, otherwise the claim is immediate. This
also implies that'(S) # V, becaus&?(S) C T'+1(S). Thus the induction hypothesis states that
IT4S)| > [S| + fd.

LetT := I'¥*1(S) \ T'%(S) denote the “new” nodes in thel + 1)-neighborhood ofS. It is
sufficient to show thafl"| > f, because thefi*1(S)| = [T¢(S)| + |T'| > |S| + f(d + 1), and we
are done.

Suppose by way of contradiction thay < f, and letG’ = (V’, E’) be the subgraph obtained
from G by removing the nodes ifi. Because> is f-connected anl’| < f, the subgraplt?’ is
connected. Consider the ofit?(S), V' \ T4(S)) in G'. BecauseS # () andS C T'%(S), we have
14(S) # 0, and becaus€¢(S) C I (S) andT¥+1(S) # V, we also havd”’ \ T4(S) # 0.
However, the cut is empty: if there were some edgev} € F such thatu € T9(S) andv €
V'\ T'Y(S), then by definition of*?*!(S) we would havey € T9+1(S). This in turn would imply
thatv € T', and thusy ¢ V’, a contradiction. This shows that is not connected, contradicting
the f-connectivity ofG. O
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Now we can modify Procedurdi sseni nat e to require only[k/(fT)] phases. Claim 5.8
still holds, since it is only concerned with a single phaske Key change is in Claim 5.9, which
we now re-state as follows.

Claim 5.13. For each of thel’ smallest tokens € I and phaseswe have K} (0)| > min {n,T - f - i}.

Proof. Again by induction ori, with the base case being trivial. For the step, assumeriian)| >
T - f-i. As argued in the proof of Claim 5.9, at the end of phasel we havel'” (t) C K/ 7*(0),
wherel'" (t) := {u € V'| tdist;(u,t) < T}. From Lemma5.121'7 (¢)| > min {n, |K;(0)| + fT'},
and the claim follows. O

Corollary 5.14. If k > n, thenKtW(fTﬂ (0) = V for each of thel’ smallest tokens € 1.
Proof. BecausefT - [k/(fT)] > k. O

By substituting the shortenedi ssem nat e in Algorithm 5, we obtain an algorithm that
solvesk-Committee inO(n + n?/(fT)) time in 2T -interval f-connected graphs.

5.4.2 Vertex Expansion

In this section, we show that if the communication graphvisagk an expander, thiB ssemi nat e
procedure require®([log(n)/T'|) phases to disseminate tiiesmallest tokens.

Definition 5.4. A static graphG = (V, E) is said to have vertex expansiar> 0 if forall S C V,
if 5] < 2 then™@) > 1 4 .

Definition 5.5 (T-interval vertex expansion)A dynamic graphG = (V, E) is said to havel'-
interval vertex expansioh > 0 forT" € Nifforall » € N, the static grapldr, 7 := (V, ﬂ;‘jf‘l E(r))
has vertex expansiok

Lemma 5.15.LetG = (V, E), |V| = n be a fixed undirected graph. & has vertex expansion
A > 0, for any non-empty sét C V and integerd > 0, we have

min {(n+1)/2,|9] - (1 + N} if |S| < n/2

d
)l 2 {n—|V\S|/(1+>\)d if [S] > n/2.

Proof. The casel = 0 is trivial, the casgS| < n/2 follows directly from Definition 5.4. For
S| > n/2,letA =T9S)\ SandletB =V \ (SU A). Note that any two nodeg € S and
v € B are at distance at leagtt 1. It therefore holds thaf?(B) C V' \ S. Consequently, we have
I'“(B) < n/2 and certainly alsoB| < n/2 and thus by Definition 5.40%(B) > |B|(1 + \)%.
Together, this implies that — [T4(S)| = |B| < |V \ S|/(1 + )¢ as claimed. O

Analogously toT’-interval f-connected graphs, we can modify Proceddireasem nat e to
require onlyO(1 + log,,,(n)/T) phases. Again, Claim 5.8 still holds and the key is to restate
Claim 5.9, which now has to be adapted as follows.
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Claim 5.16. We defing, := [log,, ((n+1)/2)/T"|. For each of the’ smallest tokens € I and
phaseg, we have

min {(n +1)/2, (1 4+ AT} fori <ig

Kio > n— . .
| K ( )|—{n_(1J£A)(7}){§)T for i > ig.

Proof. As in the other two cases, the proof is by inductionipwith the base case being trivial.
Again, for the step, as argued in the proof of Claim 5.9, a&the of phasé + 1 we havel'”' (t) C
K;T(0), wherel''(t) := {u € V| tdist;(u,t) < T'}. The claim now immediately follows from
Lemma 5.15. U

Corollary 5.17. If i > 2ip = O(1 + log,,(n)), K;(0) = V for each of thel’ smallest tokens
tel O

Consequently, in dynamic graphs withinterval vertex expansion, n-gossip can be solved
in O(n +nlog;,,(n)/T) rounds.

5.5 Asynchronous Start

So far we assumed that all nodes begin executing the pratotdw same round. It is interesting to
consider the case where computation is initiated by somsesulf nodes, while the rest are asleep.
We assume that sleeping nodes wake up upon receiving a ree$gagever, since messages are
delivered at theendof each round, nodes that are woken up in roursgnd their first message in
roundr + 1. Thus, nodes have no way of determining whether or not thegsages were received
by sleeping nodes in the current round.

Claim 5.18. Counting is impossible in 1-interval connected graphs w&ifinchronous start.

Proof. Suppose by way of contradiction thdtis a protocol for counting which requires at most
t(n) rounds in 1-interval connected graphs of sizeLet n’ = max {t(n) + 1,n + 1}. We will
show that the protocol cannot distinguish a line of lengfinom a line of lengthn'.

Given asequencé = a;o...oa,,, letshift(A, r) denote the cyclic left-shift afl in which the
first » symbols ¢ > 0) are removed from the beginning of the sequence and appé¢odied end.
Consider an execution in a dynamic line of lengthwhere the line in round is composed of two
adjacent sectiond o B,,, whereA = 0o...o (n — 1) remains static throughout the execution, and
B(r) = shift(no...o(n'—1),r) is left-shifted by one in every round. The computation iiatéed
by node0 and all other nodes are initially asleep. We claim that thecation of the protocol in
the dynamic grapli- = A o B(r) is indistinguishable in the eyes of nodgs..,n — 1 from an
execution of the protocol in the static line of length(that is, the network comprising sectioh
alone). This is proven by induction on the round number, gigive fact that throughout rounds
0,...,t(n) — 1 none of the nodes in sectioth ever receives a message from a node in sedion
although one node in sectids is awakened in every round, this node is immediately remawed
attached at the end of sectidh where it cannot communicate with the nodes in sectloThus,
the protocol cannot distinguish the dynamic graptirom the dynamic graptd o B(r), and it
produces the wrong output in one of the two graphs. O
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If 2-interval connectivity is assumed, it becomes possiblsolve gossip under asynchronous
start. We begin by defining a version of theommittee and-verification problems that explicitly
address sleeping nodes.

k-Commitee with Wakeup. In the modifiedk-committee problem we require, as before, that no
committee have more th@mnodes. Sleeping nodes are not counted as belonging to anyitie
In addition, ifk > n, we require all nodes to be awake and to be in the same coramitte

k-Verification with Wakeup. In the modifiedk-verification problem, all awake nodes must
eventually output 1 ifft > n. Sleeping nodes do not have to output anything. (Nodes tieat a
awakened during the execution are counted as awake and oipstt @ correct value; however,
there is no requirement for the algorithm to wake up all theéaso)

5.5.1 k-Verification with Wakeup

We modify thek-verification protocol as follows. First, each node thatviske at the beginning of
the computation maintains a round countevhich is initialized to 0 and incremented after every
round. Each message sent by the protocol carries the roundercof the sender, as well as a tag
indicating that it is &-verification protocol message (so that sleeping nodesatiamtich protocol
they need to join).

As before, each node has a variabler,, which is initially set to its committee ID. In every
round nodeu broadcasts the messagever, ¢,, z,). If v hears a different committee ID or the
special valuel, it setsx,, < L; if it hears a round counter greater than its own, it adoggteater
value as its own round counter. When a nedis awakened by receiving a message carrying the
k-ver tag, it setse,, «+ L and adopts the round counter from the message (if there is than one
message, it uses the largest one).

All awake nodes execute the protocol until their round ceuntachegk. At that point they
halt and output iff 2 # L.

23



T < committee
c+ 0
while ¢ < 2k do
broadcastk-verif, c, z)
receive(k-verif, ¢y, x1,), ..., (k-verif, cs, x4, ) from neighbors
if x; # = for somel < i < sthen
| z+ L
end
¢+ max{c,c1,...,csp+ 1
end
if x = 1 then
| output O
else
| output1
end
upon awakening by receipt of messages-verif, c1, z1, ), ..., (k-verif, cs, s, ):
T+ L
¢ max{cy,...,cs}+1
upon awakening spontaneously (by the adversary):
T+ L
c+ 0

Algorithm 7 k-verification protocol with wakeup

Claim 5.19. Algorithm 7 solves thé&-verification with wakeup problem if all nodes start in a stat
that represents a solution fo-committee with wakeup, and the graph is 2-interval coregkct

Proof. The case whergé > n is immediate: as in the synchronous start case, all nodesaake
at the beginning of the protocol, and no node ever hears a dteentD different from its own.

Suppose that < n. Nodes that are awakened during the protocol set theariable to 1, so
they will output 0; we only need to concern ourselves withewthat are awake at the beginning
and have a committee ID. We show that the size of each conanstignks by at least one node
every two rounds, so that at the end of ftkerounds, all nodes have= 1.

Consider a cut between the nodes that belong to some corarfiid still haver = C, and
the rest of the nodes, which are either sleeping or ha¥eC. From 2-interval connectivity, some
edge{u, v} in the cut exists for the next two rounds. Assume that= C. If v is asleep in the
first round, wakes up when it receive’s message, and broadcastsn the second round. If is
awake in the first round it broadcasts # x, in the first round. In both cases nodevill change
x, to L by the end of the second round. O

It remains to show that we can solkecommittee with asynchronous start. We can do this using
the same approach as before, with one minor modification: ithshaverification, we maintain a
round counter at every node, and now each nodeses the paitc,, u) as its UID, instead of;
alone. The pairs are ordered lexicographically, watiger round counters winning out over smaller
ones; that is{c,, u) < {c,,v) iff ¢, > ¢, Or¢, = ¢, andu < v.
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When a node receives a larger round counter than its own insgage, it adopts that value as
its own round counter, and jumps to the appropriate parteptiotocol (e.qg., if the round counter
it receives isk + 3, in the next round it will execute the fifth round of the intitan phase, because
it knows that the firsk — 1 rounds were taken up by the polling phase and the first fourdeof
the invitation phase have passed already). We use roundezsigo that nodes that awaken during
the execution of the protocol will know what the current rdus, and to have the eventual leader
be one of the nodes that woke up first.

Claim 5.20. Algorithm 5, when run with round counters and using pairshefform(c,,, u) instead
of UIDs, solves thé&-committee with wakeup problem.

Proof. First consider the case wheke> n, and letu be the node with the smallest UID among
the nodes that initiate the computation. The first pollinggghexecuted by lastsk > n rounds,
during which all nodes receive's polling message and forward it, setting their round ceumd
matchu’s if it does not already. At the end afs polling phase, all nodes are awake, all have the
same round counter as and all have: as their leader. From this point on the execution proceeds
as in the case of synchronous wakeup.

Next suppose that < n. In this case we only need to show that no committee contadore m
thank members. But this, as always, is guaranteed by the fact #uéit @mmittee contains only
nodes invited by the node whose UID is the committee ID, andaue ever invites more than
nodes to join its committee. O

When nodes execute the full counting algorithm with asyochus wakeup, different parts of
the graph may be testing different values fat the same time. However, the round counter serves
to bring any lagging nodes up-to-date. When some nofiest reaches > n, even if other nodes
are still testing smaller values fér, the first polling phase ai's k-committee instance will reach
all nodes and cause them to jairs computation. (In fact they will joins’s computation sooner,
because to readh> n it had already had to go through at least 1 rounds testing smaller values,
so all nodes will have seen its current round already.)

5.6 Randomized Approximate Counting

We next show that under certain restrictions on the adwersiaviding the sequence of graphs,
by using randomization, it is possible to obtain an appratiom to the number of nodes in time
almost linear im with high probability, even if the dynamic graph is ordhinterval connected. The
techniques we use are based on a gossiping protocol desanifgl]. We assume that the nodes
know some potentially loose upper bountdon n. When arguing about randomized algorithms,
we need to specify which random choices the dynamic g@pk (V, E) can depend on. We
assume an adversary that is oblivious to all random choitdgalgorithm.

Definition 5.6 (Oblivious Adversary) Consider an execution of a randomized algoritAmThe
dynamic graplG = (V, E) provided by an oblivious adversary has to be independerit @frelom
choices ofA.
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In the sequel, we show that in the case of an oblivious admersas possible to use random-
ization to efficiently compute an arbitrarily good estimafe:. In particular, we show that for any
e > 0, itis possible to compute an + ¢)-approximation of: with high probability (inV) in time

e O(n) when using messages of si2élog N - (loglog N + log(1/¢))/<?)
e O(n-(loglog N +log(1/¢))/e?) if the maximal message size is restrictedtog V) bits.

For simplicity, we only describe the algorithm with slightarger message sizes in detail and
merely sketch how to adapt the algorithm if messages angatesttoO (log V) bits. For parame-
terse € (0,1/2) andc > 0, we define

0:=T1(2+2c) 27In(N)/e%]. (1)

Initially, each nodey € V', computed independent exponential random variabl’ég), . ,Yé(”)
with rate1. Following the aggregation scheme described in [31], wendefi

VS CV:n(S):= : Ok 2

¢ .
> i1 Minyeg Y]

If we choose a sef independently of the exponential random variables of trder@(S) is a
good estimate for the size 6fas shown by the following lemma, which is proven in [31].

Lemma 5.21([31]). For everyS C V that is chosen independently of the random variahrlé@
fori € [¢(] andv € V, we have

o

Before describing the algorithm in detail, we give a brieéowew. In order to obtain a good
estimate for the total number of nodesthe objective of each node will be to compuitg/) and

thusmin,cy Yi(“) for eachi € [¢]. In each round, every node broadcasts the minifhafalue it
has heard for every € [¢]. If we assume that the sequence of graphs is chosen by aroakliv
adversary, for each node € V and roundr > 0, C,(r) is independent of all the exponential

random variableyl.(“) chosen by nodes € V. Hence, as a consequence of Lemma 52, (7))
is a good estimate a9, (r)| for all » andv. BecauséC,(r)| > r for all r andwv (Claim 5.2), each
node can stop forwarding minim&j, values as soon as the valuerdiC, (r)) exceeds the round
number by a sufficient amount.

Executing the algorithm as described above would requigentides to send exact values of
exponential random variables, i.e., real values that daampoiori be sent using a bounded number

of bits. Therefore, each nodec V' computes a rounded valdé(“) of Yi(”) for eachi € [(] as
follows.

a(S) — |S]| > ;E’SO < 9e~/2T,

- (v . 1 . e logryea (V"))
Yi( ) .= min {W,ma}( {ID(MNH ), <1 + Z) e . (€))
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Hence,Yi(”) is rounded to the next smaller integer powerlof /4. Further, we restricf;(”)
to be within the rangél/(4¢N1+¢) In(4/N'*+<)]. We will show that with high probability, all

variablesy;”’ will be in this range and thus restricting the range only hasfect with negligible

probability. Asffi(”) is an integer power of + /4, it can be stored usin@(log log; ;. /4(¢N)) =
O(loglog N + log(1/¢)) bits. The details of the algorithm are given by Algorithm 8.

Z(v) “ (}7'1(”)7 o 7?6(1)))
forr=1,2,...do
broadcastz ()
receiveZ ("), ..., Z(¥) from neighbors
fori=1,...,4do
2 min {z", 2", 2"}
end
io(r) €/ Y4y 2.
if (1 —¢)r > n,(r) then terminate and output, (r)
end
Algorithm 8: Randomized approximate counting in linear time, code tmav

Theorem 5.22. For ¢ € (0,1/2) and ¢ > 0, with probability at leastl — 1/N¢, every node of
Algorithm 8 computes the same valugr) =: n. Further|n — n| < en.

Proof. Let A be the event that the exponential random variab}g’é foralli € [¢] andv € V are
within the rangg1/(4¢N1+¢), In(4¢N'*)]. For eachy;”), we have

Pr Y(U) < ; — 1 _ 6_ 4ZN11+C < ;
< 4¢ N1+c QY N1+c
and )
(v) I4+cy) _ In(4Nt+e)
Pr (1" > m(4N'*9)) = e yThnEet

As the number of random variablé@f“) is {n, we obtainPr(A) > 1—1/(2N°¢) by a union bound.
Consider the state of some nodes V' afterr > 0 rounds. Because all minimal; values are

always forwarded, for all € [/], it holds thatZ ) _ min,ec, (r) ?’i(“). In case of the event,, for

KA
all s andv, we have

v <y < (14 Z) Y andthus fin(r) > #(Cy(r)) >

)

Ny (1)
1+e/4

(4)
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We thus get

Pr (|t (r) — [Co(r)]| > €|Cu(r)]) N A)
(a§1/2

7 by ((\ﬁv(r) —|Cym)]| - Zycv(r)\ > (1 + Z) gs\Cv(T)O mA)
e ((

@ e\ . ey 2
9 (1+ z) G - 1G> (14 5) Felcul) na)
< Pr<|ﬁ(0 )l > —EIC >

(Lem“%a 5.2} 9e=/2T < 9e=2-(2+¢)InN) 2N12+C'

In order to be able to apply Lemma 5.21, we use that with arviobi$ adversary, for alt andv,
Cy(r) is independent of all random variabl}?iéu). By applying a union bound, we obtain that with
probability at least — 1/(2N¢) eventA occurs or

Yo € V,Vr >0 |fiy(r) — |Co(r)|| < e-|Cy(r)]. (5)

Note thatC,(r) = V for all r > n — 1 and that the union bound therefore is oug¢n — 1) < N?
events. If (5) holds, we have
y(r) 2 (L=¢)-|Co(r)| = (1 —¢) -7

forallr <n—1andv € V. Therefore, in this case no node terminates before raund. Hence,
all nodes get the same final valaefor 72, (r) and by (5), it holds thal — n| < en as required.
BecausePr(A) < 1/(2N¢), (5) holds with probability at least — 1/N¢ which completes the
proof. O

6 Lower Bounds for Token-Forwarding Algorithms

A token-forwarding algorithm for solving the gossip prafblés an algorithm that does not manip-
ulate the tokens in any way except storing and forwardingith8pecifically, the algorithm must
satisfy the following conditions. LetG(r) denote the message broadcast by nede roundr,
when the algorithm is executed in dynamic graph= (V, E).

1. s%(r) € T U {L} for all roundr and nodes:.

2. Nodes can only learn new tokens by receiving them, eithiérair input or in a message from
another node. Formally, 1685 (r) := {s$(r) | {u,v} € E(r)} denote the set of messages
u receives in round, and let

AS (r) <U R (v )

r’'=0
We require the following.
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e s¢(r) € A%(r) U {L} for all nodesu and rounds-, and
e If nodew terminates in round, then AG (r) = I.

We omit the superscrip¥ when it is obvious from the context.

6.1 Q(nlogk) Lower Bound for Centralized k-Gossip in 1-Interval Connected
Graphs

For this lower bound we assume that in each rogmsbme central authority provides each nade
with a valuet, (r) € A, (r) to broadcast in that round. The centralized algorithm cartlse state
and history of the entire network, but it does not know whidbes will be scheduled in the current
round. Centralized algorithms are more powerful than ithsted ones, since they have access to
more information. To simplify, we begin with each of theokens known to exactly one node.
This restriction is not essential. The lower bound holdsoag las there is constant fraction of the
nodes that still need to leakd tokens for some positive constant

We observe that while the nodes only know a small number @fitekit is easy for the algorithm
to make progress; for example, in the first round of the algoriat leask nodes learn a new token,
because connectivity guarantees thaodes receive a token that was not in their input. As nodes
learn more tokens, it becomes harder for the algorithm teigeothem with tokens they do not
already know. Accordingly, our strategy is to charge a cbst/ok — i) for the i-th token learned
by each node: the first token each node learns comes at a tjieapnd the last token learned
costs dearlyX). Formally, the potential of the system in rounds given by

Au)=1
r)i=> > -
ueV =0

In the first round we havé(0) = 1, becausé nodes know one token each. If the algorithm
terminates in round then we must havé(r) = n - H, = ©(nlog k), because alh nodes must
know all £ tokens. We construct an execution in which the potentialeiage is bounded by a
constant in every round; this gives us@n log k) bound on the number of rounds required.

Theorem 6.1. Any centralized algorithm fok-gossip in 1-interval connected graphs requires
Q(nlog k) rounds to complete in the worst case.

Proof. We construct the communication graph for each rouidthree stages.

Stage |: Adding the free edges. An edge{u, v} is said to bereeif ¢,(r) € A,(r) andt,(r) €
A, (r); that is, if we connect, andwv, neither node learns anything new. Lé¢r) denote the set
of free edges in round; we add all of them to the graph. Lét, ..., C, denote the connected
components of the graplV, F(r)). Observe that any two nodesandv in different components
must send different values, otherwise we would clearly ltave) € A, (r) andt,(r) € A,(r) and
u andv would be in the same component.

We choose representatives € C4,...,v, € C, from each component arbitrarily. Our task
now is to construct a connected subgraph ayer. . , v, and pay only a constant cost. We assume
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that?/ > 6, otherwise we can connect the nodes arbitrarily for a constast. Letmissing(u) :=
k — | A, (r)| denote the number of tokens nodeloes not know at the beginning of round

Stage Il:  We split the nodes into two setop, Bottom according to the number of tokens
they know, with nodes that know many tokens “on toop := {v; | missing(v;) < £/6} and
consequenthyBottom := {v; | missing(v;) > {/6}.

Since top nodes know many tokens, connecting to them couikpensive. We will choose
our edges in such a way that no top node will learn a new tokashgach bottom node will learn
at most three new tokens. We begin by bounding the siZz&pf

To that end, notice that,, 1, missing(w) > (I"s7!): for all 4, j such thatu, v € Top, either
tu(r) & Ay(r) ort,(r) € Au(r), otherwise{u,v} would be a free edge and v would be in
the same component; therefore each pair € Top contributes at least one missing token to the
sum. On the other hand, since each noddip is missing at most/6 tokens, it follows that
> ue Top Missing(u) < |Top| - (£/6). Putting the two facts together we obtaifop| < ¢/3 + 1,
and consequently al§@ottom| = ¢ — | Top| > 2¢/3 — 1.

Stage lll: Connecting the nodes. The bottom nodes are relatively cheap to connect to, so we
connect them in an arbitrary line. In addition we want to @wtneach top node to a bottom
node, such that no top node learns something new, and narbatide is connected to more than
one top node (see Fig. 1. That is, we are looking for a matchsigg only the edge® :=
{{u,v} |u € Top,v € Bottom andt, € A,(r)}.

Since each top node is missing at m64&t tokens, and each bottom node broadcasts a different
value, for each top node there are at ld@stttom| — ¢/6 edges inP to choose from. But since
we assumé > 6, | Top| < ¢/3 4+ 1 < |Bottom| — ¢/6; thus, each top node can be connected to a
different bottom node using-edges.

What is the total cost of the graph? Top nodes learn no tolemsbottom nodes learn at most
two tokens from other bottom nodes and at most one token frtop aode. Thus, the total cost is
bounded by

min{3,missing(u)}

3 3 ! < |Bottom| -
po missing(u) — (i —1) —

u€ Bottom

- — = 36. O

ols| O
IA
~

~

6.2 Q(n + n?/T) lower bound against knowledge-based token-forwarding alg-
rithms

In this section we describe a lower bound against a rediridéess of randomized token-forwarding
algorithms. We represent randomness as a random binang gtrovided to each node at the
beginning of the execution. In every round, the nodes magume a finite number of random
bits, and use them to determine their message for that rauwhthair next state. In every execution
nodes only use finitely many coin tosses; we use an infinitegsivhen modelling the algorithm in
order to avoid
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Top

Figure 1: lllustration for the proof of th@(n log k) lower bound

A token-forwarding algorithm is said to benowledge-basei it can be represented as a col-
lection of functions{f,, |u € U} C P (T)* x {0,1}* — D(T), such that in every round, if R
is the sequence of coin-tosses for nadap to roundr (inclusive), the distribution according to
which nodeu decides which token to broadcast is givenfyA4,(0) ..., A,(r), R).

We say that two dynamic graplis = (V, E) andG’ = (V’, E’) areequal up to round- if
V =V’ and for all’ < r we haveE(r') = E'(r'). Let D, (r) denote the probability distribution
for nodew in roundr. Knowledge-based algorithms have the following property.

Lemma 6.2. Let G, G’ be two dynamic graphs that are equal up to roun@nd let(V, I) be an
instance of gossip. I is a node such thatl(r) = I, then for any round”’ > 0 and string
R € {0,1}* we haveDS (', R) = DS (', R).

Proof. SinceG andG’ are equal up to round the sequences$ (0) ... AS () andAS'(0) ... AS" (r)
are equal, and in particulat® (r) = A% (r) = 1.

By definition, for all ¥/ > r we have AS(r) C A%(+') and AS' (r) € AS'(+'); there-
fore, AG(r') = AG'(+') = I for all ' > r. Consequently, for alt’ > 0, the sequences
AG(0)... AS(r") and A% (0) ... AS"(+') are equal, and the claim follows. O

Theorem 6.3. Any knowledge-based token-forwarding algorithm feinput gossip inl-interval
connected graphs over nodes require$(n + nk/T') rounds to succeed with probability at least
1/2. Further, if [U| = Q(n%k/T), then for sufficiently large:, deterministic algorithms require
Q(n + nk/T) rounds even when each node begins with at most one token.

Proof. A lower bound ofQ2(n) is demonstrated trivially in a static line network whereestdt one
token starts at one end of the line. In the sequel we assurng thd.
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Let {f,} be an knowledge-based token-forwarding algorithmifagossip. We use the UID
space as the token domain, and choose nages ., u,: for randomized algorithms we choose
the UIDs arbitrarily, but for deterministic algorithms weust choose them carefully (see the last
part of the proof). If the algorithm is randomized, we choaseinput assignment where some
nodeu; starts with allk tokens, and all other nodes # u, start with a sef (u;) C {uy,u;}. For
deterministic algorithms, we later show that we can reaghdtate from some input assignment
where each node starts with at most one token. For now letppose that we have reached some
roundrq in which 4, (r9) = I and for allu; # u; we haveA,,, C {u1,u;}. In this starting state
there aren — 2 nodes that do not know each tokegt «;. We abuse notation by usidgto denote
the set of all tokens,, ..., u; as well as the input assignmeht;) to each node;.

Letr; :=ro+ (n—2)(k —2)/(4T). For atokent € I, letE [#t] denote the expected number
of times tokery is broadcast by, between rounds, andr, (exclusive). We have

ri—1
D E[#t]=>_ > Prltisbroadcastinround =y —ro — 2 < (n — 2)(k — 2)/(47).
tel tel r=ro+1
Thus, there are at least two tokens# t' such thatE [#t], E [#t'] < (n — 2)/(4T). Assume
w.l.0.g. thatt # «;. From Markov’s inequality, node; broadcasts less thar(n — 2)/(2T") times
with probability at least /2 in any execution fragment starting from roungland ending before
round rq, regardless of the dynamic graph we choose. The idea in t&f 3 to useu; as a
buffer between the nodes that have already leatrsad those that have not; sinae broadcasts
infrequently with high probability, in this manner we camit the number of nodes that leatn
We divide the rounds betweefy andr; into segmentsyy, ..., a,,. The graph remains static
during each segment, but changes between segments. Fasegaobnty; we define two sets of
nodes,C; and D;, whereC; N D; = {u1}. The nodes irnD; are “contaminated nodes” that might
know tokent at the beginning of the segment; we connect them in a cliqire. nbdes irC; are
“clean”: initially, except foru;, these nodes do not knatwv(some of them might learh during
the segment). The only way the node<incan learrt is if u; broadcasts it. In the first segment
C; is arranged in a line witl; at one end; in subsequent segments we “clagetb form a ring.
Initially Dy = {u;,t} andCy = V' \ {¢} (recall thatt, in addition to being a token, is also the UID
of a node).
There are two types of segments in our construction.

e Quietsegments are ones in whiah does not broadcastuntil the last round in the segment.
In the last round of a quiet segment, broadcastg, and some nodes in the ring become
contaminated. The first segment is a quiet segment.

o After every quiet segment there follows one or mactivesegments, in which we clean up
the ring and move contaminated nodes fréinto D,;. We have to do this in a way that
preserved -interval connectivity. Each active segment is triggergd:b broadcasting in
the previous segment; if in some active segmegntoes not broadcast the next segment
will be quiet.

An active segment lasts exaciyrounds, and a quiet segment lasts until the first timbroadcasts
t (including that round).
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Next we define in detail the construction of the communicatioaph in each segment. We
maintain the following property:

(x) At the beginning of each active segment of all the nodes irC;, only u; and at most”
nodes in thé -neighborhood of; in the ring know tokert. Further, all the nodes that know
t are on the same side af. We refer to the side af; where these nodes are located as the
contaminated side af;.

(*x) At the beginning of each quiet segment nodew; is the only node in the ring that knows

tokent.
Letvy,...,v,—2 be some ordering of the nodesdh \ {u;} (nodes that initially do not know
t). In each segmeritthe nodes irC; will be some contiguous subset,, ..., vg,, whereL;;; >

L; > 1andR;;1 < R; < n — 2forall i. We placeu; betweervy,, andvg, in the ring. Formally,
the edges in any rounde «; wherei > 1 are given by

E(r) :== D U {{vj,vjs1} | Li < j < Ri} U {{ur,or,}, {u1,vr,}}.

In the first segment, the edges d&ér) := DP U{{vj,v;,} |1 <j<n—=2}U{{u,vn}} (we
do not close the ring; this is to ensure thatliolds for the first active segment).

If «; is a quiet segment, then we defi@g,; := C; (and consequently,; ; := D;); that is,
the network does not change betwegranda; 1 (except possibly for the closing of the ring after
the first segment). However, df; is an active session, then has some neighbors in the ring that
knowst, and they might spreadto other nodes even when does not broadcast We divide the
nodes inC; \ {u;} into three subsets.

e Thered nodesed; comprise theT nodes adjacent te; on the contaminated side. The first
T of these (the ones closer tQ) may knowt at the beginning of the segment; the ottier
may become contaminated if some of the fiFsbroadcast token. To be safe, we treat all
red nodes as though they knewy the end of the session.

e Theyellow nodegellow; comprise thel’ nodes adjacent te; on the uncontaminated side.
These nodes may leatrduring the segment, but onlyf; broadcasts it.

e Thegreen nodegreen, are all the other nodes in the ring. These nodes cannot become
taminated during the segment, because their distance fngmade that knows is greater
thanT.

Our cleanup between segmentsanda;; consists of moving all the red nodes inty, ;. For-
mally, if vy, € red;, then we definey,, ., := vy, + 27T andvg,, , := vg,; otherwise, ifur, € red;,
then we defineg,,, = vg, + 27 andvy,., := v,. This satisfies¥) and ¢x): if u; does not
broadcast during segmenty;, then only the red nodes can knavat the end, and since we re-
moved them from the ring, at the beginningagf, ; no node knows exceptu;. The next segment
will be quiet. Otherwise, if;; does broadcagtduring «;, then at the beginning of the next session
(which is active) only the yellow nodegllow,; can knowt. These nodes then become red nodes in
segmenty;. 1, and there ar& of them, as required.
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The cleanup step preservEsnterval connectivity: assume that, = {vr,,...,vr,+or} (the
other case is similar). Then the ling, o7, vr,427—1,...,%1, VR, VR, 41, - - - , VL, +27—1 EXIStS
throughout both segment; and segmenty;;1: in segmenty; it exists as part of the ring, and
in segmentw; 1, after we moved the red nodes into the cligig,, the first part of the line
UL, +2T, VL, 42T—1, - - - , 1 €XiSts in the clique and the second pattvg,, vg,+1, ..., VL, +27—1
exists in the ring. The nodes iD; are all connected to each other in both segments; thus, ithare
static connected graph that persists throughout both sggimg «; -1, and in particular it exists in
anyT rounds that start in;;. (Note that; 1 may be quiet, and in this case it can be shorter fhian
rounds. But in this case it will be followed by an active seginghich has exactly the same edges
and lastsl” rounds.)

Notice that the number of uncontaminated nodes at the biegjmf every active segment is at
most2T less than in the previous active session. Therefore thertotmaber of nodes that know
by roundr; is at most2T" times the number of active sessions, and this in turn is bedihy 27
times the number of rounds in whieh broadcasts. Sinceu; broadcasts less than(n —2)/(27")
times with probability at least/2, the algorithm is not finished by round with probability at
leastl/2.

Deterministic algorithms. If the algorithm is deterministic, we first show that therésexan
input assignment in which each node begins with at most daantdrom which either

1. the algorithm runs fof2(nk/T") rounds, or

2. we reach a round, in which some node:; hasA,,(ro) = I and for alli # 1 we have
Ay, (ro) € {ur,us}.

In the case of (2), we then continue with the same proof ashiirtput assignment where some
node starts with all tokens and the rest of the nodes havekensqsee above). Since we are free
to choose the input assignment, we restrict attention tamees in which the inputs tonodes are
their own UIDs, and the inputs to the other tokens(are

For deterministic algorithms the functigi representing node's behavior must return a distri-
bution in which one token has probability 1. We abuse natatlghtly by usingf,, (A4, (0) ..., A, (r—
1)) to denote this token.

We say that a process € U fires in roundr if when process: receives{u} as its input and
hears nothing in the first — 1 rounds, it will stay silent in those rounds and then spordasky
broadcast its token in round Formally, process fires in roundr if

1. For all?’ < r we havef,({L}") = L, and
2. ful{u}") = u.

If processu does not fire in any round < r, we say thatu is passive until round-. (Note that
nodes that receive no tokens in their input have no choictoliarbadcast nothing until they receive
a token from someone.)

Since|U| = Q(n%k/T), there exist constants n, such that for aln > ny we havelt/| >
en?k +n — 1. Letn > ny. We divide into two cases.
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Case |. There existuy,...,u, € U that are all passive until rounchk/T. In this case we
construct the static clique over,...,u, and let the algorithm run. During the firshk/T

rounds, all nodes send only, and no node learns new tokens. Consequently all nagésve
Ay, (nk/T) =in(u;) # I, and the algorithm cannot terminate by roumd: /T

Case Il. All but n — 1 processes fire no later than round: /7.

Since|id| > ¢(n?k/T+n—1), by the pigeonhole principle there must exist a rounet cnk/T
such that at least processes fire in roung). Letuq, ..., u, ben such processes. We choose the
instance where each nodereceives as inpufu; } if « < k, or @) if i > k.

Let S be the static star with, at the centerS = (V, Eg), whereEg(r) = {{u1,u;} |i > 1}
for all ». Because all nodes fire in roung, when the algorithm is executed #y the network is
silent until roundry. In roundrg all nodes that have a token broadcast it. Following rocde
haveA,, (ro+1) =1I,andforalli > 1, A, (ro + 1) = I(u;) U{u1} C {us,u;}. This is the state
from which we start the main body of the proof above. O
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O =
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(a) The network at the beginning of the execution. Nodes
that may know tokem are indicated in solid blue.

(c) The network after the end of the first phase: the
red nodes are removed from the ring and placed in
the clique, and the ring is repaired by connecting

to var+1. Double lines indicate stable edges along
which T-interval connectivity was preserved in the
transition between the phases.

(b) The network at the beginning of the first phase: the
line is closed to form a ring. The dotted line indicates
the edge we will add at the end of the phase to re-close
the ring after we remove the red nodes; double lines
indicate stable edges, along whihinterval connec-
tivity is preserved between phases.

v3T

Un—-T

(d) If u; broadcast at any point during the first
phase, we begin a new phase. The nodes that
were yellow in the first phase become red, and
the “clean” nodes om;’'s other side become yel-
low. Double lines indicate edges that will be stable
through the next two phases.

Figure 2: lllustrations for the proof of the(n + nk/T") lower bound,T" = 3
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7 Conclusion

In this work we consider a model for dynamic networks whictkasavery few assumptions about
the network. The model can serve as an abstraction for wsede mobile networks, to reason
about the fundamental unpredictability of communicatiothis type of system. We do not restrict
the mobility of the nodes except for retaining connectivityd we do not assume that geographical
information or neighbor discovery are available to the modBlevertheless, we show that it is
possible to efficiently compute any computable functioking advantage of stability if it exists in
the network.

We believe that thé&-interval connectivity property provides a natural and eyahway to
reason about dynamic networks. It is easy to see that witmutype of connectivity assumption
no non-trivial function can be computed, except possibihésense of computation in the limit (as
in [3]). However, our connectivity assumption is easily Weed to only require connectivity once
every constant number of rounds, or to only require everomhectivity in the style of Claim 5.1,
with a known bound on the number of rounds.

There are many open problems related to the model. We hopeetmthen our lower bounds
for gossip and obtain aft(nk/T) general lower bound, and to determine whether counting is in
fact as hard as gossip. Other natural problems, such asmsurssand leader election, can be solved
in linear time once a (possibly approximate) count is knolut,can they be solved more quickly
without first counting? Is it possible to compute an appratenupper bound for the size of the
network in less than the time required for counting exactli?ese and other questions remain
intriguing open problems.
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