
Distributed Computation in Dynamic Networks : Technical
Report

Fabian Kuhn1 Nancy Lynch2 Rotem Oshman2

fabian.kuhn@usi.ch lynch@csail.mit.edu rotem@csail.mit.edu
1Faculty of Informatics, University of Lugano, 6904 Lugano,Switzerland

2Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA 02139, USA

Abstract

In this paper we investigate distributed computation in dynamic networks in which the
network topology changes from round to round. We consider a worst-case model in which
the communication links for each round are chosen by an adversary, and nodes do not know
who their neighbors for the current round are before they broadcast their messages. The model
allows the study of the fundamental computation power of dynamic networks. In particular,
it captures mobile networks and wireless networks, in whichmobility and interference render
communication unpredictable. In contrast to much of the existing work on dynamic networks,
we do not assume that the network eventually stops changing;we require correctness and
termination even in networks that change continually. We introduce a stability property called
T -interval connectivity(for T ≥ 1), which stipulates that for everyT consecutive rounds there
exists a stable connected spanning subgraph. ForT = 1 this means that the graph is connected
in every round, but changes arbitrarily between rounds. Algorithms for the dynamic graph
model must cope with these unceasing changes.

We show that in 1-interval connected graphs it is possible for nodes to determine the size of
the network and compute any computable function of their initial inputs inO(n2) rounds using
messages of sizeO(log n+ d), whered is the size of the input to a single node. Further, if the
graph isT -interval connected forT > 1, the computation can be sped up by a factor ofT , and
any function can be computed inO(n+n2/T ) rounds using messages of sizeO(log n+d). We
also give two lower bounds on the gossip problem, which requires the nodes to disseminatek
pieces of information to all the nodes in the network. We showanΩ(n log k) bound on gossip
in 1-interval connected graphs against centralized algorithms, and anΩ(n+ nk/T ) bound on
exchangingk pieces of information inT -interval connected graphs for a restricted class of
randomized distributed algorithms.

The T-interval connected dynamic graph model is a novel model, which we believe opens
new avenues for research in the theory of distributed computing in wireless, mobile and dy-
namic networks.



1 Introduction

The study of dynamic networks has gained importance and popularity over the last few years.
Driven by the growing ubiquity of the Internet and a plethoraof mobile devices with communica-
tion capabilities, novel distributed systems and applications are now within reach. The networks
in which these applications must operate are inherently dynamic; typically we think of them as
being large and completely decentralized, so that each nodecan have an accurate view of only its
local vicinity. Such networks change over time, as nodes join, leave, and move around, and as
communication links appear and disappear.

In some networks, e.g., peer-to-peer, nodes participate only for a short period of time, and
the topology can change at a high rate. In wireless ad-hoc networks, nodes are mobile and move
around unpredictably. Much work has gone into developing algorithms that are guaranteed to work
in networks that eventually stabilize and stop changing; this abstraction is unsuitable for reasoning
about truly dynamic networks.

The objective of this paper is to make a step towards understanding the fundamental possibili-
ties and limitations for distributed algorithms in dynamicnetworks in which eventual stabilization
of the network is not assumed. We introduce a general dynamicnetwork model, and study com-
putability and complexity of essential, basic distributedtasks. Under what conditions is it possible
to elect a leader or to compute an accurate estimate of the size of the system? How efficiently can
information be disseminated reliably in the network? To what extent does stability in the commu-
nication graph help solve these problems? These and similarquestions are the focus of our current
work.

The dynamic graph model. In the interest of broad applicability our dynamic network model
makes few assumptions about the behavior of the network, andwe study it from the worst-case per-
spective. In the current paper we consider a fixed set of nodesthat operate in synchronized rounds
and communicate by broadcast. In each round the communication graph is chosen adversarially,
under an assumption ofT -interval connectivity: throughout every block ofT consecutive rounds
there must exist a connected spanning subgraph that remainsstable.

We consider the range from 1-interval connectivity, in which the communication graph can
change completely from one round to the next, to∞-interval connectivity, in which there exists
some stable connected spanning subgraph that is not known tothe nodes in advance. We note that
edges that do not belong to the stable subgraph can still change arbitrarily from one round to the
next, and nodes do not know which edges are stable and which are not. We do not assume that a
neighbor-discovery mechanism is available to the nodes; they have no means of knowing ahead of
time which nodes will receive their message.

In this paper we are mostly concerned with deterministic algorithms, but our lower bounds
cover randomized algorithms as well. The computation modelis as follows. In every round, the
adversary first chooses the edges for the round; for this choice it can see the nodes’ internal states
at the beginning of the round. At the same time and independent of the adversary’s choice of
edges, each node tosses private coins and uses them to generate its message for the current round.
Deterministic algorithms generate the message based on theinteral state alone. In both cases the
nodes do not know which edges were chosen by the advesary. Each message is then delivered to

1



the sender’s neighbors, as chosen by the adversary; the nodes transition to new states, and the next
round begins. Communication is assumed to be bidirectional, but this is not essential. We typically
assume that nodes know nothing about the network, not even its size, and communication is limited
toO(log n) bits per message.

To demonstrate the power of the adversary in the dynamic graph model, consider the problem of
local token circulation: each nodeu has a local Boolean variabletokenu, and if tokenu = 1, node
u is said to “have the token”. In every round exactly one node inthe network has the token, and it
can either keep the token or pass it to one of its neighbors. The goal is for all nodes to eventually
have the token in some round. This problem is impossible to solve in 1-interval connected graphs:
in every round, the adversary can see which nodeu has the token, and provide that node with only
one edge{u, v}. Nodeu then has no choice except to eventually pass the token tov. After v
receives it, the adversary can turn around and remove all ofv’s edges except{u, v}, so thatv has
no choice except to pass the token back tou. In this way the adversary can prevent the token from
ever visiting any node exceptu, v.

Perhaps surprisingly given our powerful adversary, even in1-interval connected graphs it is
possible to reliably compute any computable function of theinitial states of the nodes, and even
have all nodes output the result at the same time (simultaneity).

The dynamic graph model we suggest can be used to model various dynamic networks. Perhaps
the most natural scenario is mobile networks, in which communication is unpredictable due to the
mobility of the agents. There is work on achieving continualconnectivity of the communication
graph in this setting (e.g., [12]), but currently little is known about how to take advantage of such a
service. The dynamic graph model can also serve as an abstraction for static or dynamic wireless
networks, in which collisions and interference make it difficult to predict which messages will be
delivered, and when. Finally, dynamic graphs can be used to model traditional communication net-
works, replacing the traditional assumption of a bounded number of failures with our connectivity
assumption.

Although we assume that the node set is static, this is not a fundamental limitation. We defer
in-depth discussion to future work; however, our techniques are amenable to standard methods
such as logical time, which could be used to define the permissible outputs for a computation with
a dynamic set of participants.

Contribution. In this paper we mainly study the following problems in the context of dynamic
graphs.

∙ Counting, in which nodes must determine the size of the network.

∙ k-gossip, in which k pieces of information, calledtokens, are handed out to some nodes in
the network, and all nodes must collect allk tokens.

We are especially interested in the variant ofk-gossip where the number of tokens is equal to the
number of nodes in the network, and each node starts with exactly one token. This variant of
gossip allows any function of the initial states of the nodesto be computed. However, it requires
counting, since nodes do not know in advance how many tokens they need to collect. We show that
both problems can be solved inO(n2) rounds in1-interval connected graphs. Then we extend the

2



algorithm forT -interval connected graphs with knownT > 1, obtaining anO(n + n2/T )-round
protocol for counting or all-to-all gossip. WhenT is not known, we show that both problems can
be solved inO(min

{

n2, n+ n2 log n/T
}

) rounds.
We also give two lower bounds, both concerning token-forwarding algorithms for gossip. A

token-forwarding algorithmis one that does not combine or alter tokens, only stores and forwards
them. First, we give anΩ(n log k) lower bound onk-gossip in 1-interval connected graphs. This
lower bound holds even against centralized algorithms, in which each node is told which token
to broadcast by some central authority that can see the entire state of the network. We also give
anΩ(n + nk/T ) lower bound onk-gossip inT -interval connected graphs for a restricted class
of randomized algorithms, in which the nodes’ behavior depends only on the set of tokens they
knew in each round up to the current one. This includes the algorithms in the paper, as well as
other natural strategies such as round robin, choosing a token to broadcast uniformly at random, or
assigning a probability to each token that depends on the order in which the tokens were learned.

For simplicity, the results we present here assume that all nodes start the computation in the
same round. It is generally not possible to solve any non-trivial problem if some nodes are initially
asleep and do not participate. However, if 2-interval connectivity is assumed, it becomes possible
to solvek-gossip and counting even when computation is initiated by one node and the rest of the
nodes are asleep.

Related work. For static networks, information dissemination and basic network aggregation
tasks have been extensively studied (see e.g. [5, 16, 29]). In particular, thek-gossip problem is
analyzed in [35], where it is shown thatk tokens can always be broadcast in timeO(n + k) in
a static graph. The various problems have also been studied in the context of alternative com-
munication models. A number of papers look at the problem of broadcasting a single message
(e.g. [8, 23]) or multiple messages [11, 26] in wireless networks. Gossiping protocols are an-
other style of algorithm in which it is assumed that in each round each node communicates with a
small number of randomly-chosen neighbors. Various information dissemination problems for the
gossiping model have been considered [17, 19, 21]; gossiping aggregation protocols that can be
used to approximate the size of the system are described in [20, 31]. The gossiping model differs
from our dynamic graph model in that the neighbors for each node are chosen at random and not
adversarially, and in addition, pairwise interaction is usually assumed where we assume broadcast.

A dynamic network topology can arise from node and link failures; fault tolerance, i.e., re-
silience to a bounded number of faults, has been at the core ofdistributed computing research
from its very beginning [5, 29]. There is also a large body of previous work on general dy-
namic networks. However, in much of the existing work, topology changes are restricted and
assumed to be “well-behaved” in some sense. One popular assumption is eventual stabilization
(e.g., [1, 6, 7, 36, 18]), which asserts that changes eventually stop occuring; algorithms for this set-
ting typically guarantee safety throughout the execution,but progress is only guaranteed to occur
after the network stabilizes. Self-stabilization is a useful property in this context: it requires that
the system converge to a valid configuration from any arbitrary starting state. We refer to [13] for
a comprehensive treatment of this topic. Another assumption, studied for example in [22, 24, 30],
requires topology changes to be infrequent and spread out over time, so that the system has enough
time to recover from a change before the next one occurs. Someof these algorithms use link-

3



reversal [14], an algorithm for maintaining routes in a dynamic topology, as a building block.
Protocols that work in the presence of continual dynamic changes have not been widely studied.

There is some work on handling nodes that join and leave continually in peer-to-peer overlay
networks [15, 27, 28]. Most closely related to the problems studied here is [32], where a few basic
results in a similar setting are proved; mainly it is shown that in 1-interval connected dynamic
graphs (the definition in [32] is slightly different), if nodes have unique identifiers, it is possible to
globally broadcast a single message and have all nodes eventually stop sending messages. The time
complexity is at least linear in the value of the largest nodeidentifier. In [2], Afek and Hendler give
lower bounds on the message complexity of global computation in asynchronous networks with
arbitrary link failures.

A variant ofT -interval connectivity was used in [25], where two of the authors studied clock
synchronization inasynchronousdynamic networks. In [25] it is assumed that the network satisfies
T -interval connectivity for a small value ofT , which ensures that a connected subgraph exists
long enough for each node to send one message. This is analogous to 1-interval connectivity in
synchronous dynamic networks.

The time required for global broadcast has been studied in a probabilistic version of the edge-
dynamic graph model, where edges are independently formed and removed according to simple
Markovian processes [9, 10]. Similar edge-dynamic graphs have also been considered in control
theory literature, e.g. [33, 34].

Finally, a somewhat related computational model is population protocols, introduced in [3],
where the system is modeled as a collection of finite-state agents with pairwise interactions. Pop-
ulation protocols typically (but not always) rely on a strong fairness assumption which requires
every pair of agents to interact infinitely often in an infinite execution. We refer to [4] for a sur-
vey. Unlike our work, population protocols compute some function in the limit, and nodes do not
know when they are done; this can make sequential composition of protocols challenging. In our
model nodes must eventually output the result of the computation, and sequential composition is
straightforward.

2 Network Model

2.1 Dynamic Graphs

A synchronous dynamic network is modelled by a dynamic graphG = (V,E), whereV is a static
set of nodes, andE : ℕ→ V (2) is a function mapping a round numberr ∈ ℕ to a set of undirected
edgesE(r). HereV (2) := {{u, v} ∣ u, v ∈ V } is the set of all possible undirected edges overV .

Definition 2.1 (T -Interval Connectivity). A dynamic graphG = (V,E) is said to beT -interval

connectedfor T ∈ ℕ if for all r ∈ ℕ, the static graphGr,T :=
(

V,
∩r+T−1

i=r E(r)
)

is connected. If

G is 1-interval connected we say thatG is always connected.

Definition 2.2 (∞-Interval Connectivity). A dynamic graphG = (V,E) is said to be∞-interval
connectedif there exists a connected static graphG′ = (V,E′) such that for allr ∈ ℕ, E′ ⊆ E(r).

4



Note that even though in an∞-interval connected graph there is some stable subgraph that
persists throughout the execution, this subgraph is not known in advance to the nodes, and can be
chosen by the adversary “in hindsight”.

Although we are generally interested in the undirected case, it is also interesting to consider
directed dynamic graphs, where the communication links are not necessarily symmetric. TheT -
interval connectivity assumption is then replaced byT -interval strong connectivity, which requires
thatGr,T be strongly connected (whereGr,T is defined as before). In this very weak model, not
only do nodes not know who will receive their message before they broadcast, they also do not
know who received the messageafter it is broadcast. Interestingly, all of our algorithms for the
undirected case work in the directed case as well.

The causal order for dynamic graphs is defined in the standardway.

Definition 2.3 (Causal Order). Given a dynamic graphG = (V,E), we define an order→⊆
(V × ℕ)2, where(u, r) → (v, r′) iff r′ = r + 1 and{u, v} ∈ E(r). The causal order⇝⊆
(V × ℕ)2 is the reflexive and transitive closure of→. We also writeu ⇝ (v, r) if there exists
somer′ ≤ r such that(u, r′)⇝ (v, r).

Definition 2.4 (Influence Sets). We denote byCu(r ⇝ r′) := {v ∈ V ∣ (v, r)⇝ (u, r′)} the set
of nodes whose state in roundr causally influences nodeu in roundr′. We also use the short-hand
Cu(r) := Cu(0⇝ r) = {v ∣ v ⇝ (u, r)}.

2.2 Communication and Adversary Model

Nodes communicate with each other usinganonymous broadcast, with message sizes limited to
O(log(n)). At the beginning of roundr, each nodeu decides what message to broadcast based on
its internal state and private coin tosses; at the same time and independently, the adversary chooses
a setE(r) of edges for the round. For this choice the adversary can see the nodes’ internal states at
the beginning of the round, but not the results of their coin tosses or the message they have decided
to broadcast. (Deterministic algorithms choose a message based only on the internal state, and this
is equivalent to letting the adversary see the message before it chooses the edges.) The adversary
then delivers to each nodeu all messages broadcast by nodesv such that{u, v} ∈ E(r). Based on
these messages, its previous internal state, and possibly more coin tosses, the node transitions to a
new state, and the round ends. We call this anonymous broadcast because nodes do not know who
will receive their message prior to broadcasting it.

2.3 Sleeping Nodes

Initially all nodes in the network are asleep; computation begins when a subset of nodes, chosen
by the adversary, is woken up. Sleeping nodes remain in theirinitial state and do not broadcast any
messages until they receive a message from some awake node orare woken up by the adversary.
Then they wake up and begin participating in the computation; however, since messages are deliv-
ered at the end of the round, a node that is awakened in roundr sends its first message in round
r + 1.

We refer to the special case where all nodes are woken up at once assynchronous start.

5



2.4 Initial Knowledge

Each node in the network starts execution of the protocol in an initial state which contains its own
ID, its input, and possibly additional knowledge about the network. We generally assume one of
the following.

∙ No knowledge: nodes know nothing about the network, and initially cannot distinguish it
from any other network.

∙ Upper bound on size: nodes know some upper boundN on the sizen of the network. The
upper bound is assumed to be bounded by some function of the true size, e.g.,N = O(n).

∙ Exact size: nodes know the sizen of the network.

2.5 Computation Model

We think of each node in the network as running a specialized Turing machine which takes the
node’s UID and input from its input tape at the beginning of the first round, and in subsequent
rounds reads the messages delivered to the node from the input tape. In each round the machine
produces a message to broadcast on an output tape. On a separate output tape, it eventually writes
the final output of the node, and then enters a halting state.

The algorithms in this paper are written in pseudo-code. We usexu(r) to denote the value of
nodeu’s local variablex at the beginning of roundr, andxu(0) to denote the input to nodeu.

3 Problem Definitions

We assume that nodes have unique identifiers (UIDs) from somenamespaceU . LetD be a problem
domain. Further, letA 7→ B denote the set of all partial functions fromA toB.

A problemoverD is a relationP ⊆ (U 7→ D)2, such that if(I,O) ∈ P thendomain(I) is
finite anddomain(I) = domain(O). Each instanceI ∈ U 7→ D induces a setV = domain(I) of
nodes, and we say that an algorithmsolvesinstanceI if in any dynamic graphG = (V,E), when
each nodeu ∈ V starts withI(u) as its input, eventually each node outputs a valueO(u) ∈ D such
that(I,O) ∈ P .

We are interested in the following problems.

Counting. In this problem the nodes must determine the size of the network. Formally, the
counting problem is given by

counting := {(V × {1} , V × {n}) ∣ V is finite andn = ∣V ∣} .

k-Verification. Closely related to counting, in thek-verification problem nodes are given an inte-
gerk and must determine whether or notk ≥ n, eventually outputting a Boolean value. Formally,

k-verification := {(V × {k} , V × {b}) ∣ b ∈ {0, 1} andb = 1 iff k ≥ ∣V ∣} .

6



k-Committee. In this problem the nodes must form sets (“committees”), where each committee
has a unique identifier that is known to all its members. Each nodeu outputs a valuecommitteeu,
and we require the following properties.

1. (“Safety”) The size of each committee is at mostk, that is, for allx ∈ {committeeu ∣ u ∈ V }
we have∣ {u ∈ V ∣ committeeu = x} ∣ ≤ k.

2. (“Liveness”) Ifk ≥ n then all nodes in the graph join one committee, that is, for all u, v ∈ V
we havecommitteeu = committeev.

k-Gossip. The gossip problem is defined over a token domainT . Each node receives in its input
a set of tokens, and the goal is for all nodes to output all tokens. Formally,

k-gossip := {(V → P (A) , V → A) ∣ V is finite and∣A∣ = k} .

We are particularly interested in the following variants ofthe problem.

∙ All-to-All gossip: instancesI wherek = n for all u ∈ V we have∣I(u)∣ = 1.

∙ k-gossip with knownk: in this variant nodes knowk, i.e., they receivek as part of the input.

Leader Election. In weak leader election all nodes must eventually output a bit b, such that
exactly one node outputsb = 1. In strong leader election, all nodes must output the same ID
u ∈ V of some node in the network.

4 Relationships

A problemP1 is reducibleto P2 if whenever all nodes start the computation in initial states that
represent a solution toP2, there is an algorithm that computes a solution toP1 and requires linear
time in the parameter to the problem (k).

4.1 k-Committee≡ k-Verification

Claim 4.1. k-verification reduces tok-committee.

Proof. Suppose we start from a global state that is a solution tok-committee, that is, each nodeu
has a local variablecommitteeu such that at mostk nodes belong to the same committee, and if
k ≥ n then all nodes belong to one committee. We can verify whetheror notk ≥ n as follows. For
k rounds, each node maintains a Boolean flagb, which is initially set to1. In rounds whereb = 1,
the node broadcasts its committee ID, and whenb = 0 the node broadcasts⊥. If a node receives a
committee ID different from its own, or if it hears the special value⊥, it setsb to 0. At the end of
thek rounds all nodes outputb.

First consider the case wherek ≥ n. In this case all nodes have the same committee ID, and
no node ever sets itsb flag to0. At the end of the protocol all nodes output1, as required. Next,

7



suppose thatk < n, and letu be some node. There are at mostk − 1 nodes inu’s committee. In
every round, there is an edge between some node inu’s committee and some node in a different
committee (because the communication graph is connected),and therefore at least one node inu’s
committee sets itsb flag to0. After at mostk rounds no nodes remain, and in particularu itself
must havebu = 0. Thus, at the end of the protocol all nodes output0.

Claim 4.2. k-committee reduces tok-verification.

Proof. Again, suppose the nodes are initially in a state that represents a solution tok-verification:
they have a Boolean flagb which is set to 1 iffk ≥ n. We solvek-committee as follows: ifb = 0,
then each node outputs its own ID as its committee ID. This is avalid solution because whenk < n
the only requirement is that no committee have more thank nodes. Ifb = 1, then fork rounds
all nodes broadcast the minimal ID they have heard so far, andat the end they output this ID as
their committee ID. Sinceb = 1 indicates thatk ≥ n, after k rounds all nodes have heard the
ID of the node with the minimal ID in the network, and they willall join the same committee, as
required.

4.2 Counting vs.k-Verification

Since we can solvek-verification inO(k+k2/T ) time inT -interval connected graphs, we can find
an upper bound on the size of the network by checking whetherk ≥ n for values ofk starting from
1 and doubling with every wrong guess. We know how to verify whetherk ≥ n in O(k + k2/T )
time, and hence the time complexity of the entire procedure isO(n + n2/T ). Once we establish
thatk ≥ n for some value ofk, to get an actual count we can then go back and do a binary search
over the rangek/2, . . . , k (recall thatk/2 < n, otherwise we would not have reached the current
value ofk).

In practice, we use a variant ofk-committee where the ID of each committee is the set con-
taining the IDs of all members of the committee. Thek-verification layer returns this set as well,
so that after reaching a value ofk ≥ n at nodeu, we simply return the size ofu’s committee as
the size of the network. Sincek ≥ n implies that all nodes join the same committee, nodeu will
output the correct count.

4.3 Hierarchy of Problems

There is a hardness hierarchy among the problems consideredin this paper as well as some other
natural problems.

1. Strong leader election / consensus (these are equivalent).

2. Decomposable functions such as Boolean AND / OR

3. Counting.

4. n-gossip (with unknownn).

8



The problems in every level are reducible to the ones in the next level, and we know thatn-gossip
can be solved inO(n+ n2/T ) time inT -interval connected graphs forT ≥ 2, orT ≥ 1 assuming
synchronous start. Therefore all the problems can be solvedin O(n + n2/T ) time, even with no
prior knowledge of the network, and even when the communication links are directed (assuming
strong connectivity).

5 Upper Bounds

In this section we give algorithms for some of the problems introduced in Section 3, always with
the goal of solving the counting problem. Our strategy is usually as follows:

1. Solve some variant of gossip.

2. Use (1) as a building block to solvek-committee,

3. Solvingk-committee allows us to solvek-verification and therefore also counting (see Sec-
tion 4).

We initially focus on the case of synchronous start. The modifications necessary to deal with
asynchronous start are described in Section 5.5.

5.1 Always-Connected Graphs

5.1.1 Basic Information Dissemination

It is a basic fact that in 1-interval connected graphs, a single piece of information requires at most
n − 1 rounds to reach all the nodes in the network, provided that itis forwarded by all nodes
that receive it. Formally, letDu(r) := {v ∈ V ∣ u⇝ (v, r)} denote the set of nodes thatu has
“reached” by roundr. If u knows a token and broadcasts it constantly, and all other nodes broadcast
the token if they know it, then all the nodes inDu(r) know the token by roundr.

Claim 5.1. For any nodeu and roundr ≤ n− 1 we have∣Du(r)∣ ≥ r + 1.

Proof. By induction onr. Forr = 0 the claim is immediate. For the step, suppose that∣Du(r)∣ ≥
r + 1, and consider roundr + 1 ≤ n. If Du(r) = V then the claim is trivial, becauseDu(r) ⊆
Du(r + 1). Thus, suppose thatDu(r) ∕= V . SinceG(r) is connected, there is some edge{x, y}
in the cut(Du(r), V ∖Du(r)). From the definition of the causal order we havex, y ∈ Du(r + 1),
and therefore∣Du(r + 1)∣ ≥ ∣Du(r)∣+ 1 ≥ r + 2.

Note that we can employ this property even when there is more than one token in the network,
provided that tokens form a totally-ordered set and nodes forward the smallest (or biggest) token
they know. It is then guaranteed that the smallest (resp. biggest) token in the network will be known
by all nodes after at mostn − 1 rounds. Note, however, that in this case nodes do not necessarily
knowwhen they know the smallest or biggest token.

9



5.1.2 Counting in linear time with Ω(n logn)-bit messages

We begin by describing a linear-time counting/n-gossip protocol which uses messages of size
Ω(n log n). The protocol is extremely simple, but it demonstrates someof the ideas used in some
of our later algorithms, where we eliminate the large messages using a stability assumption (T -
interval connectivity) which allows nodes to communicate with at least one of their neighbors for
at leastT rounds.

In the simple protocol, all nodes maintain a setA containing all the IDs (or tokens) they have
collected so far. In every round, each node broadcastsA and adds any IDs it receives. Nodes
terminate when they first reach a roundr in which ∣A∣ < r.

A← {self }
for r = 1, 2, . . . do

broadcastA
receiveB1, . . . , Bs from neighbors
A← A ∪B1 ∪ . . . ∪Bs

if ∣A∣ < r then terminate and output∣A∣
end

Algorithm 1 : Counting in linear time using large messages

Claim 5.2. For any nodeu and roundsr ≤ r′ ≤ n we have∣Cu(r ⇝ r′)∣ ≥ r′ − r.

Proof. By induction onr′ − r. Forr′ − r = 0 the claim is immediate.
Suppose that for all nodesu and roundsr, r′ such thatr′ ≤ n andr′− r = i we have∣Cu(r ⇝

r′)∣ ≥ i. Let r, r′ ≤ n be two rounds such thatr′ − r = i+ 1.
If ∣Cu((r + 1) ⇝ r)∣ = n then we are done, becauser′ − r ≤ r′ ≤ n. Thus, assume that

Cu((r + 1) ⇝ r) ∕= V . Since the communication graph in roundr is connected, there is some
edge{w,w′} ∈ E(r) such thatw ∕∈ Cu((r + 1) ⇝ r) andw′ ∈ Cu((r + 1) ⇝ r). We have
(w, r) → (w′, r + 1) ⇝ (u, r′), and consequently(w, r) ⇝ (u, r′) andw ∈ Cu(r ⇝ r′). Also,
from the induction hypothesis,∣Cu((r + 1) ⇝ r)∣ ≥ i. Together we obtain∣Cu(r ⇝ r′)∣ ≥
∣Cu((r + 1)⇝ r)∣+ 1 ≥ i+ 1, as desired.

Claim 5.3. For any nodeu and roundr ≤ n we have∣Au(r)∣ ≥ r.

Proof. It is easily shown that for allv ∈ Cu(r) we havev ∈ Au(r). From the previous claim we
have∣Cu(r)∣ ≥ r for all r ≤ n, and the claim follows.

The correctness of the protocol follows from Claim 5.3: suppose that for some roundr and
nodeu we have∣Au(r)∣ < r. From Claim 5.3, then,r > n. Applying the claim again, we see
that ∣Au(n)∣ ≥ n, and sinceAu(r) ⊆ V for all r, we obtainAu(r) = V . This shows that nodes
compute the correct count. For termination we observe that the size ofAu never exceedsn, so all
nodes terminate no later than roundn+ 1.

10



5.1.3 k-committee with O(logn)-bit messages

We can solvek-committee inO(k2) rounds as follows. Each nodeu stores a local variableleaderu
in addition tocommitteeu. A node that has not yet joined a committee is calledactive, and a node
that has joined a committee isinactive. Once nodes have joined a committee they do not change
their choice.

Initially all nodes consider themselves leaders, but throughout the protocol, any node that hears
an ID smaller than its own adopts that ID as its leader. The protocol proceeds ink cycles, each
consisting of two phases,polling andselection.

1. Polling phase: fork − 1 rounds, all nodes propagate the ID of the smallest active node of
which they are aware.

2. Selection phase: in this phase, each node that considers itself a leader selects the smallest
ID it heard in the previous phase and invites that node to joinits committee. An invitation
is represented as a pair(x, y), wherex is the ID of the leader that issued the invitation, and
y is the ID of the invited node. All nodes propagate the smallest invitation of which they
are aware fork − 1 (invitations are sorted in lexicographic order, so that invitations issued
by the smallest node in the network will win out over other invitations. It turns out, though,
that this is not necessary for correctness; it is sufficient for each node to forward an arbitrary
invitation from among those it received).

At the end of the selection phase, a node that receives an invitation to join its leader’s com-
mittee does so and becomes inactive. (Invitations issued bynodes that are not the current
leader can be accepted or ignored; this, again, does not affect correctness.)

At the end of thek cycles, any nodeu that has not been invited to join a committee outputs
committeeu = u.

11



leader ← self

committee ← ⊥
for i = 0, . . . , k do

// Polling phase
if committee = ⊥ then

min active ← self ; // The node nominates itself for selection
else

min active ← ⊥
end
for j = 0, . . . , k − 1 do

broadcastmin active

receivex1, . . . , xs from neighbors
min active ← min {min active, x1, . . . , xs}

end
// Update leader
leader ← min {leader ,min active}
// Selection phase
if leader = self then

// Leaders invite the smallest ID they heard
invitation ← (self ,min active)

else
// Non-leaders do not invite anybody
invitation ← ⊥

end
for j = 0, . . . , k − 1 do

broadcastinvitation
receivey1, . . . , ys from neighbors
invitation ← min {invitation , y1, . . . , ys} ; // (in lexicographic
order)

end
// Join the leader’s committee, if invited
if invitation = (leader , self ) then

committee = leader

end
end
if committee = ⊥ then

committee ← self

end

Algorithm 2 : k-committee in always-connected graphs

Claim 5.4. The protocol solves thek-committee problem.

Proof. We show that after the protocol ends, the values of the localcommitteeu variables constitute
a valid solution tok-committee.

12



1. In each cycle, each node invites at most one node to join itscommittee. Afterk cycles at
mostk nodes have joined any committee. Note that the first node invited by a leaderu to
join u’s committee is alwaysu itself. Thus, if afterk cycles nodeu has not been invited to
join a committee, it follows thatu did not invite any other node to join its committee; when
it forms its own committee in the last line of the algorithm, the committee’s size is 1.

2. Suppose thatk ≥ n, and letu be the node with the smallest ID in the network. Following
the polling phase of the first cycle, all nodesv have leader v = u for the remainder of
the protocol. Thus, throughout the execution, only nodeu issues invitations, and all nodes
propagateu’s invitations. Sincek ≥ n rounds are sufficient foru to hear the ID of the
minimal active node in the network, in every cycle nodeu successfully identifies this node
and invites it to joinu’s committee. Afterk cycles, all nodes will have joined.

Remark. The protocol can be modified easily to solven-gossip ifk ≥ n. Let tu be the token
nodeu received in its input (or⊥ if nodeu did not receive a token). Nodes attach their tokens to
their IDs, and send pairs of the form(u, tu) instead of justu. Likewise, invitations now contain the
token of the invited node, and have the structure(leader , (u, tu)). The min operation disregards
the token and applies only to the ID. At the end of each selection phase, nodes extract the token
of the invited node, and add it to their collection. By the endof the protocol every node has been
invited to join the committee, and thus all nodes have seen all tokens.

5.2 ∞-interval Connected Graphs

We can count in linear time in∞-interval connected graphs using the following algorithm:each
node maintains two sets of IDs,A andS. A is the set of all IDs known to the node, andS is the
set of IDs the node has already broadcast. InitiallyA contains only the node’s ID andS is empty.
In every round, each node broadcastsmin (A ∖ S) and adds this value toS. (If A = S, the node
broadcasts nothing.) Then it adds all the IDs it receives from its neighbors toA.

While executing this protocol, nodes keep track of the current round number (starting from
zero). When a node reaches a roundr in which ∣A∣ < ⌊r/2⌋, it terminates and outputs∣A∣ as the
count.

13



S ← ∅
A← {self }
for r = 0, . . . do

if S ∕= A then
t← min (A ∖ S)
broadcastt
S ← S ∪ {t}

end
receivet1, . . . , ts from neighbors
A← A ∪ {t1, . . . , ts}
if ∣A∣ < ⌊r/2⌋ then terminate and output∣A∣

end
return A

Algorithm 3 : Counting in∞-interval connected graphs

5.2.1 Analysis

Let dist(u, v) denote the shortest-path distance betweenu andv in the stable subgraphG′, and let
Nd(u) denote thed-neighborhood ofu in G′, that is,Nd(u) = {v ∈ V ∣ dist(u, v) ≤ d}. We use
Ax(r) andSx(r) to denote the values of local variablesA andS at nodex ∈ V in the beginning of
roundr. Note the following properties:

1. Sx(r + 1) ⊆ Ax(r) ⊆ Ax(r + 1) for all x andr.

2. If u andv are neighbors inG′, thenSu(r) ⊆ Av(r) for all r, because every value sent byu
is received byv and added toAv.

3. S andA are monotonic, that is, for allx andr we haveSx(r) ⊆ Sx(r + 1) andAx(r) ⊆
Ax(r + 1).

Claim 5.5. For every two nodesx, u ∈ V and roundr such thatr ≥ dist(u, x), either x ∈
Su(r + 1) or ∣Su(r + 1)∣ ≥ r − dist(u, x).

Proof. By induction onr. Forr = 0 the claim is immediate.
Suppose the claim holds for roundr − 1, and consider roundr. Let x, u be nodes such that

r ≥ dist(u, x); we must show that eitherx ∈ Su(r + 1) or ∣Su(r + 1)∣ ≥ r − dist(u, x).
If x = u, then the claim holds:u is broadcast in the first round, and thereafter we have

u ∈ Su(r) for all r ≥ 1.
Otherwise, letv be a neighbor ofu along the shortest path fromu to x in G′; that is,v is a

neighbor ofu such thatdist(v, x) = dist(u, x)−1. Sincer ≥ dist(u, x) = dist(v, x)+1 we have
r − 1 ≥ dist(v, x).

From the induction hypothesis onv andx in round r − 1, eitherx ∈ Sv(r) or ∣Sv(r)∣ ≥
r − 1− dist(v, x) = r − dist(u, x). Applying property 2 above, this implies the following.

(★) Eitherx ∈ Au(r) or ∣Au(r)∣ ≥ r − dist(u, x).

14



If x ∈ Su(r) or ∣Su(r)∣ ≥ r−dist(u, x) then we are done, becauseSu(r) ⊆ Su(r+1). Suppose
then thatx ∕∈ Su(r) and ∣Su(r)∣ < r − dist(u, x). It is sufficient to prove thatAu(r) ∕= Su(r):
this shows that in roundr nodeu broadcastsmin (Au(r) ∖ Su(r)) and adds it toSu, yielding
∣Su(r + 1)∣ ≥ ∣Su(r)∣+ 1 ≥ r − dist(u, x) and proving the claim.

We show this using(★). If x ∈ Au(r), thenAu(r) ∕= Su(r), because we assumed thatx ∕∈
Su(r). Otherwise(★) states that∣Au(r)∣ ≥ r − dist(u, x), and since we assumed that∣Su(r)∣ <
r − dist(u, x), this again shows thatAu(r) ∕= Su(r).

Claim 5.6. If r ≤ n, then for all nodesu we have∣Au(2r)∣ ≥ r.

Proof. Let u ∈ V . For any nodex ∈ N r(u), Claim 5.5 shows that eitherx ∈ Su(2r + 1) or
∣Su(2r + 1)∣ ≥ 2r − dist(u, x) ≥ r. Thus, either∣Su(2r + 1)∣ ≥ r or N r(u) ⊆ Su(2r + 1).
Sincer ≤ n andG′ is connected we haveN r(u) ≥ r, and therefore in both cases we have
∣Au(2r)∣ ≥ ∣Su(2r + 1)∣ ≥ r.

Claim 5.7. The algorithm terminates in linear time and outputs the correct count at all nodes.

Proof. Termination is straightforward: the setA only contains IDs of nodes that exist in the net-
work, so its size cannot exceedn. All nodes terminate no later than round2n+ 2.

Correctness follows from Claim 5.6. Suppose that in roundr nodeu has∣Au(r)∣ < ⌊r/2⌋, and
let r′ = ⌊r/2⌋. We must show thatAu(r) = V .

From Claim 5.6, ifr′ ≤ n then ∣Au(2r
′)∣ ≥ r′. By definition of r′ we haver ≥ 2r′ and

hence from Property 3 we obtain∣Au(r)∣ ≥ r′, which is not the case. Thus,r′ > n andr > 2n.
Applying the same reasoning as in Claim 5.6 to roundn, we see that either∣Su(2n + 1)∣ > n
or Nn(u) ⊆ Su(2n + 1). Since the first cannot occur it must be the case thatV = Nn(u) ⊆
Su(2n+ 1) ⊆ Au(r), and we are done.

5.3 Finite-Interval Connected Graphs

Next we generalize the protocol above, in order to solvek-committee in2T -interval connected
graphs. The general protocol requiresO(n + n2/T ) rounds (and assumes thatT is known in
advance). The idea is the same as for always-connected graphs, except that instead of selecting
one node at a time to join its committee, each leader selects abatch ofT nodes and disseminates
their IDs throughout the network. We generalize and refine Claim 5.5 for the case where there are
initially up to n tokens, but only the smallestT tokens need to be disseminated.

5.3.1 T -gossip in2T -interval connected graphs

The “pipelining effect” we used in the∞-interval connected case allows us to disseminateT tokens
in 2n rounds, given that the graph is2T -interval connected. The idea is to use a similar protocol to
the∞-interval connected case, except that the protocol is “restarted” every2T rounds: all nodes
empty the setS (but notA), which causes them to re-send the tokens they already sent,starting
from the smallest and working upwards. TheT smallest tokens will thus be propagated through
the network, and larger tokens will “die out” as they are not re-sent.

15



This is captured formally by the following protocol. The tokens are now assumed to come from
a well-ordered set(P,<). The input at each nodeu is an initial setAu ⊆ P of tokens. In addition,
it is assumed that all nodes have a common guessk for the size of the network. The protocol
guarantees that theT smallest tokens in the network are disseminated to all nodes, provided that
the graph is2T -interval connected and thatk ≥ n.

S ← ∅
for i = 0, . . . , ⌈k/T ⌉ − 1 do

for r = 0, . . . , 2T do
if S ∕= A then

t← min (A ∖ S)
broadcastt
S ← S ∪ {t}

end
receivet1, . . . , ts from neighbors
A← A ∪ {t1, . . . , ts}

end
S ← ∅

end
return A

Function disseminate(A,T, k)

We refer to each iteration of the inner loop as aphase. Since a phase lasts2T rounds and the
graph is2T -interval connected, there is some connected subgraph thatexists throughout the phase.
Let G′

i be a connected subgraph that exists throughout phasei, for i = 0, . . . , ⌈k/T ⌉ − 1. We use
disti(u, v) to denote the distance between nodesu, v ∈ V in G′

i.
Let Kt(r) denote the set of nodes that know tokent by the beginning of roundr, that is,

Kt(r) = {u ∈ V ∣ t ∈ Au(r)}. In addition, letI be the set ofT smallest tokens in
∪

u∈V Au(0).
Our goal is to show that when the protocol terminates we haveKt(r) = V for all t ∈ I.

For a nodeu ∈ V , a tokent ∈ P , and a phasei, we definetdisti(u, t) to be the distance ofu
from the nearest node inG′

i that knowst at the beginning of phasei:

tdist(u, t) := min {disti(u, v) ∣ v ∈ Kt(2T ⋅ i)} .

Here and in the sequel, we use the convention thatmin ∅ :=∞. For convenience, we useSi
u(r) :=

Su(2T ⋅ i + r) to denote the value ofSu in roundr of phasei. Similarly we denoteAi
u(r) :=

Au(2T ⋅ i+ r) andKi
t(r) := Kt(2T ⋅ i+ r).

The following claim characterizes the spread of each token in each phase. It is a generalization
of Claim 5.5, and the proof is similar.

Claim 5.8. For any nodeu ∈ V , tokent ∈
∪

u∈V Au(0) and roundr ∈ {0, . . . , 2T − 1} such that
r ≥ tdisti(u, t), eithert ∈ Si

u(r + 1) or Si
u(r + 1) includes at least(r − tdisti(u, t)) tokens that

are smaller thant.

Proof. By induction onr. Forr = 0 the claim is immediate.

16



Suppose the claim holds for roundr − 1 of phasei, and consider roundr ≥ tdisti(u, t).
If r = tdisti(u, t), thenr − tdisti(u, t) = 0 and the claim holds trivially. Thus, suppose that
r > tdisti(u, t). Hence,r−1 ≥ tdisti(u, t), and the induction hypothesis applies: eithert ∈ Si

u(r)
or Si

u(r) includes at least(r − 1− tdisti(u, t)) tokens that are smaller thant. In the first case we
are done, sinceSi

u(r) ⊆ Si
u(r + 1); thus, assume thatt ∕∈ Si

u(r), andSi
u(r) includes at least

(r − 1− tdisti(u, t)) tokens smaller thant. However, ifSi
u(r) includes at least(r − tdisti(u, t))

tokens smaller thant, then so doesSi
u(r+1), and the claim is again satisfied; thus we assume that

Si
u(r) includesexactly(r − 1− tdisti(u, t)) tokens smaller thant.

It is sufficient to prove thatmin
(

Ai
u(r) ∖ S

i
u(r)

)

≤ t: if this holds, then in roundr node
u broadcastsmin

(

Ai
u(r) ∖ S

i
u(r)

)

, which is eithert or a token smaller thant; thus, eithert ∈
Si
u(r + 1) or Si

u(r + 1) includes at least(r − tdisti(u, t)) tokens smaller thant, and the claim
holds.

First we handle the case wheretdisti(u, t) = 0. In this case,t ∈ Ai
u(0) ⊆ Ai

u(r). Since we
assumed thatt ∕∈ Si

u(r) we havet ∈ Ai
u(r) ∖ S

i
u(r), which implies thatmin

(

Ai
u(r) ∖ S

i
u(r)

)

≤ t.
Next suppose thattdisti(u, t) > 0. Letx ∈ Ki

t(0) be a node such thatdisti(u, x) = tdist(u, t)
(such a node must exist from the definition oftdisti(u, t)), and letv be a neighbor ofu along the
path fromu tox in G′

i, such thatdisti(v, x) = disti(u, x)−1 < r. From the induction hypothesis,
eithert ∈ Si

v(r) or Si
v(r) includes at least(r − 1− tdisti(v, t)) = (r − tdisti(u, t)) tokens that

are smaller thant. Since the edge betweenu andv exists throughout phasei, nodeu receives
everythingv sends in phasei, and henceSi

v(r) ⊆ Ai
u(r). Finally, because we assumed thatSi

u(r)
contains exactly(r − 1− tdisti(u, t)) tokens smaller thant, and does not includet itself, we have
min

(

Ai
u(r) ∖ S

i
u(r)

)

≤ t, as desired.

Claim 5.9. For each of theT smallest tokenst ∈ I and phasesi, we have∣Ki
t(0)∣ ≥ min {n, T ⋅ i}.

Proof. The proof is by induction oni. For i = 0 the claim is immediate. For the induction step,
suppose that∣Ki

t(0)∣ ≥ min {n, T ⋅ i}, and consider phasei+ 1.
Let N(t) denote theT -neighborhood ofKi

t(0), that is,N(t) := {u ∈ V ∣ tdisti(u, t) ≤ T}.
From Claim 5.8 applied to round2T of phasei, for all u ∈ N(t), eithert ∈ Si

u(r+1) orSi
u(r+1)

includes at least2T − T = T tokens smaller thant. Sincet is one of theT smallest tokens in
the network, this latter case is impossible. Thus, every node u ∈ N(t) hast ∈ Si

u(2T + 1) ⊆
Ai

u(2T + 1), which implies thatN(t) ⊆ Ki+1
t (0). In addition,Ki

t(0) ⊆ Ki+1
t (0), because nodes

never forget tokens they have learned.
SinceG′

i is connected,∣N(t) ∖ Ki
t(0)∣ ≥ T . Combining with the induction hypothesis we

obtain∣N(t) ∪Ki
t(0)∣ ≥ min {n, T ⋅ (i+ 1)}, and the claim follows.

Proceduredisseminate terminates at the end of phase⌈k/T ⌉ − 1, or, equivalently, at the
beginning of phase⌈k/T ⌉. By this time, if the guess for the size of the network was correct, all
nodes have learned theT smallest tokens.

Corollary 5.10. If k ≥ n, thenK⌈k/T ⌉
t (0) = V for each of theT smallest tokenst ∈ I.

Proof. The claim follows from Claim 5.9, becauseT ⋅ ⌈k/T ⌉ ≥ k ≥ n.

17



5.3.2 k-committee in2T -interval connected graphs

We can solve thek-committee problem inO(k + k2/T ) rounds using Algorithm 5. The idea is
similar to Algorithm 2, except that leaders inviteT nodes to join their committee in every cycle
instead of just one node. Each node begins the protocol with aunique ID which is stored in the
local variableself .

leader ← self

committee ← ⊥
for i = 0, . . . , ⌈k/T ⌉ − 1 do

if committee = ⊥ then
A← {self } ; // The node nominates itself for selection

else
A← ∅

end
tokens ← disseminate(A,T, k)
leader ← min ({leader} ∪ tokens)
if leader = self then

// Leaders invite the T smallest IDs they collected
// (or less in the final cycle, so that the total does not

exceed k)
if i < ⌈k/T ⌉ − 1 then

A← smallest-T (tokens )
else

m← k − (⌈k/T ⌉ − 1) ⋅ T
A← smallest-T (tokens)

end
else

// Non-leaders do not invite anybody
A← ∅

end
tokens ← disseminate({self } ×A,T, k)
// Join the leader’s committee, if invited
if (leader , self ) ∈ tokens then

committee = leader

end
end
if committee = ⊥ then

committee ← self

end

Algorithm 5 : k-committee in2T -interval connected graphs

Claim 5.11. The protocol above solvesk-committee inO(k + k2/T ) rounds.

18



5.3.3 Counting in Graphs with Unknown Finite-Interval Connectivity

The protocol above assumes that all nodes know the degree of interval connectivity present in the
communication graph; if the graph is not2T -interval connected, invitations may not reach their
destination, and the committees formed may contain less than k nodes even ifk ≥ n. However,
even when the graph is not2T -interval connected, no committee containsmore than k nodes,
simply because no node ever issues more thank invitations. Thus, if nodes guess a value forT and
use thek-committee protocol above to solvek-verification, their error is one-sided: if their guess
for T is too large they may falsely conclude thatk < n when in factk ≥ n, but they will never
conclude thatk ≥ n whenk < n.

This one-sided error allows us to try different values fork andT without fear of mistakes. We
can count inO(n log n + n2 log(n)/T ) time in graphs whereT is unknownusing the following
scheme. I assume the version ofk-verification that returns the setV of all nodes ifk ≥ n, or the
special value⊥ if k < n.

for i = 1, 2, 4, 8, . . . do
for k = 1, 2, 4, . . . , i do

if k-verification assuming⌊k2/i⌋-interval connectivity returnsV ∕= ⊥ then
return∣V ∣

end
end

end

Algorithm 6 : Counting inO(n log n + n2 log(n)/T ) in T -interval connected graphs where
T is unknown

The time required fork-verification assuming⌊k2/i⌋-interval connectivity isO(k2/⌊k2/i⌋) =
O(i) for all k, and thus the total time complexity of thei-th iteration of the outer loop isO(i log i).

If the communication graph isT -interval connected, the algorithm terminates the first time we
reach values ofi andk such thatk ≥ n and⌊k2/i⌋ ≤ T . Let N be the smallest power of 2 that
is no smaller thann; clearlyN < 2n. Let us show that the algorithm terminates when we reach
i = max

{

N, ⌈N2/T ⌉
}

.
First consider the case wheremax

{

N, ⌈N2/T ⌉
}

= N , and henceT ≥ N . When we reach
the last iteration of the inner loop, wherek = i = N , we try to solveN -verification assuming
N -interval connectivity. This must succeed, and the algorithm terminates.

Next, suppose that⌈N2/T ⌉ > N . Consider the iteration of the inner loop in whichk = N . In
this iteration, we try to solveN -verification assuming⌊N2/⌈N2/T ⌉⌋-interval connectivity. Since
⌊N2/⌈N2/T ⌉⌋ ≤ T , this again must succeed, and the algorithm terminates.

The time complexity of the algorithm is dominated by the lastiteration of the outer loop, which
requiresO(i log i) = O(n log n+ n2 log(n)/T ) rounds.

The asymptotic time complexity of this algorithm only improves upon the originalO(n2) al-
gorithm (which assumes only 1-interval connectivity) whenT = !(log n). However, it is possible
to execute both algorithms in parallel, either by doubling the message sizes or by interleaving the
steps, so that the original algorithm is executed in even rounds and Alg. 6 is executed in odd rounds.
This will lead to a time complexity ofO(min

{

n2, n log n+ n2 log(n)/T
}

), because we terminate

19



when either algorithm returns a count.

5.4 Exploiting Expansion Properties of the Communication Graph

Naturally, if the communication graph is always a good expander, the algorithms presented here
can be made to terminate faster. We consider two examples of graphs with good expansion. As
before, when the expansion is not known in advance we can guess it, paying alog n factor.

5.4.1 f -Connected Graphs

Definition 5.1. A static graphG is f -connectedfor f ∈ ℕ if the removal of any set of at most
f − 1 nodes fromG does not disconnect it.

Definition 5.2 (T -intervalf -connectivity). A dynamic graphG = (V,E) is said to beT -interval

f -connectedfor T, f ∈ ℕ if for all r ∈ ℕ, the static graphGr,T :=
(

V,
∩r+T−1

i=r E(r)
)

is f -

connected.

Definition 5.3 (Neighborhoods). Given a static graphG = (V,E) and a setS ⊆ V of nodes,
the neighborhoodof S in G is the setΓG(S) = S ∪ {v ∈ V ∣ ∃u ∈ S : {u, v} ∈ E}. The d-
neighborhoodof S is defined inductively, withΓ0

G(S) = S andΓd
G(S) = ΓG(Γ

d−1
G (S)) for d > 0.

We omit the subscriptG when it is obvious from the context.

In f -connected graphs the propagation speed is multiplied byf , because every neighborhood
is connected to at leastf external nodes (if there are fewer thanf remaining nodes, it is connected
to all of them). This is shown by the following lemma.

Lemma 5.12(Neighborhood Growth). If G = (V,E) is a staticf -connected graph, then for any
non-empty setS ⊆ V and integerd ≥ 0, we have∣Γd(S)∣ ≥ min {∣V ∣, ∣S∣+ fd}.

Proof. By induction ond. Ford = 0 the claim is immediate. For the step, suppose that∣Γd(S)∣ ≥
min {∣V ∣, ∣S∣+ fd}. Suppose further thatΓd+1(S) ∕= V , otherwise the claim is immediate. This
also implies thatΓd(S) ∕= V , becauseΓd(S) ⊆ Γd+1(S). Thus the induction hypothesis states that
∣Γd(S)∣ ≥ ∣S∣+ fd.

Let Γ := Γd+1(S) ∖ Γd(S) denote the “new” nodes in the(d + 1)-neighborhood ofS. It is
sufficient to show that∣Γ∣ ≥ f , because then∣Γd+1(S)∣ = ∣Γd(S)∣+ ∣Γ∣ ≥ ∣S∣+ f(d+1), and we
are done.

Suppose by way of contradiction that∣Γ∣ < f , and letG′ = (V ′, E′) be the subgraph obtained
from G by removing the nodes inΓ. BecauseG is f -connected and∣Γ∣ < f , the subgraphG′ is
connected. Consider the cut(Γd(S), V ′ ∖ Γd(S)) in G′. BecauseS ∕= ∅ andS ⊆ Γd(S), we have
Γd(S) ∕= ∅, and becauseΓd(S) ⊆ Γd+1(S) andΓd+1(S) ∕= V , we also haveV ′ ∖ Γd(S) ∕= ∅.
However, the cut is empty: if there were some edge{u, v} ∈ E such thatu ∈ Γd(S) andv ∈
V ′ ∖ Γd(S), then by definition ofΓd+1(S) we would havev ∈ Γd+1(S). This in turn would imply
thatv ∈ Γ, and thusv ∕∈ V ′, a contradiction. This shows thatG′ is not connected, contradicting
thef -connectivity ofG.

20



Now we can modify Proceduredisseminate to require only⌈k/(fT )⌉ phases. Claim 5.8
still holds, since it is only concerned with a single phase. The key change is in Claim 5.9, which
we now re-state as follows.

Claim 5.13. For each of theT smallest tokenst ∈ I and phasesi we have∣Ki
t(0)∣ ≥ min {n, T ⋅ f ⋅ i}.

Proof. Again by induction oni, with the base case being trivial. For the step, assume that∣Ki
t(0)∣ ≥

T ⋅ f ⋅ i. As argued in the proof of Claim 5.9, at the end of phasei+ 1 we haveΓT (t) ⊆ Ki+1
t (0),

whereΓT (t) := {u ∈ V ∣ tdisti(u, t) ≤ T}. From Lemma 5.12,∣ΓT (t)∣ ≥ min
{

n, ∣Ki
t(0)∣ + fT

}

,
and the claim follows.

Corollary 5.14. If k ≥ n, thenK⌈k/(fT )⌉
t (0) = V for each of theT smallest tokenst ∈ I.

Proof. BecausefT ⋅ ⌈k/(fT )⌉ ≥ k.

By substituting the shorteneddisseminate in Algorithm 5, we obtain an algorithm that
solvesk-Committee inO(n+ n2/(fT )) time in2T -intervalf -connected graphs.

5.4.2 Vertex Expansion

In this section, we show that if the communication graph is always an expander, thedisseminate
procedure requiresO(⌈log(n)/T ⌉) phases to disseminate theT smallest tokens.

Definition 5.4. A static graphG = (V,E) is said to have vertex expansion� > 0 if for all S ⊆ V ,
if ∣S∣ ≤ ∣V ∣

2 thenΓ(S)
S ≥ 1 + �.

Definition 5.5 (T -interval vertex expansion). A dynamic graphG = (V,E) is said to haveT -

interval vertex expansion� > 0 for T ∈ ℕ if for all r ∈ ℕ, the static graphGr,T :=
(

V,
∩r+T−1

i=r E(r)
)

has vertex expansion�.

Lemma 5.15. LetG = (V,E), ∣V ∣ = n be a fixed undirected graph. IfG has vertex expansion
� > 0, for any non-empty setS ⊆ V and integerd ≥ 0, we have

∣Γd(S)∣ ≥

{

min
{

(n+ 1)/2, ∣S∣ ⋅ (1 + �)d
}

if ∣S∣ ≤ n/2

n− ∣V ∖ S∣/(1 + �)d if ∣S∣ > n/2.

Proof. The cased = 0 is trivial, the case∣S∣ ≤ n/2 follows directly from Definition 5.4. For
∣S∣ > n/2, let A = Γd(S) ∖ S and letB = V ∖ (S ∪ A). Note that any two nodesu ∈ S and
v ∈ B are at distance at leastd+1. It therefore holds thatΓd(B) ⊆ V ∖S. Consequently, we have
Γd(B) < n/2 and certainly also∣B∣ < n/2 and thus by Definition 5.4,Γd(B) ≥ ∣B∣(1 + �)d.
Together, this implies thatn− ∣Γd(S)∣ = ∣B∣ ≤ ∣V ∖ S∣/(1 + �)d as claimed.

Analogously toT -interval f -connected graphs, we can modify Proceduredisseminate to
require onlyO(1 + log1+�(n)/T ) phases. Again, Claim 5.8 still holds and the key is to restate
Claim 5.9, which now has to be adapted as follows.

21



Claim 5.16. We definei0 := ⌈log1+�((n+1)/2)/T ⌉. For each of theT smallest tokenst ∈ I and
phasesi, we have

∣Ki
t(0)∣ ≥

{

min
{

(n+ 1)/2, (1 + �)i⋅T
}

for i ≤ i0

n− (n−1)/2

(1+�)(i−i0)⋅T
for i > i0.

Proof. As in the other two cases, the proof is by induction oni, with the base case being trivial.
Again, for the step, as argued in the proof of Claim 5.9, at theend of phasei+ 1 we haveΓT (t) ⊆
Ki+1

t (0), whereΓT (t) := {u ∈ V ∣ tdisti(u, t) ≤ T}. The claim now immediately follows from
Lemma 5.15.

Corollary 5.17. If i ≥ 2i0 = O(1 + log1+�(n)), K
i
t(0) = V for each of theT smallest tokens

t ∈ I.

Consequently, in dynamic graphs withT -interval vertex expansion�, n-gossip can be solved
in O(n+ n log1+�(n)/T ) rounds.

5.5 Asynchronous Start

So far we assumed that all nodes begin executing the protocolin the same round. It is interesting to
consider the case where computation is initiated by some subset of nodes, while the rest are asleep.
We assume that sleeping nodes wake up upon receiving a message; however, since messages are
delivered at theendof each round, nodes that are woken up in roundr send their first message in
roundr+1. Thus, nodes have no way of determining whether or not their messages were received
by sleeping nodes in the current round.

Claim 5.18. Counting is impossible in 1-interval connected graphs withasynchronous start.

Proof. Suppose by way of contradiction thatA is a protocol for counting which requires at most
t(n) rounds in 1-interval connected graphs of sizen. Let n′ = max {t(n) + 1, n + 1}. We will
show that the protocol cannot distinguish a line of lengthn from a line of lengthn′.

Given a sequenceA = a1∘. . .∘am, let shift(A, r) denote the cyclic left-shift ofA in which the
first r symbols (r ≥ 0) are removed from the beginning of the sequence and appendedto the end.
Consider an execution in a dynamic line of lengthn′, where the line in roundr is composed of two
adjacent sectionsA ∘Br, whereA = 0 ∘ . . . ∘ (n− 1) remains static throughout the execution, and
B(r) = shift(n∘ . . .∘(n′−1), r) is left-shifted by one in every round. The computation is initiated
by node0 and all other nodes are initially asleep. We claim that the execution of the protocol in
the dynamic graphG = A ∘ B(r) is indistinguishable in the eyes of nodes0, . . . , n − 1 from an
execution of the protocol in the static line of lengthn (that is, the network comprising sectionA
alone). This is proven by induction on the round number, using the fact that throughout rounds
0, . . . , t(n) − 1 none of the nodes in sectionA ever receives a message from a node in sectionB:
although one node in sectionB is awakened in every round, this node is immediately removedand
attached at the end of sectionB, where it cannot communicate with the nodes in sectionA. Thus,
the protocol cannot distinguish the dynamic graphA from the dynamic graphA ∘ B(r), and it
produces the wrong output in one of the two graphs.

22



If 2-interval connectivity is assumed, it becomes possibleto solve gossip under asynchronous
start. We begin by defining a version of thek-committee andk-verification problems that explicitly
address sleeping nodes.

k-Commitee with Wakeup. In the modifiedk-committee problem we require, as before, that no
committee have more thank nodes. Sleeping nodes are not counted as belonging to any committee.
In addition, ifk ≥ n, we require all nodes to be awake and to be in the same committee.

k-Verification with Wakeup. In the modifiedk-verification problem, all awake nodes must
eventually output 1 iffk ≥ n. Sleeping nodes do not have to output anything. (Nodes that are
awakened during the execution are counted as awake and must output a correct value; however,
there is no requirement for the algorithm to wake up all the nodes.)

5.5.1 k-Verification with Wakeup

We modify thek-verification protocol as follows. First, each node that is awake at the beginning of
the computation maintains a round counterc which is initialized to 0 and incremented after every
round. Each message sent by the protocol carries the round counter of the sender, as well as a tag
indicating that it is ak-verification protocol message (so that sleeping nodes can tell which protocol
they need to join).

As before, each nodeu has a variablexu which is initially set to its committee ID. In every
round nodeu broadcasts the message⟨k-ver, cu, xu⟩. If u hears a different committee ID or the
special value⊥, it setsxu ← ⊥; if it hears a round counter greater than its own, it adopts the greater
value as its own round counter. When a nodeu is awakened by receiving a message carrying the
k-ver tag, it setsxu ← ⊥ and adopts the round counter from the message (if there is more than one
message, it uses the largest one).

All awake nodes execute the protocol until their round counter reaches2k. At that point they
halt and output1 iff x ∕= ⊥.

23



x ← committee

c ← 0
while c < 2k do

broadcast⟨k-verif, c, x⟩
receive⟨k-verif, c1, x1, ⟩, . . . ,⟨k-verif, cs, xs, ⟩ from neighbors
if xi ∕= x for some1 ≤ i ≤ s then

x← ⊥
end
c← max {c, c1, . . . , cs}+ 1

end
if x = ⊥ then

output 0
else

output 1
end
upon awakening by receipt of messages⟨k-verif, c1, x1, ⟩, . . . ,⟨k-verif, cs, xs, ⟩:

x← ⊥
c← max {c1, . . . , cs}+ 1

upon awakening spontaneously (by the adversary):
x← ⊥
c← 0

Algorithm 7 : k-verification protocol with wakeup

Claim 5.19. Algorithm 7 solves thek-verification with wakeup problem if all nodes start in a state
that represents a solution tok-committee with wakeup, and the graph is 2-interval connected.

Proof. The case wherek ≥ n is immediate: as in the synchronous start case, all nodes areawake
at the beginning of the protocol, and no node ever hears a committee ID different from its own.

Suppose thatk < n. Nodes that are awakened during the protocol set theirx variable to⊥, so
they will output 0; we only need to concern ourselves with nodes that are awake at the beginning
and have a committee ID. We show that the size of each committee shrinks by at least one node
every two rounds, so that at the end of the2k rounds, all nodes havex = ⊥.

Consider a cut between the nodes that belong to some committeeC and still havex = C, and
the rest of the nodes, which are either sleeping or havex ∕= C. From 2-interval connectivity, some
edge{u, v} in the cut exists for the next two rounds. Assume thatxu = C. If v is asleep in the
first round, wakes up when it receivesu’s message, and broadcasts⊥ in the second round. Ifv is
awake in the first round it broadcastsxu ∕= xv in the first round. In both cases nodeu will change
xu to⊥ by the end of the second round.

It remains to show that we can solvek-committee with asynchronous start. We can do this using
the same approach as before, with one minor modification: as with k-verification, we maintain a
round counterc at every node, and now each nodeu uses the pair⟨cu, u⟩ as its UID, instead ofu
alone. The pairs are ordered lexicographically, withlarger round counters winning out over smaller
ones; that is,⟨cu, u⟩ < ⟨cv, v⟩ iff cu > cv, or cu = cv andu < v.

24



When a node receives a larger round counter than its own in a message, it adopts that value as
its own round counter, and jumps to the appropriate part of the protocol (e.g., if the round counter
it receives isk+ 3, in the next round it will execute the fifth round of the invitation phase, because
it knows that the firstk − 1 rounds were taken up by the polling phase and the first four rounds of
the invitation phase have passed already). We use round counters so that nodes that awaken during
the execution of the protocol will know what the current round is, and to have the eventual leader
be one of the nodes that woke up first.

Claim 5.20. Algorithm 5, when run with round counters and using pairs of the form⟨cu, u⟩ instead
of UIDs, solves thek-committee with wakeup problem.

Proof. First consider the case wherek ≥ n, and letu be the node with the smallest UID among
the nodes that initiate the computation. The first polling phase executed byu lastsk ≥ n rounds,
during which all nodes receiveu’s polling message and forward it, setting their round counter to
matchu’s if it does not already. At the end ofu’s polling phase, all nodes are awake, all have the
same round counter asu, and all haveu as their leader. From this point on the execution proceeds
as in the case of synchronous wakeup.

Next suppose thatk < n. In this case we only need to show that no committee contains more
thank members. But this, as always, is guaranteed by the fact that each committee contains only
nodes invited by the node whose UID is the committee ID, and nonode ever invites more thank
nodes to join its committee.

When nodes execute the full counting algorithm with asynchronous wakeup, different parts of
the graph may be testing different values fork at the same time. However, the round counter serves
to bring any lagging nodes up-to-date. When some nodeu first reachesk ≥ n, even if other nodes
are still testing smaller values fork, the first polling phase ofu’s k-committee instance will reach
all nodes and cause them to joinu’s computation. (In fact they will joinu’s computation sooner,
because to reachk ≥ n it had already had to go through at leastn−1 rounds testing smaller values,
so all nodes will have seen its current round already.)

5.6 Randomized Approximate Counting

We next show that under certain restrictions on the adversary providing the sequence of graphs,
by using randomization, it is possible to obtain an approximation to the number of nodes in time
almost linear innwith high probability, even if the dynamic graph is only1-interval connected. The
techniques we use are based on a gossiping protocol described in [31]. We assume that the nodes
know some potentially loose upper boundN on n. When arguing about randomized algorithms,
we need to specify which random choices the dynamic graphG = (V,E) can depend on. We
assume an adversary that is oblivious to all random choices of the algorithm.

Definition 5.6 (Oblivious Adversary). Consider an execution of a randomized algorithmA. The
dynamic graphG = (V,E) provided by an oblivious adversary has to be independent of all random
choices ofA.

25



In the sequel, we show that in the case of an oblivious adversary, it is possible to use random-
ization to efficiently compute an arbitrarily good estimateof n. In particular, we show that for any
" > 0, it is possible to compute an(1+ ")-approximation ofn with high probability (inN ) in time

∙ O(n) when using messages of sizeO(logN ⋅ (log logN + log(1/"))/"2)

∙ O(n ⋅ (log logN +log(1/"))/"2) if the maximal message size is restricted toO(logN) bits.

For simplicity, we only describe the algorithm with slightly larger message sizes in detail and
merely sketch how to adapt the algorithm if messages are restricted toO(logN) bits. For parame-
ters" ∈ (0, 1/2) andc > 0, we define

ℓ := ⌈(2 + 2c) ⋅ 27 ln(N)/"2⌉. (1)

Initially, each nodev ∈ V , computesℓ independent exponential random variablesY
(v)
1 , . . . , Y

(v)
ℓ

with rate1. Following the aggregation scheme described in [31], we define

∀S ⊆ V : n̂(S) :=
ℓ

∑ℓ
i=1minv∈S Y

(v)
i

. (2)

If we choose a setS independently of the exponential random variables of the nodes,n̂(S) is a
good estimate for the size ofS as shown by the following lemma, which is proven in [31].

Lemma 5.21([31]). For everyS ⊆ V that is chosen independently of the random variablesY
(v)
i

for i ∈ [ℓ] andv ∈ V , we have

Pr

(

∣

∣n̂(S)− ∣S∣
∣

∣ >
2

3
⋅ "∣S∣

)

≤ 2e−"2ℓ/27.

Before describing the algorithm in detail, we give a brief overview. In order to obtain a good
estimate for the total number of nodesn, the objective of each node will be to computen̂(V ) and

thusminv∈V Y
(v)
i for eachi ∈ [ℓ]. In each round, every node broadcasts the minimalYi value it

has heard for everyi ∈ [ℓ]. If we assume that the sequence of graphs is chosen by an oblivious
adversary, for each nodev ∈ V and roundr > 0, Cv(r) is independent of all the exponential

random variablesY (u)
i chosen by nodesu ∈ V . Hence, as a consequence of Lemma 5.21,n̂(Cv(r))

is a good estimate of∣Cv(r)∣ for all r andv. Because∣Cv(r)∣ ≥ r for all r andv (Claim 5.2), each
node can stop forwarding minimalYi values as soon as the value ofn̂(Cv(r)) exceeds the round
number by a sufficient amount.

Executing the algorithm as described above would require the nodes to send exact values of
exponential random variables, i.e., real values that cannot a priori be sent using a bounded number
of bits. Therefore, each nodev ∈ V computes a rounded valuẽY (v)

i of Y (v)
i for eachi ∈ [ℓ] as

follows.

Ỹ
(v)
i := min

{

1

4ℓN1+c
,max

{

ln(4ℓN1+c),
(

1 +
"

4

)⌊log1+"/4(Y
(v)
i )⌋

}}

. (3)

26



Hence,Y (v)
i is rounded to the next smaller integer power of1 + "/4. Further, we restrict̃Y (v)

i
to be within the range[1/(4ℓN1+c), ln(4ℓN1+c)]. We will show that with high probability, all

variablesY (v)
i will be in this range and thus restricting the range only has an effect with negligible

probability. AsỸ (v)
i is an integer power of1 + "/4, it can be stored usingO(log log1+"/4(ℓN)) =

O(log logN + log(1/")) bits. The details of the algorithm are given by Algorithm 8.

Z(v) ← (Ỹ
(v)
1 , . . . , Ỹ

(v)
ℓ )

for r = 1, 2, . . . do
broadcastZ(v)

receiveZ(v1), . . . , Z(vs) from neighbors
for i = 1, . . . , ℓ do

Z
(v)
i ← min

{

Z
(v)
i , Z

(v1)
i , . . . , Z

(vs)
i

}

end

ñv(r)← ℓ/
∑ℓ

i=1 Z
(v)
i

if (1− ")r > ñv(r) then terminate and output̃nv(r)
end

Algorithm 8 : Randomized approximate counting in linear time, code for nodev

Theorem 5.22. For " ∈ (0, 1/2) and c > 0, with probability at least1 − 1/N c, every node of
Algorithm 8 computes the same valueñv(r) =: ñ. Further ∣ñ− n∣ ≤ "n.

Proof. LetA be the event that the exponential random variablesY
(v)
i for all i ∈ [ℓ] andv ∈ V are

within the range[1/(4ℓN1+c), ln(4ℓN1+c)]. For eachY (v)
i , we have

Pr

(

Y
(v)
i <

1

4ℓN1+c

)

= 1− e−
1

4ℓN1+c <
1

4ℓN1+c

and

Pr
(

Y
(v)
i > ln(4ℓN1+c)

)

= eln(4ℓN
1+c) =

1

4ℓN1+c
.

As the number of random variablesY (v)
i is ℓn, we obtainPr(A) ≥ 1−1/(2N c) by a union bound.

Consider the state of some nodev ∈ V afterr > 0 rounds. Because all minimalZi values are
always forwarded, for alli ∈ [ℓ], it holds thatZ(v)

i = minu∈Cv(r) Ỹ
(u)
i . In case of the eventA, for

all i andv, we have

Ỹ
(v)
i ≤ Y

(v)
i ≤

(

1 +
"

4

)

⋅ Ỹ
(v)
i and thus ñv(r) ≥ n̂(Cv(r)) ≥

ñv(r)

1 + "/4
. (4)

27



We thus get

Pr
((
∣

∣ñv(r)− ∣Cv(r)∣
∣

∣ > "∣Cv(r)∣
)

∩ A
)

("≤1/2)

≤ Pr

((

∣

∣ñv(r)− ∣Cv(r)∣
∣

∣−
"

4
∣Cv(r)∣ >

(

1 +
"

4

) 2

3
"∣Cv(r)∣

)

∩ A

)

(4)
≤ Pr

((

(

1 +
"

4

)

∣

∣n̂(Cv(r))− ∣Cv(r)∣
∣

∣ >
(

1 +
"

4

) 2

3
"∣Cv(r)∣

)

∩A

)

≤ Pr

(

∣

∣ñ(Cv(r))− ∣Cv(r)∣
∣

∣ >
2

3
"∣Cv(r)∣

)

(Lemma 5.21)
≤ 2e−"2ℓ/27 ≤ 2e−2−(2+c) lnN) <

1

2N2+c
.

In order to be able to apply Lemma 5.21, we use that with an oblivious adversary, for allr andv,
Cv(r) is independent of all random variablesY (u)

i . By applying a union bound, we obtain that with
probability at least1− 1/(2N c) eventA occurs or

∀v ∈ V,∀r > 0 :
∣

∣ñv(r)− ∣Cv(r)∣
∣

∣ ≤ " ⋅ ∣Cv(r)∣. (5)

Note thatCv(r) = V for all r ≥ n− 1 and that the union bound therefore is overn(n− 1) < N2

events. If (5) holds, we have

ñv(r) ≥ (1− ") ⋅ ∣Cv(r)∣ ≥ (1− ") ⋅ r

for all r ≤ n−1 andv ∈ V . Therefore, in this case no node terminates before roundn−1. Hence,
all nodes get the same final valueñ for ñv(r) and by (5), it holds that∣ñ − n∣ ≤ "n as required.
BecausePr(A) < 1/(2N c), (5) holds with probability at least1 − 1/N c which completes the
proof.

6 Lower Bounds for Token-Forwarding Algorithms

A token-forwarding algorithm for solving the gossip problem is an algorithm that does not manip-
ulate the tokens in any way except storing and forwarding them. Specifically, the algorithm must
satisfy the following conditions. LetsGu (r) denote the message broadcast by nodeu in roundr,
when the algorithm is executed in dynamic graphG = (V,E).

1. sGu (r) ∈ T ∪ {⊥} for all roundr and nodesu.

2. Nodes can only learn new tokens by receiving them, either in their input or in a message from
another node. Formally, letRG

u (r) :=
{

sGv (r) ∣ {u, v} ∈ E(r)
}

denote the set of messages
u receives in roundr, and let

AG
u (r) := I(u) ∪

(

r−1
∪

r′=0

RG
u (r

′)

)

.

We require the following.

28



∙ sGu (r) ∈ AG
u (r) ∪ {⊥} for all nodesu and roundsr, and

∙ If nodeu terminates in roundr, thenAG
u (r) = I.

We omit the superscriptG when it is obvious from the context.

6.1 Ω(n log k) Lower Bound for Centralized k-Gossip in 1-Interval Connected
Graphs

For this lower bound we assume that in each roundr, some central authority provides each nodeu
with a valuetu(r) ∈ Au(r) to broadcast in that round. The centralized algorithm can see the state
and history of the entire network, but it does not know which edges will be scheduled in the current
round. Centralized algorithms are more powerful than distributed ones, since they have access to
more information. To simplify, we begin with each of thek tokens known to exactly one node.
This restriction is not essential. The lower bound holds as long as there is constant fraction of the
nodes that still need to learnk� tokens for some positive constant�.

We observe that while the nodes only know a small number of tokens, it is easy for the algorithm
to make progress; for example, in the first round of the algorithm at leastk nodes learn a new token,
because connectivity guarantees thatk nodes receive a token that was not in their input. As nodes
learn more tokens, it becomes harder for the algorithm to provide them with tokens they do not
already know. Accordingly, our strategy is to charge a cost of 1/(k − i) for thei-th token learned
by each node: the first token each node learns comes at a cheap1/k, and the last token learned
costs dearly (1). Formally, the potential of the system in roundr is given by

Φ(r) :=
∑

u∈V

∣Au(r)∣−1
∑

i=0

1

k − i
.

In the first round we haveΦ(0) = 1, becausek nodes know one token each. If the algorithm
terminates in roundr then we must haveΦ(r) = n ⋅Hk = Θ(n log k), because alln nodes must
know all k tokens. We construct an execution in which the potential increase is bounded by a
constant in every round; this gives us anΩ(n log k) bound on the number of rounds required.

Theorem 6.1. Any centralized algorithm fork-gossip in 1-interval connected graphs requires
Ω(n log k) rounds to complete in the worst case.

Proof. We construct the communication graph for each roundr in three stages.

Stage I: Adding the free edges. An edge{u, v} is said to befree if tu(r) ∈ Av(r) andtv(r) ∈
Au(r); that is, if we connectu andv, neither node learns anything new. LetF (r) denote the set
of free edges in roundr; we add all of them to the graph. LetC1, . . . , Cℓ denote the connected
components of the graph(V, F (r)). Observe that any two nodesu andv in different components
must send different values, otherwise we would clearly havetu(r) ∈ Av(r) andtv(r) ∈ Au(r) and
u andv would be in the same component.

We choose representativesv1 ∈ C1, . . . , vℓ ∈ Cℓ from each component arbitrarily. Our task
now is to construct a connected subgraph overv1, . . . , vℓ and pay only a constant cost. We assume

29



thatℓ ≥ 6, otherwise we can connect the nodes arbitrarily for a constant cost. Letmissing(u) :=
k − ∣Au(r)∣ denote the number of tokens nodeu does not know at the beginning of roundr.

Stage II: We split the nodes into two setsTop, Bottom according to the number of tokens
they know, with nodes that know many tokens “on top”:Top := {vi ∣missing(vi) ≤ ℓ/6} and
consequentlyBottom := {vi ∣missing(vi) > ℓ/6}.

Since top nodes know many tokens, connecting to them could beexpensive. We will choose
our edges in such a way that no top node will learn a new token, and each bottom node will learn
at most three new tokens. We begin by bounding the size ofTop.

To that end, notice that
∑

u∈Top missing(u) ≥
(∣Top∣

2

)

: for all i, j such thatu, v ∈ Top, either
tu(r) ∕∈ Av(r) or tv(r) ∕∈ Au(r), otherwise{u, v} would be a free edge andu, v would be in
the same component; therefore each pairu, v ∈ Top contributes at least one missing token to the
sum. On the other hand, since each node inTop is missing at mostℓ/6 tokens, it follows that
∑

u∈Top missing(u) ≤ ∣Top∣ ⋅ (ℓ/6). Putting the two facts together we obtain∣Top∣ ≤ ℓ/3 + 1,
and consequently also∣Bottom ∣ = ℓ− ∣Top∣ ≥ 2ℓ/3 − 1.

Stage III: Connecting the nodes. The bottom nodes are relatively cheap to connect to, so we
connect them in an arbitrary line. In addition we want to connect each top node to a bottom
node, such that no top node learns something new, and no bottom node is connected to more than
one top node (see Fig. 1. That is, we are looking for a matchingusing only the edgesP :=
{{u, v} ∣ u ∈ Top, v ∈ Bottom andtv ∈ Au(r)}.

Since each top node is missing at mostℓ/6 tokens, and each bottom node broadcasts a different
value, for each top node there are at least∣Bottom ∣ − ℓ/6 edges inP to choose from. But since
we assumeℓ ≥ 6, ∣Top∣ ≤ ℓ/3 + 1 ≤ ∣Bottom ∣ − ℓ/6; thus, each top node can be connected to a
different bottom node usingP -edges.

What is the total cost of the graph? Top nodes learn no tokens,and bottom nodes learn at most
two tokens from other bottom nodes and at most one token from atop node. Thus, the total cost is
bounded by

∑

u∈Bottom

min{3,missing(u)}
∑

i=1

1

missing(u)− (i− 1)
≤ ∣Bottom ∣ ⋅

6
ℓ
6

≤ ℓ ⋅
36

ℓ
= 36.

6.2 Ω(n + n2/T ) lower bound against knowledge-based token-forwarding algo-
rithms

In this section we describe a lower bound against a restricted class of randomized token-forwarding
algorithms. We represent randomness as a random binary string provided to each node at the
beginning of the execution. In every round, the nodes may consume a finite number of random
bits, and use them to determine their message for that round and their next state. In every execution
nodes only use finitely many coin tosses; we use an infinite string when modelling the algorithm in
order to avoid

30



vi1 vi2 vi3 vi4

vi5 vi6 vi7 vi8 vi1 vi2

missing≤ ℓ/6 tokens

missing> ℓ/6 tokens

Top

Bottom

Figure 1: Illustration for the proof of theΩ(n log k) lower bound

A token-forwarding algorithm is said to beknowledge-basedif it can be represented as a col-
lection of functions{fu ∣ u ∈ U} ⊆ P (T )∗ × {0, 1}∗ → D(T ), such that in every roundr, if R
is the sequence of coin-tosses for nodeu up to roundr (inclusive), the distribution according to
which nodeu decides which token to broadcast is given byfu(Au(0) . . . , Au(r), R).

We say that two dynamic graphsG = (V,E) andG′ = (V ′, E′) areequal up to roundr if
V = V ′ and for allr′ < r we haveE(r′) = E′(r′). LetDu(r) denote the probability distribution
for nodeu in roundr. Knowledge-based algorithms have the following property.

Lemma 6.2. LetG,G′ be two dynamic graphs that are equal up to roundr, and let(V, I) be an
instance of gossip. Ifu is a node such thatAG

u (r) = I, then for any roundr′ ≥ 0 and string
R ∈ {0, 1}! we haveDG

u (r
′, R) = DG′

u (r′, R).

Proof. SinceG andG′ are equal up to roundr, the sequencesAG
u (0) . . . A

G
u (r) andAG′

u (0) . . . AG′

u (r)
are equal, and in particularAG

u (r) = AG′

u (r) = I.
By definition, for all r′ ≥ r we haveAG

u (r) ⊆ AG
u (r

′) and AG′

u (r) ⊆ AG′

u (r′); there-
fore, AG

u (r
′) = AG′

u (r′) = I for all r′ ≥ r. Consequently, for allr′ ≥ 0, the sequences
AG

u (0) . . . A
G
u (r

′) andAG′

u (0) . . . AG′

u (r′) are equal, and the claim follows.

Theorem 6.3. Any knowledge-based token-forwarding algorithm fork-input gossip inT -interval
connected graphs overn nodes requiresΩ(n+ nk/T ) rounds to succeed with probability at least
1/2. Further, if ∣U∣ = Ω(n2k/T ), then for sufficiently largen, deterministic algorithms require
Ω(n+ nk/T ) rounds even when each node begins with at most one token.

Proof. A lower bound ofΩ(n) is demonstrated trivially in a static line network where at least one
token starts at one end of the line. In the sequel we assume that k > 1.

31



Let {fu} be an knowledge-based token-forwarding algorithm fork-gossip. We use the UID
space as the token domain, and choose nodesu1, . . . , un: for randomized algorithms we choose
the UIDs arbitrarily, but for deterministic algorithms we must choose them carefully (see the last
part of the proof). If the algorithm is randomized, we choosean input assignment where some
nodeu1 starts with allk tokens, and all other nodesui ∕= u1 start with a setI(ui) ⊆ {u1, ui}. For
deterministic algorithms, we later show that we can reach this state from some input assignment
where each node starts with at most one token. For now let us suppose that we have reached some
roundr0 in whichAu1(r0) = I and for allui ∕= u1 we haveAui ⊆ {u1, ui}. In this starting state
there aren− 2 nodes that do not know each tokent ∕= u1. We abuse notation by usingI to denote
the set of all tokensu1, . . . , uk as well as the input assignmentI(ui) to each nodeui.

Let r1 := r0 + (n− 2)(k− 2)/(4T ). For a tokent ∈ I, letE [#t] denote the expected number
of times tokent is broadcast byu between roundsr0 andr1 (exclusive). We have

∑

t∈I

E [#t] =
∑

t∈I

r1−1
∑

r=r0+1

Pr [t is broadcast in roundr] = r1 − r0 − 2 < (n− 2)(k − 2)/(4T ).

Thus, there are at least two tokenst ∕= t′ such thatE [#t] ,E [#t′] < (n − 2)/(4T ). Assume
w.l.o.g. thatt ∕= u1. From Markov’s inequality, nodeu1 broadcastst less than(n− 2)/(2T ) times
with probability at least1/2 in any execution fragment starting from roundr0 and ending before
round r1, regardless of the dynamic graph we choose. The idea in the proof is to useu1 as a
buffer between the nodes that have already learnedt and those that have not; sinceu1 broadcastst
infrequently with high probability, in this manner we can limit the number of nodes that learnt.

We divide the rounds betweenr0 andr1 into segments�1, . . . , �m. The graph remains static
during each segment, but changes between segments. For eachsegment�i we define two sets of
nodes,Ci andDi, whereCi ∩Di = {u1}. The nodes inDi are “contaminated nodes” that might
know tokent at the beginning of the segment; we connect them in a clique. The nodes inCi are
“clean”: initially, except foru1, these nodes do not knowt (some of them might learnt during
the segment). The only way the nodes inCi can learnt is if u1 broadcasts it. In the first segment
Ci is arranged in a line withu1 at one end; in subsequent segments we “close”Ci to form a ring.
Initially D1 = {u1, t} andC1 = V ∖ {t} (recall thatt, in addition to being a token, is also the UID
of a node).

There are two types of segments in our construction.

∙ Quietsegments are ones in whichu1 does not broadcastt until the last round in the segment.
In the last round of a quiet segment,u1 broadcastst, and some nodes in the ring become
contaminated. The first segment�1 is a quiet segment.

∙ After every quiet segment there follows one or moreactivesegments, in which we clean up
the ring and move contaminated nodes fromCi to Di. We have to do this in a way that
preservesT -interval connectivity. Each active segment is triggered by u1 broadcastingt in
the previous segment; if in some active segmentu1 does not broadcastt, the next segment
will be quiet.

An active segment lasts exactlyT rounds, and a quiet segment lasts until the first timeu1 broadcasts
t (including that round).

32



Next we define in detail the construction of the communication graph in each segment. We
maintain the following property:

(★) At the beginning of each active segment�i, of all the nodes inCi, only u1 and at mostT
nodes in theT -neighborhood ofu1 in the ring know tokent. Further, all the nodes that know
t are on the same side ofu1. We refer to the side ofu1 where these nodes are located as the
contaminated side ofu1.

(★★) At the beginning of each quiet segment�i, nodeu1 is the only node in the ring that knows
tokent.

Let v1, . . . , vn−2 be some ordering of the nodes inC1 ∖ {u1} (nodes that initially do not know
t). In each segmenti the nodes inCi will be some contiguous subsetvLi , . . . , vRi , whereLi+1 ≥
Li ≥ 1 andRi+1 ≤ Ri ≤ n − 2 for all i. We placeu1 betweenvLi andvRi in the ring. Formally,
the edges in any roundr ∈ �i wherei > 1 are given by

E(r) := D
(2)
i ∪ {{vj, vj+1} ∣ Li ≤ j < Ri} ∪ {{u1, vLi} , {u1, vRi}} .

In the first segment, the edges areE(r) := D
(2)
1 ∪ {{vj , vj1} ∣ 1 ≤ j < n− 2} ∪ {{u1, v1}} (we

do not close the ring; this is to ensure that (★) holds for the first active segment).
If �i is a quiet segment, then we defineCi+1 := Ci (and consequentlyDi+1 := Di); that is,

the network does not change between�i and�i+1 (except possibly for the closing of the ring after
the first segment). However, if�i is an active session, thenu1 has some neighbors in the ring that
knowst, and they might spreadt to other nodes even whenu1 does not broadcastt. We divide the
nodes inCi ∖ {u1} into three subsets.

∙ Thered nodesredi comprise the2T nodes adjacent tou1 on the contaminated side. The first
T of these (the ones closer tou1) may knowt at the beginning of the segment; the otherT
may become contaminated if some of the firstT broadcast tokent. To be safe, we treat all
red nodes as though they knowt by the end of the session.

∙ Theyellow nodesyellowi comprise theT nodes adjacent tou1 on the uncontaminated side.
These nodes may learnt during the segment, but only ifu1 broadcasts it.

∙ Thegreen nodesgreeni are all the other nodes in the ring. These nodes cannot becomecon-
taminated during the segment, because their distance from any node that knowst is greater
thanT .

Our cleanup between segments�i and�i+1 consists of moving all the red nodes intoDi+1. For-
mally, if vLi ∈ redi, then we definevLi+1 := vLi +2T andvRi+1 := vRi ; otherwise, ifvRi ∈ redi,
then we definevRi+1 := vRi + 2T andvLi+1 := vLi . This satisfies (★) and (★★): if u1 does not
broadcastt during segment�i, then only the red nodes can knowt at the end, and since we re-
moved them from the ring, at the beginning of�i+1 no node knowst exceptu1. The next segment
will be quiet. Otherwise, ifu1 does broadcastt during�i, then at the beginning of the next session
(which is active) only the yellow nodesyellowi can knowt. These nodes then become red nodes in
segment�i+1, and there areT of them, as required.

33



The cleanup step preservesT -interval connectivity: assume thatredi = {vLi , . . . , vLi+2T } (the
other case is similar). Then the linevLi+2T , vLi+2T−1, . . . , u1, vRi , vRi+1, . . . , vLi+2T−1 exists
throughout both segment�i and segment�i+1: in segment�i it exists as part of the ring, and
in segment�i+1, after we moved the red nodes into the cliqueDi+1, the first part of the line
vLi+2T , vLi+2T−1, . . . , u1 exists in the clique and the second partu1, vRi , vRi+1, . . . , vLi+2T−1

exists in the ring. The nodes inDi are all connected to each other in both segments; thus, thereis a
static connected graph that persists throughout both segments�i, �i+1, and in particular it exists in
anyT rounds that start in�i. (Note that�i+1 may be quiet, and in this case it can be shorter thanT
rounds. But in this case it will be followed by an active segment which has exactly the same edges
and lastsT rounds.)

Notice that the number of uncontaminated nodes at the beginning of every active segment is at
most2T less than in the previous active session. Therefore the total number of nodes that knowt
by roundr1 is at most2T times the number of active sessions, and this in turn is bounded by2T
times the number of rounds in whichu1 broadcastst. Sinceu1 broadcastst less than(n−2)/(2T )
times with probability at least1/2, the algorithm is not finished by roundr1 with probability at
least1/2.

Deterministic algorithms. If the algorithm is deterministic, we first show that there exists an
input assignment in which each node begins with at most one token, from which either

1. the algorithm runs forΩ(nk/T ) rounds, or

2. we reach a roundr0 in which some nodeu1 hasAu1(r0) = I and for all i ∕= 1 we have
Aui(r0) ⊆ {u1, ui}.

In the case of (2), we then continue with the same proof as for the input assignment where some
node starts with all tokens and the rest of the nodes have no tokens (see above). Since we are free
to choose the input assignment, we restrict attention to instances in which the inputs tok nodes are
their own UIDs, and the inputs to the other tokens are∅.

For deterministic algorithms the functionfu representing nodeu’s behavior must return a distri-
bution in which one token has probability 1. We abuse notation slightly by usingfu(Au(0) . . . , Au(r−
1)) to denote this token.

We say that a processu ∈ U fires in roundr if when processu receives{u} as its input and
hears nothing in the firstr − 1 rounds, it will stay silent in those rounds and then spontaneously
broadcast its token in roundr. Formally, processu fires in roundr if

1. For allr′ < r we havefu({⊥}
r′) = ⊥, and

2. fu({u}
r) = u.

If processu does not fire in any roundr′ ≤ r, we say thatu is passive until roundr. (Note that
nodes that receive no tokens in their input have no choice butto broadcast nothing until they receive
a token from someone.)

Since∣U∣ = Ω(n2k/T ), there exist constantsc, n0 such that for alln ≥ n0 we have∣U∣ ≥
cn2k + n− 1. Letn ≥ n0. We divide into two cases.

34



Case I. There existu1, . . . , un ∈ U that are all passive until roundcnk/T . In this case we
construct the static clique overu1, . . . , un and let the algorithm run. During the firstcnk/T
rounds, all nodes send only⊥, and no node learns new tokens. Consequently all nodesui have
Aui(nk/T ) = in(ui) ∕= I, and the algorithm cannot terminate by roundcnk/T .

Case II. All but n− 1 processes fire no later than roundcnk/T .
Since∣U∣ ≥ c(n2k/T+n−1), by the pigeonhole principle there must exist a roundr0 ≤ cnk/T

such that at leastn processes fire in roundr0. Let u1, . . . , un ben such processes. We choose the
instance where each nodeui receives as input{ui} if i ≤ k, or ∅ if i > k.

Let S be the static star withu1 at the center:S = (V,ES), whereES(r) = {{u1, ui} ∣ i > 1}
for all r. Because all nodes fire in roundr0, when the algorithm is executed inS, the network is
silent until roundr0. In roundr0 all nodes that have a token broadcast it. Following roundr0 we
haveAu1(r0 + 1) = I, and for alli > 1, Aui(r0 +1) = I(ui)∪ {u1} ⊆ {u1, ui}. This is the state
from which we start the main body of the proof above.

35



t u1 v1 v2 vn−3 vn−2

(a) The network at the beginning of the execution. Nodes
that may know tokent are indicated in solid blue.

t

v2T+1

v2T

v2T−1

v2

vR = v1

u1
vL = vn−1

vn−T

(b) The network at the beginning of the first phase: the
line is closed to form a ring. The dotted line indicates
the edge we will add at the end of the phase to re-close
the ring after we remove the red nodes; double lines
indicate stable edges, along whichT -interval connec-
tivity is preserved between phases.

u1

v3T
v2T+2

v2T+1

vn−1

vn−T

(c) The network after the end of the first phase: the
red nodes are removed from the ring and placed in
the clique, and the ring is repaired by connectingu1

to v2T+1. Double lines indicate stable edges along
whichT -interval connectivity was preserved in the
transition between the phases.

u1

v3T
v2T+2

v2T+1

vn−1

vn−T

(d) If u1 broadcastt at any point during the first
phase, we begin a new phase. The nodes that
were yellow in the first phase become red, and
the “clean” nodes onu1’s other side become yel-
low. Double lines indicate edges that will be stable
through the next two phases.

Figure 2: Illustrations for the proof of theΩ(n+ nk/T ) lower bound,T = 3

36



7 Conclusion

In this work we consider a model for dynamic networks which makes very few assumptions about
the network. The model can serve as an abstraction for wireless or mobile networks, to reason
about the fundamental unpredictability of communication in this type of system. We do not restrict
the mobility of the nodes except for retaining connectivity, and we do not assume that geographical
information or neighbor discovery are available to the nodes. Nevertheless, we show that it is
possible to efficiently compute any computable function, taking advantage of stability if it exists in
the network.

We believe that theT -interval connectivity property provides a natural and general way to
reason about dynamic networks. It is easy to see that withoutany type of connectivity assumption
no non-trivial function can be computed, except possibly inthe sense of computation in the limit (as
in [3]). However, our connectivity assumption is easily weakened to only require connectivity once
every constant number of rounds, or to only require eventualconnectivity in the style of Claim 5.1,
with a known bound on the number of rounds.

There are many open problems related to the model. We hope to strengthen our lower bounds
for gossip and obtain anΩ(nk/T ) general lower bound, and to determine whether counting is in
fact as hard as gossip. Other natural problems, such as consensus and leader election, can be solved
in linear time once a (possibly approximate) count is known,but can they be solved more quickly
without first counting? Is it possible to compute an approximate upper bound for the size of the
network in less than the time required for counting exactly?These and other questions remain
intriguing open problems.

References

[1] Y. Afek, B. Awerbuch, and E. Gafni. Applying static network protocols to dynamic networks. InProc.
of 28th Symp. on Foundations of Computer Science (FOCS), pages 358–370, 1987.

[2] Y. Afek and D. Hendler. On the complexity of gloabl computation in the presence of link failures: The
general case.Distributed Computing, 8(3):115–120, 1995.

[3] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, and R. Peralta. Computation in networks of passively
mobile finite-state sensors.Distributed Computing, 18(4):235–253, 2006.

[4] J. Aspnes and E. Ruppert. An introduction to population protocols. In B. Garbinato, H. Miranda,
and L. Rodrigues, editors,Middleware for Network Eccentric and Mobile Applications, pages 97–120.
Springer-Verlag, 2009.

[5] H. Attiya and J. Welch.Distributed Computing: Fundamentals, Simulations, and Advanced Topics.
John Wiley and Sons, Inc., 2nd edition, 2004.

[6] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. E. Saks. Adapting to asynchronous dynamic networks.
In Proc. of the 24th Annual ACM Symposium on Theory of Computing(STOC), pages 557–570, 1992.

[7] B. Awerbuch and M. Sipser. Dynamic networks are as fast asstatic networks. InProc. of 29th Symp.
on Foundations of Computer Science (FOCS), pages 206–220, 1988.

37



[8] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time complexity of broadcast in radio networks: An
exponential gap between determinism and randomization.Journal of Computer and System Sciences
(JCSS), 45(1):104–126, 1992.

[9] H. Baumann, P. Crescenzi, and P. Fraigniaud. Parsimonious flooding in dynamic graphs. InProc. of
28th Symp. on Principles of Distributed Computing (PODC), pages 260–269, 2009.

[10] A. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. Flooding time in edge-markovian
dynamic graphs. InProc. of 27th Symp. on Principles of Distributed Computing (PODC), pages 213–
222, 2008.

[11] A. E. G. Clementi, A. Monti, and R. Silvestri. Distributed multi-broadcast in unknown radio networks.
In Proc. of 20th Symp. on Principles of Distributed Computing (PODC), pages 255–263, 2001.

[12] A. Cornejo, F. Kuhn, R. Ley-Wild, and N. A. Lynch. Keeping mobile robot swarms connected. In
Proc. of 23rd Conference on Distributed Computing (DISC), pages 496–511, 2009.

[13] S. Dolev.Self-Stabilization. MIT Press, 2000.

[14] E. Gafni and D. Bertsekas. Distributed algorithms for generating loop-free routes in networks with
frequently changing topology.IEEE Transactions on Communication, 29(1):11–18, 1981.

[15] T. P. Hayes, J. Saia, and A. Trehan. The forgiving graph:A distributed data structure for low stretch
under adversarial attack. InProc. of 28th Symp. on Principles of Distributed Computing (PODC),
pages 121–130, 2009.

[16] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. Asurvey of gossiping and broadcasting in
communication networks.Networks, 18:319–349, 1988.

[17] J. Hromkovič, R. Klasing, B. Monien, and R. Peine. Dissemination of information in interconnection
networks (broadcasting & gossiping).Combinatorial Network Theory, pages 125–212, 1996.

[18] R. Ingram, P. Shields, J. E. Walter, and J. L. Welch. An asynchronous leader election algorithm for
dynamic networks. InIPDPS, pages 1–12. IEEE, 2009.

[19] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking.Randomized rumor spreading. InProc. of
41st Symp. on Foundations of Computer Science (FOCS), pages 565–574, 2000.

[20] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. InProc. of
44th Symp. on Foundations of Computer Science (FOCS), pages 482–491, 2003.

[21] D. Kempe and J. Kleinberg. Protocols and impossibilityresults for gossip-based communication mech-
anisms. InProc. of 43rd Symp. on Foundations of Computer Science (FOCS), pages 471–480, 2002.

[22] A. Korman. Improved compact routing schemes for dynamic trees. InProc. of 27th Symp. on Principles
of Distributed Computing (PODC), pages 185–194, 2008.

[23] D. Kowalski and A. Pelc. Broadcasting in undirected ad hoc radio networks. InProc. of 22nd Symp.
on Principles of Distributed Computing (PODC), pages 73–82, 2003.

[24] D. Krizanc, F. Luccio, and R. Raman. Compact routing schemes for dynamic ring networks.Theory
of Computing Systems, 37:585–607, 2004.

[25] F. Kuhn, T. Locher, and R. Oshman. Gradient clock synchronization in dynamic networks. In F. M.
auf der Heide and M. A. Bender, editors,SPAA, pages 270–279. ACM, 2009.

[26] F. Kuhn, N. A. Lynch, and C. C. Newport. The abstract MAC layer. InProc. of 23rd Conference on
Distributed Computing (DISC), pages 48–62, 2009.

38



[27] F. Kuhn, S. Schmid, and R. Wattenhofer. A self-repairing peer-to-peer system resilient to dynamic
adversarial churn. InProc. of 4th Int. Workshop on Peer-To-Peer Systems (IPTPS), 2005.

[28] X. Li, M. J, and C. Plaxton. Active and Concurrent Topology Maintenance. InProc. of 18th Conference
on Distributed Computing (DISC), 2004.

[29] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[30] N. Malpani, J. L. Welch, and N. Vaidya. Leader election algorithms for mobile ad hoc networks. In
DIALM ’00: Proceedings of the 4th international workshop onDiscrete algorithms and methods for
mobile computing and communications, pages 96–103, New York, NY, USA, 2000. ACM.

[31] D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. InProc. of 25th Symp. on
Principles of Distributed Computing (PODC), pages 113–122, 2006.

[32] R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. InProc. of 9th
Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), pages 104–110, 2005.

[33] R. Olfati-Saber and R. M. Murray. Consensus problems innetworks of agents with switching topology
and time-delays.IEEE Transactions on Automatic Control, 49(9):1520–1533, 2004.

[34] W. Ren and R. W. Beard. Consensus of information under dynamically changing interaction topologies.
In Proc. of American Control Conference, pages 4939–4944, 2004.

[35] D. M. Topkis. Concurrent broadcast for information dissemination.IEEE Transactions on Software
Engineering, SE-11(10), 1985.

[36] J. E. Walter, J. L. Welch, and N. H. Vaidya. A mutual exclusion algorithm for ad hoc mobile networks.
Wireless Networks, 7(6):585–600, 2001.

39


