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Abstract
The dynamics of large networks is an important and fasci-
nating problem. Key examples are the Internet, social net-
works, and the human brain. In this paper we consider a
model introduced by DeVille and Peskin [6] for a stochastic
pulse-coupled neural network.

The key feature and novelty in their approach is that
they describe the interactions of a neuronal system as a
discrete-state stochastic dynamical network. This idealiza-
tion has two benefits: it captures essential features of neu-
ronal behavior, and it allows the study of spontaneous syn-
chronization, an important phenomenon in neuronal net-
works that is well-studied but unfortunately far from being
well-understood. In synchronous behavior the firing of one
neuron leads to the firing of other neurons, which in turn
may set off a chain reaction that often involves a substantial
proportion of the neurons.

In this paper we rigorously analyze their model. In par-

ticular, by applying methods and tools that are frequently

used in theoretical computer science, we provide a very pre-

cise picture of the dynamics and the evolution of the given

system. In particular, we obtain insights into the coexis-

tence of synchronous and asynchronous behavior and the

conditions that trigger a “spontaneous” transition from one

state to another.

1 Introduction

Mathematical models in biology and other fields have
several different uses. On the one hand, the goal is
to make the model as realistic as possible, so that it
can be used as an alternative to the actual system.
Typically, such models are very complicated and include
many relevant details, which makes a rigorous analysis
of them difficult, if not impossible. On the other hand,
a model can be designed to isolate just a particular
mechanism. In this case, certain features of the real

system are omitted, and the aim is to investigate how
a subset of the actual ingredients produces a specific
physiological phenomenon. A benefit of such idealized
models is that it might be possible to analyze them
rigorously, thus obtaining more insights into the actual
behavior of the real system. This is the main topic of
our work. In particular, we consider a model introduced
by DeVille and Peskin [6] for a stochastic pulse-coupled
neural network.

Understanding the human brain is a fascinating
topic, as it is difficult to tackle with our current level of
knowledge. Almost all aspects provide more questions
than answers. This reaches from understanding func-
tionality from a high level, down to developing mod-
els describing specific phenomena observed by neurosci-
entists. Concerning the latter, it is for example well-
known, see e.g. [3], that dynamic and in particular os-
cillatory behavior of large collections of neurons plays a
fundamental role in the functionality of our brain. How-
ever, the details and, more importantly, their functional
consequences are still far from being well-understood.
Over the last decades this topic was intensively studied,
see e.g. [2, 5, 7, 11] for some recent work, and many
references therein.

In this work we consider a discrete-state neural
model introduced recently by DeVille and Peskin [6].
The key result and important insight of this work is
that they show experimentally and by some estimates
for the expected behavior of the model that the net-
work can exhibit both synchronous and asynchronous
behavior, a property which is omnipresent in the hu-
man brain [3]. Here, synchrony is achieved if there are
massive interactions between the neurons. In particu-
lar, when a neuron accumulates a sufficiently high in-
ternal potential, it fires, which increases the potential
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of neighboring neurons. Some of those could now fire
as well, which might start an immense chain reaction,
a so-called “big burst”. Alternatively, the network is
in an asynchronous state when there are only few in-
teractions between the neurons, and only small bursts
occur. DeVille and Peskin also exhibit ranges for the
parameters of the model for which the network switches
spontaneously between synchrony and asynchrony.

The precise setting in [6] is the following. The sys-
tem consists of n identical neurons. Each neuron has k
levels, which we denote by 0, . . . , k−1. Moreover, there
is an auxiliary level k, which is useful for describing
neurons that are currently firing. The system has two
overall modes, which are called the “burst” mode and
the “interburst” mode. During the interburst mode, the
neurons are completely independent, and in each time
step a random neuron will be selected and promoted
by one level. We shall sometimes say that this neuron
was promoted due to the outside impulse. When a neu-
ron in level k − 1 is selected, it fires. At that moment,
the interburst mode ends, and the burst mode begins.
While in burst mode we repeat the following rule: for
each neuron that fires, all neurons that have not fired
yet are promoted by one level with probability p. If
any neuron is promoted to level k while the system is
the burst mode, it also fires, and its effect is computed
recursively. During a burst, any particular neuron is
allowed to fire at most once. That is, all neurons that
reach level k can be thought of as being placed in one of
two additional buckets. Each neuron that reaches level
k is first placed in bucket W (the “waiting” neurons,
or the queue) where it stays until the above rule is per-
formed for it, we also say until it ”fires”. As soon as
a neuron has fired, it is removed from W and placed
into bucket F . The neurons in F are collectively put
back into the system at level 0 once the burst is over
(i.e., |W | = 0), and the system returns to the interburst
mode. Note that while we described the burst mode as
a recursive procedure, one should actually think of it as
taking place in a single instant of time.

The model described above is clearly of the idealized
variety, trying to focus on and to investigate a specific
type of neuronal interactions and activities. Particu-
larly, the discrete nature of the model captures nicely
the interneuronal communication through vesicle release
at synapses, i.e., “connections” between the neurons. As
DeVille and Peskin argue, the purpose of the model is
to allow a systematic study of the synchronization of
pulse-coupled oscillators in a new setting that captures
certain key features of neuronal interaction observed by
neuroscientists. We refer the reader to [6] for a very
elaborate discussion on this topic.

Our Results The typical approach used in biology to
measure the quality of a model is to investigate the
so-called mean-field limit and to perform (numerical)
simulations. In particular, mean-field models for the
dynamics of systems of neurons have been studied
extensively in the past in various different settings, see
e.g. [1, 4, 8] for some recent examples. However, no
guarantees are given that the actual model behaves
like the associated mean-field limit with reasonable
confidence.

The first main contribution of our work is to show
rigorously that the “typical behavior” of the discrete
probabilistic system described above is very close to
the trajectories described by an associated mean-field
model. In particular, using techniques that were de-
signed for the analysis of randomized algorithms and,
more generally, random systems, we prove that the tra-
jectory of our system will deviate significantly from
some deterministic trajectory with only exponentially
small probability. A major difficulty that we have to
overcome here is that the system “jumps” between two
inherently different states: the burst and the interburst
mode. While the system is in either of this two modes,
by applying a well-understood tool (the so-called “Dif-
ferential Equation Method”, which is used to study the
behavior of certain random processes like e.g. Markov
chains) we obtain after some technical work that with
probability very close to one the actual behavior is not
far from a solution of a set of differential equations.
However, handling the “transitions” between the two
modes is a challenging task, which requires the devel-
opment of new techniques. As a side remark, we want
to stress here that our mean-field description is differ-
ent from the one given in [6], as we insist on a rigorous
analysis.

The second main contribution of our work is to an-
alyze rigorously the mean-field approximation. In par-
ticular, we answer the questions of DeVille and Peskin
about the actual parameter settings and thresholds for
which changes between synchronous and asynchronous
behavior occur. In addition to that, we give a very pre-
cise picture for the dynamics of the system, depending
on the values of the crucial parameters p and k of the
model.

Before we state our results in detail we first try to
convey some intuition. Assume for the moment (the
unrealistic setting) that k = 1. Then each neuron that
is promoted one level in the interburst mode starts to
fire immediately. The following burst mode can then be
viewed as follows. Think of a random graph Gn,p (in
the Erdős-Rényi sense, with n nodes/neurons and edge
probability p). Then the neuron that fires is in some
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connected component of Gn,p, and the other neurons
that will fire in this burst phase are exactly the other
nodes in that component. That is, whether we will see
a “big” burst (linear in n) or only “small” bursts (of
size o(n)) depends on the relation of p and n. More
precisely, by applying well-known results from random
graph theory, see e.g. [9], we will see only small bursts
if p � 1/n, while in the case p � 1/n huge bursts also
happen.

If k > 1 things get much more interesting. Clearly,
we can still think of the neurons at level k − 1 forming
a random graph with edge probability p, and we know
that all neurons in the component that contains a firing
neuron will also fire. However, due to the presence of
the smaller levels also other neurons may fire. Assume,
for example, that a neuron from level k− 2 is promoted
during a burst phase to level k − 1. It then has to be
integrated into the random graph – and by that it may
combine two connected components into a larger one.1

At this point the following should be plausible. Let
p = βk/n. If β > 1 then regardless of the starting
configuration of the system, we will reach a point where
level k − 1 contains at least 1/p neurons – and a big
burst is thus likely to occur. More precisely, we have
the following statement.

Theorem 1.1. Suppose that p = βk/n, where β > 1.
Then, for sufficiently large k, regardless of the starting
configuration, we will observe with high probability after
finitely many time steps a big burst in which Θ(n)
neurons fired.

Now let us consider the case β < 1. If we start with
a configuration in which all levels contain roughly n/k
neurons then nothing exciting is going to happen: we
will probably never experience any big bursts and the
system stays in the state where all levels contain roughly
the same number of neurons. If on the other hand
we start in a configuration in which all neurons are
in the same level, say at level 0, then we show that
interestingly, also this type of state is preserved. That
is, the neurons move “simultaneously” up towards level
k − 1, and only “tiny” bursts are observed. Once this
level contains a sufficient number of neurons, a big burst
starts – and it brings most neurons back to level 0; and
a new cycle starts from the beginning. More precisely,
we show the following.

1Actually, we use the analogy with the threshold phenomena
in random graphs only to motivate the qualitative type of results

that we should expect: for the actual proofs we rely on different
techniques, see below.

Theorem 1.2. There exists a c > 0 such that the
following is true. Suppose that p = βk/n, where

β ≥ 25/4

(k ln k)1/4
·
(

1 +
c√
ln k

)
.

Then for k sufficiently large, when starting with all
neurons in level 0, the system converges to a stable state
where bursts of size at least (1−o(1)) ·n/2 occur at least
every kn time units.

In addition to this, we provide a very precise characteri-
zation of the stable state, and determine the asymptotic
fraction of neurons that are involved in a big burst; see
Section 4 for the technical details. Note that the above
theorem only applies if β < 1 is not too small. The next
results says that the lower bound from Theorem 1.2 is
essentially sharp.

Theorem 1.3. There exists a c > 0 such that the
following is true. Suppose that p = βk/n, where

β ≤ 25/4

(k ln k)1/4
·
(

1− c√
ln k

)
.

Then, for k sufficiently large, the following holds with
high probability. If the system starts with all neurons
in level 0, then there will be a finite number of big
busts, and after that the system will remain in an
asynchronous state.

Note that while we show that in the range “β < 1
and n, k not too small” both the uniform configuration
and the “all-in first level” configuration are stable,
we cannot confirm the observation from [6] that we
should expect spontaneous transitions between these
two extreme states. In fact we show, that once the
system is in any of the two configurations, it stays
there with very high probability. We assume that the
observation in [6] is due to the fact that they ran their
experiments for relatively small n. In fact, we believe
that the transition between the two extreme states
will actually happen due to external input during the
interburst phase, which is an observation that opens up
the possibility of interesting biological consequences. In
particular, it seems that by combining external input
with the property that neurons tire after periods of
heavy firing allows to describe a system that can switch
periodically between the two states.

Outline of the Paper In the remainder of this section
we give a formal description of our system, and present
the associated mean-field model. The mean-field model
that we use is similar to the one derived in [6], but
has a few differences that become important in our
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rigorous analysis. In Section 3 we present the crucial
steps that are needed to show that the mean-field
approximation captures the system dynamics with high
probability. Finally, in Section 4.1 we analyze the mean-
field behavior of the system and give the proofs of our
main theorems.

1.1 Formal Description of the Model and the
Mean-Field Equations
Let us introduce some notation before we actually

describe the system dynamics. Let

Ω =
{
~x = (x0, . . . , xk−1, w)

∣∣ xi ≥ 0 and
k−1∑
i=0

xi+w ≤ 1
}
.

We will sometimes write ~x = (x0, . . . , xk−1), where
we will implicitly assume that w = 0 and that∑k−1
i=0 xi = 1. Moreover, we will say that our system

is state/configuration ~x, if the number of neurons in
level i equals xin, and the number of neurons that are
waiting to fire (i.e., the neurons in the queue) is wn.
Note that in the latter case the number of neurons that
have already fired is precisely (1−

∑k−1
i=0 xi)n. Finally,

we will denote by B(~x) the (random) size of the burst
when the system starts in configuration ~x.

The Interburst Phase Given the state (x0, . . . , xk−1)
of the system, define the family of random variables
X0, . . . , Xk−1 by

∀0 ≤ i ≤ k − 1 : Xi(t0) = xin.

In the interburst phase the system dynamics are as
follows. Let J(t) be a random variable such that

Pr[J(t) = i] =
Xi(t0 + t)

n
,

where

Xi(t0 + t+ 1)(1.1)

=


Xi(t0 + t), if J(t) 6∈ {i− 1, i, k − 1},
Xi(t0 + t)− 1, if J(t) = i,

Xi(t0 + t) + 1, if J(t) = i− 1.

Note that Xi(t0 + t + 1) is not defined if J(t) is equal
to k − 1. Let

T = min{t : J(t) = k − 1}

be the first point in time where a neuron from level k−1
was selected. At time T + 1 the system then is in the
state (X0(t0 +T ), . . . , Xk−1(t0 +T )−1, 1), and switches
to the burst phase described below.

The Burst Phase Given the state (x0, . . . , xk−1, w)
of the system, define the family of random variables
X0, . . . , Xk−1,W by

∀0 ≤ i ≤ k − 1 : Xi(0) = xin and W (0) = wn.

Recall that during the burst phase a waiting neuron
is selected and it fires, and thus promotes any neuron
in the levels 0, . . . , k − 1 with probability p. Hence,
the number of promoted neurons from any level to the
directly next level is binomially distributed. Set

∀0 ≤ i ≤ k − 1 : Zi(t) ∼ Bin (Xi(t), p) .

Having this, we obtain the dynamics of the number of
waiting neurons through the relation

W (t+ 1) =

{
0, if W (t) = 0
W (t)− 1 + Zk−1(t), otherwise.

Informally, W (t) + t is the total number of neurons
that have been promoted from level k − 1, where t
is the number of neurons that have already fired yet.
Moreover, the number of neurons in each level evolves
as

X0(t+ 1) = X0(t)− Z0(t)
Xi(t+ 1) = Xi(t)− Zi(t) + Zi−1(t),∀0 ≤ i ≤ k − 1.

(1.2)

The burst ends at time T , where

(1.3) T = min{t : W (t) = 0}.

The Mean-Field Equations In this section we will
present the mean-field description (i.e., how the system
behaves “in average”) of our stochastic system. Due
to the dynamics of the system this description contains
two essential parts: the first part captures the typical
evolution of the system in the asynchronous state, i.e.,
when no or just small bursts occur. One the other hand,
the second part captures the behavior of the system
while a big burst is taking place.

Suppose first that we are in the asynchronous state,
and recall the dynamics given in (1.1). In order to
obtain an intuition for the evolution of the system,
suppose that we start at a point in time btnc. How
does the system look like at time b(t + ε)nc, for some
arbitrarily small ε? As we are in the asynchronous state,
we may assume that no or only very small bursts occur.
In particular, if we assume that the effect of the bursts
is negligible2, then we obtain that the expected value of

2This assumption is unfortunately not completely true, al-
though there are only very small bursts, as their total contribution

might become big. Nevertheless, as we show below, our derived
equations describe precisely the typical evolution of the system.
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the number of neurons Xi(t) in level i at time tn evolves
roughly as

E
[
Xi

(
t+

1
n

)]
≈ E [Xi(t)]−

1
n

E [Xi(t)]+
1
n

E [Xi−1(t)]

Noting that Xi(t+ 1
n ) ≈ Xi(t) + 1

nX
′
i(t) we obtain that

E [X ′i(t)] ≈ −E [Xi(t)] + E [Xi−1(t)]. Motivated by this
we define the following system of differential equations.
The Merry-Go-Round Equation (MGR) is given by the
system

x′i(t) = xi−1(t)− xi(t) for 1 ≤ i ≤ k − 1,
x′0(t) = xk−1(t)− x0(t),

(1.4)

and initial conditions xi(0) = xi for 0 ≤ i ≤ k − 1.
We will prove later (see Lemma 3.1) that this system
approximates precisely the system dynamics in the
asynchronous phase with high probability. Note that
MGR has the “explicit” solution

(1.5) xi(t) =
k−1∑
j=0

xj · Pr
[
Po(t) ≡ i− j (mod k)

]
for i = 0, . . . , k − 1. This is a fact that will become
useful later.

Now suppose that the system is in the synchronous
state, and recall the actual dynamics given by (1.2). If
we denote by Xi(t) the number of neurons at level i
after tn neurons have fired, then we readily obtain for
1 ≤ i ≤ k − 1,

E
[
Xi

(
t+

1
n

)]
= E [Xi(t)]−pE [Xi(t)] +pE [Xi−1(t)] .

Again, by plugging into this the first two terms of
the Taylor-series of Xi, we obtain with p = βk

n that
E [X ′i(t)] ≈ −βkE [Xi(t)]+βkE [Xi−1(t)]. As similar re-
lation can be derived for X0. This motivates the defini-
tion of the following system. The Burst Equation (BST)
is the system of differential equations on x0, . . . , xk−1

and the auxiliary variable xk
x′0(t) = −x0(t),
x′i(t) = xi−1(t)− xi(t) for 1 ≤ i ≤ k − 1,
x′k(t) = xk−1(t),

(1.6)

and the initial conditions xi(0) = xi for 0 ≤ i ≤
k − 1 and xk(0) = w. Note that we have omitted
everywhere the factor βk in the definition of BST – this
is done for solely technical reasons and a simple linear
transformation of the solution gives us the solution to
the actual system. In Section 3.2 we will show that
BST approximates the actual system dynamics with
high probability. Note that the BST system can be
solved in closed form – we will come to this fact later
when we need it. We will call the two systems MGR and
BST the mean-field approximation of the actual system.

2 Preliminaries

One important tool in our analysis will be the following
result by Seierstad [10], which strengthens Wormald’s
Differential Equation Method [12]. This powerful re-
sults state under which conditions certain stochastic
processes can be approximated by suitably defined dif-
ferential equations, and how good the obtained approx-
imation indeed is. It will be a basic tool in showing that
the mean-field approximation of our system is indeed a
very good approximation.

Let us introduce some notation first. Let
(Ωn,Fn, Pn) be a sequence of probability spaces. Let
m(n) = O(n) be an integer function of n and suppose
that a filtration Fn,0 ⊆ Fn,1 ⊆ · · · ⊆ Fn,m(n) ⊆ Fn
exists for every n ≥ 1. Let k be a fixed integer. For
every n ≥ 1 and 1 ≤ i ≤ k we consider random vari-
ables (Xn,m,i)0≤m≤m(n), such that Xn,m,i is F(n,m)-
measurable. Finally, let D ⊆ Rk, and define the stop-
ping time TD as the minimum value of m such that
n−1Xn,m,i 6∈ D, for some 1 ≤ i ≤ k.

Theorem 2.1. Assume that there is a C0 > 0 such that
Xn,m,i ≤ C0n for all n, 0 ≤ m ≤ m(n) and 1 ≤ i ≤ k.
Let fi : Rk → R be functions and assume that the
following conditions hold in some bounded connected
open set D containing the closure of{

(z1, . . . , zk) |
Pr
[
∀1 ≤ i ≤ k : Xn,0,i = zin

]
6= 0 for some n

}
.

1. For some functions β = β(n) ≥ 1 and γ = γ(n)
with γ = o(n−3/2) we have for all 1 ≤ i ≤ k and
1 ≤ m ≤ TD

Pr
[
|Xn,m,i −Xn,m−1,i| ≤ β

∣∣ Fm−1

]
≥ 1− γ.

2. For some function λ1 = λ1(n) = o(n−1/2) and all
1 ≤ i ≤ k and 1 ≤ m ≤ TD∣∣∣E[Xn,m,i −Xn,m−1,i

∣∣ Fm−1

]
−

fi(n−1Xn,m−1,1, . . . , n
−1Xn,m−1,k)

∣∣∣ ≤ λ1.

3. The functions (fi)1≤i≤k are continuous and satisfy
a Lipschitz condition.

Then the following is true.

(a) For (ẑ1, . . . , ẑk) ∈ D the system of differential
equations

dzi
dt

= fi(z1, . . . , zk), 1 ≤ i ≤ k

has a unique solution in D passing through zi(0) =
ẑi for 1 ≤ i ≤ k, which extends to points arbitrarily
close to the boundary of D.

953 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



(b) Let λ > λ1 +C0γn with n−1/2 � λ� 1. For some
constants C, d > 0 and any function ω = ω(n)
tending to infinity, with probability 1 − O(γn +
exp(−dnλ

2

β2 ) + n2 exp(−n
1/4

β3ω )),

Xn,m,i = nzi(m/n) +O(λn)

uniformly for 0 ≤ m ≤ σn ≤ m(n) and for each
1 ≤ i ≤ k, where σ = σ(n) is supremum of
those m to which the solution can be extended before
reaching within L∞-distance Cλ of the boundary
of D.

In Section 4, we will use the following upper bounds
on the tail probabilities on Poisson variables Po(λ) with
parameter λ.

Lemma 2.1. Let x, λ be two positive integers. For
x ≥ λ, it holds that

x+ 1
x+ 1− λ

·
(

1− λ2

(x+ 1)(x+ 1− λ)2

)
<

Pr
(
Po(λ) ≥ x

)
Pr
(
Po(λ) = x

) <
x+ 1

x+ 1− λ
.

If x < λ, the following bounds hold:

λ

λ− x
·
(

1− x

(λ− x)2

)
<

Pr
(
Po(λ) ≤ x

)
Pr
(
Po(λ) = x

) < λ

λ− x
.

We will also use the following Chernoff tail bounds.
For 0 < ξ < λ, we have

(2.7)
Pr
(
Po(λ) < λ− ξ

)
< e−ξ

2/(2λ),

Pr
(
Po(λ) > λ+ ξ

)
< e−ξ

2/(3λ).

3 The Mean Field Approximation

3.1 Merry Go Round – The Loading Phase
The main result of this subsection states that the MGR

system approximates the behavior of the actual system
well, provided that the (k − 1)st level does not contain
too many neurons. More precisely, we will show that
whenever xk−1 < (βk)−1, the system’s behavior can
be modeled by a subcritical branching process, as the
expected number of neurons that are promoted from
level k − 1 to the waiting queue is in this case < 1.

Lemma 3.1. Let (xi(t))0≤i≤k−1 be the solution of (1.4)
with initial condition xi(0) = xi for all 0 ≤ i ≤ k − 1.
Let 0 < t0 = O(k) be such that max0≤t<t0 xk−1(t) <
(βk)−1 − δ, where δ > 0, and xk−1(t0) = (βk)−1 − δ.
Then, with high probability there is a unique t∗ =
t∗(t0) > 0 such that

∀0 ≤ i ≤ k − 1 : Xi(bt∗nc) = (1 + Θ(n−1/3))xi(t0)n,

and there was no burst larger than log2 n until time
bt∗nc.

Before we proceed with the proof of the above lemma,
let us state an important implication for the limiting
behavior of our actual system.

Corollary 3.1. Suppose that the system starts in
state (x0, . . . , xk−1), where xk−1βk < 1. Let
(xi(t))0≤i≤k−1 be the solution of (1.4) with initial condi-
tion xi(0) = xi for all 0 ≤ i ≤ k−1, and set x∗i = xi(t∗),
where t∗ = mint{xk−1(t)βk = 1}. Denote by Ni the
number of neurons at the end of the asynchronous state.
Then, if t∗ <∞, with high probability

∀0 ≤ i ≤ k − 1: lim
n→∞

Ni
n

= x∗i .

In order to prove Lemma 3.1 we need a few observations
about the probability that we observe a burst of a given
size. The first statement characterizes the probability
that such a “small” burst occurs, for any admissible ~x
such that xk−1 > 0. Recall that we denote by W
the set of waiting neurons, i.e., neurons that have been
promoted from level k − 1 and have not fired yet, and
that we write B(~x) for the size of the burst if the system
starts in state (x0n, . . . , xk−1n, 1).

Lemma 3.2. Let ~x be such that xk−1 > 0. Then, for
any 1 ≤ b ≤ n1/3, as n→∞

Pr
[
B(~x) = b | |W | = 1

]
=(3.8) (

1 +O(n−1/6)
)
· e−xk−1βkb · (xk−1βkb)b−1

b!
.

Proof. Let us begin with an auxiliary observation on
the evolution of the number of neurons in level k − 1.
Suppose that the ith neuron in W fires, where 1 ≤ i ≤ b.
Then the number of neurons Ni that are promoted from
level k− 1 to W is distributed like Bin (Yi, p), where Yi
is the number of neurons on level k − 1 the moment
in time the ith neuron fires. We write Yi = xk−1n +
Z1 + · · ·+Zi−1−Li−1, where Zj denotes the number of
neurons that were promoted from level k−2 to level k−1
due to the firing of the jth neuron in W , and Li−1 is
the number of neurons promoted from level k− 1 to W
due to the firing of i−1 neurons. Note that the Zj ’s are
dominated by independent random variables distributed
like Bin (n, p), as there are trivially at most n neurons
in level k − 2. Moreover, for all admissible i we have
0 ≤ Li−1 ≤ b. Now, a straightforward application of the
Chernoff bounds yields with plenty of room to spare that
for all 1 ≤ i < b, with probability at least 1− e−Ω(n1/2),
it holds |Yi − xk−1n| ≤ n1/2. This implies that

Pr
[
∀1 ≤ i ≤ b : Yi =

(
1 +O

(
n−1/2

))
xk−1n

]
≥(3.9)

1− e−Ω(n1/2).
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Let us now turn to the proof of (3.8). We will write
B(~x) =

∑
p≥0 W̃p, where W̃0 = |W | = 1, and W̃p is

the number of waiting neurons after W̃p−1 neurons have
been processed. In other words, we split up the burst
in phases, where the pth phase begins when all neurons
of the (p− 1)st phase have been processed, and denote
by W̃p the number of neurons that are waiting at the
beginning of phase p. Note that the number of phases
P ∗ is at most b, as the burst ends as soon as W̃i = 0 for
some i.

Let δ = δ(n) = O(n−1/2). Assume that for any
0 ≤ wi+1 ≤ b we could show

(3.10) Pr
[
W̃i+1 = wi+1 | W̃i

]
≤

(
1 +O

(w2
i+1

n

))
e−(xk−1+δ)βkfWi

((xk−1 + δ)βkW̃i)wi+1

wi+1!
.

We shall prove this fact later. Then the proof of the
upper bound in the lemma completes as follows. Let

Wb =
{

(w1, . . . , w`)
∣∣∣

∑̀
i=1

wi = b− 1 ∧ ` ∈ N ∧ ∀j ∈ [`] : wi ∈ N.
}
.

Denote for a sequence ~w ∈ W̃b by `(~w) the index of the
last (non-zero) entry in ~w. Clearly,

Pr[B(~x) = b | |W | = 1] =∑
~w∈Wb

Pr[W̃1 = w1, W̃2 = w2, . . . ,

W̃`(~w) = w`(~w), W̃`(~w)+1 = 0].

Abbreviate ξ = (xk−1 + δ)βk, and w0 = 1, and note
that by using (3.10) we obtain

Pr[W̃1 = w1, . . . , W̃`(~w)+1 = 0]

=
`(~w)∏
i=0

Pr[W̃i+1 = wi+1 | W̃i = wi]

≤
(

1 +O
(b2
n

))
·
`(~w)∏
i=0

e−ξwi
(ξwi)wi+1

wi+1!

=
(

1 +O
(b2
n

))
· e−ξbξb−1 ·

`(~w)−1∏
i=0

w
wi+1
i

wi+1!
.

The proof of the upper bound completes with our

assumption δ = O(n−1/2) and the observation∑
~w∈Wb

`(~w)−1∏
i=0

w
wi+1
i

wi+1!

=
1

(b− 1)!

∑
~w∈Wb

(
b− 1

w1, . . . , w`(~w)

) `(~w)−1∏
i=0

w
wi+1
i

=
bb−2

(b− 1)!
,

as the sum in the middle counts precisely the number
of labeled trees on b vertices. To see this, let T be any
tree on b vertices, and let Ld(T ) be the set of vertices
that have distance d from the vertex with label 1. So,
L0(T ) = 1, L1(T ) contains all neighbors of 1, and so
on. The number of trees is then the number of ways
to choose the sets L1, L2, . . . , i.e.,

(
b−1

|L1|,...,|Lx|
)
, for some

x ≥ 1, times the number of ways to connect the vertices
with distance d + 1 to the vertices with distance d,
i.e. |Ld||Ld+1|, for d < x.

We finally prove the last missing statement (3.10),
i.e., we estimate the probability of the event “W̃i+1 =
wi+1”, assuming the quantity W̃i. Recall that the
W̃i neurons fire sequentially and independently of each
other. This means that there are non-negative integers
j1, . . . , jfWi

such that
∑fWi

s=1 js = wi+1, and the sth
neuron that fired initiated js neurons from level k − 1
to join the waiting queue. By exploiting (3.9), the
probability for this events can be bounded from above
by at most

Pr
[
W̃i+1 = wi+1 | W̃i

]
≤

∑
PfWi
s=1 js=wi+1

fWi∏
s=1

Pr
[
Bin ((xk−1 + δ)n, p) = js

]
+ Pr[∃1 ≤ i ≤ b : Yi =

(
1 +O

(
n−7/9

))
xk−1n]

=
∑

PfWi
s=1 js=wi+1

fWi∏
s=1

e−Θ(
j2s
n ) · e−(xk−1+δ)βk ((xk−1 + δ)βk)js

js!

+ e−Ω(n2/9)

=
(

1 +O
(w2

i+1

n

))
· e−(xk−1+δ)βkfWi

· ((xk−1 + δ)βk)wi+1 ·
∑

PfWi
s=1 js=wi+1

fWi∏
s=1

1
js!
.

(3.11)

Note that the last term equals the wi+1th coefficient in
the Taylor expansion of the function efWiz around z = 0.
Putting everything together yields (3.10), as desired.
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To obtain the lower bound in (3.8) observe that
we only have to show a corresponding lower bound
for (3.10). A closer look at the calculation above reveals
that this is easily obtained: replace xk−1+δ by xk−1−δ,
and reverse all inequalities.

A final ingredient for the proof of Lemma 3.1 is
the following statement, which says that big bursts are
highly improbable whenever xk−1 < (βk)−1. Note that
this does not follow directly from Lemma 3.2, as the
error term O(n−2/3) is too big for that purpose.

Lemma 3.3. Let ~x be such that xk−1βk = 1− δ, where
δ = δ(n) > 0. Then, for any 1� b� n

(3.12) Pr
[
B(~x) ≥ b | |W | = 1

]
≤ e− 1

5 δ
2b.

Proof. Suppose the the ith neuron in W fires, where
i < b. Then the number of neurons Ni that are
promoted from level k − 1 to W is distributed like
Bin (Yi, p), where Yi is the number of neurons on level
k − 1 the moment in time the ith neuron fires. Note
that Yi ≤ xk−1n + Z1 + · · · + Zi−1, where Zj denotes
the number of neurons that were promoted from level
k − 2 to level k − 1 due to the firing of the jth neuron
in W .

First, note that the Zj ’s are dominated by inde-
pendent random variables distributed like Bin (n, p), as
there are trivially at any point in time at most n neurons
in level k − 2. Hence, by a straightforward application
of the Chernoff bounds we obtain with plenty of room
to spare that for all 1 ≤ i < b we have with proba-
bility at least 1 − e−Θ(b) that Yi ≤ xk−1n + 2βkb =
(1 + o(1))xk−1n.

Second, the above observation implies that with
high probability the Ni’s are dominated by independent
Bin ((1 + o(1))xk−1n, p) variables. Moreover, note that
the event “B(~x) ≥ b” implies that “

∑b
i=1Ni ≥ b”.

Again, the Chernoff bounds yield for large b that

Pr[B(~x) ≥ b] ≤
Pr[Bin ((1 + o(1))xk−1n · b, p) ≥ b] ≤ e−

1
4 δ

2b.

The proof is completed.

We are now ready to prove Lemma 3.1. Here we
will in particular exploit a result by Seierstad [10],
which strengthens Wormald’s Differential Equation
Method [12].

Proof. [Proof of Lemma 3.1] First, suppose that there
was no neuron firing, i.e., p = 0. Then, the expectation
of the number of neurons Xi(btnc) at level i after btnc
time steps would be given, up to lower order terms, by
the right-hand of (1.5), multiplied by n. By the virtue of

the Chernoff bounds, the Xi’s are sharply concentrated
around this values in this very special case.

Now suppose that p = βk
n . Let us first consider the

expected size of a burst at time for any given ~x such
that xk−1βk < 1, and initially |W | = 0. Note that with
probability xk−1 we have |W | = 1, and otherwise the
expected size of the burst is 0. By applying Lemma 3.2
and Lemma 3.3 we obtain with ξ = ξ(~w) = xk−1βk

E[B(~x)] = xk−1 ·
log2 n∑
b=1

b · e−ξb (ξb)b−1

b!
+O(n−1/6).

Observe that T ′(x) = eT (x)+xT ′(x)eT (x), which implies
that T ′(x) = T (x)

x(1−T (x)) . We obtain

E[B(~x)] = xk−1 · e−ξT ′(ξe−ξ) +O(n−1/6)

= xk−1 · e−ξ
T (ξe−ξ)

ξe−ξ(1− T (ξe−ξ))
+O(n−1/6)

=
xk−1

1− ξ
+O(n−1/6).

(3.13)

Let B(τ) denote the size of the burst that occurred
at time 0 ≤ τ ≤ t (B(τ) = 0 is admissible here),
where with “time” we denote the number of neuron
promotions that were initiated from the outside impulse,
i.e. the time does not increment when neurons fire.
In particular, any burst is considered as taking place
in a single unit of time. Moreover, let us denote by
Yi(τ)n the number of neurons on level i at time τ .
Note that if Y(τ) = (Y0(τ), . . . , Yk−1(τ)) is such that
βkYk−1(τ) < 1, then for 1 ≤ i ≤ k − 2

E [Yi(τ + 1) | Y(τ)] =
Yi(τ) +

(
1 + pnE [B(τ)]

)
(Yi−1(τ)− Yi(τ))

+O
(
p2nE [B(τ)]

)
,

which implies with (3.13) for large n

E [Yi(τ + 1)− Yi(τ) | Y(τ)] =(
1 +

βkYk−1(τ)
1− βkYk−1(τ)

)
(Yi−1(τ)− Yi(τ)) +O(n−1/6).

Similarly we obtain for i = 0

E [Y0(τ + 1)− Y0(τ) | Y(τ)] =

−
(

1 +
βkYk−1(τ)

1− βkYk−1(τ)

)
Y0(τ)

+
Yk−1(τ)

1− βkYk−1(τ)
+O(n−1/6),
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and for i = k − 1

E [Yk−1(τ + 1)− Yk−1(τ) | Y(τ)] =(
1 +

βkYk−1(τ)
1− βkYk−1(τ)

)
Yk−2(τ)

− Yk−1(τ)
1− βkYk−1(τ)

+O(n−1/6).

Based on the above relations define the system of differ-
ential equations with unknown functions (yi(τ))0≤i≤k−1

(3.14) y′i = fi(y0, . . . , yk−1),

where
fi(y0, . . . , yk−1) =

yi−1 − yi
1− βkyk−1

,

where we wrote for brevity y−1 = yk−1. Moreover, note
that Lemma 3.3 implies with room to spare

Pr[B(τ) ≥ n1/20 | βkYk−1(τ) < 1] ≤ e−n
1/21

.

Finally, let

D =
{

(y0, . . . , yk−1)
∣∣ ∀0 ≤ i ≤ k − 1 : yi ≥ 0,

k−1∑
i=0

yi = 1, βkyk−1 < 1
}
.

Now, using all above facts we easily check that the
conditions of Theorem 2.1 are fulfilled if we choose
Xn,m,i = Yi(m), β = n1/20, γ = e−n

1/21
, and λ1 =

O(n−1/6). Hence, we obtain for any n−1/2 � λ � 1
such that λ � λ1 + nγ, say λ = n−1/7, that with
probability at least 1− e−nΘ(1)

it holds

Yi(τ) = nyi(τ/n) +O(n6/7).

for all τ such that O(n−1/3) ≤ yk−1(τ/n) ≤ 1 −
O(n−1/3), where the yi are given by the solution
to (3.14), with initial condition yi(0) = xi.

The above result describes precisely the evolution
of the Yi over time. But what is the connection to the
solution of the simple system (1.4)? To establish this
connection, let x0, . . . , xk−1 be the solution of (1.4), and
set

xi(t) = yi(h(t)),
where h(t) is an unknown function. Then we easily see
that x′i(t) = h′(t)y′i(h(t)), and therefore h(t) satisfies
the relations

h′(t) = 1− βkxk−1(t) = 1− βkyk−1(h(t)).

Note that h′ is positive for all t such that xk−1(t)βk < 1,
and hence its inverse function h−1(t) is well-defined for
all such t. This yields that

xi(h−1(τ)) = yi(τ),

and the proof is completed if we choose τ by solving the
equation t = h−1(τ).

3.2 The Beginning of the Burst
The first result in this section gives us information

about the evolution of the number of neurons in each
level during a burst.

Lemma 3.4. Suppose that the system is in state
(x0, . . . , xk−1, w). For any t ≤ T , where T is given
in (1.3)

(3.15) ∀0 ≤ i ≤ k − 1 : E [Xi(t)] = (1 + o(1))xi(pt)n,

where the Xi are given in (1.2), and the xi are the
solution to (1.6). Furthermore, for any 0 ≤ ε = ε(n) ≤
1

Pr
[
|Xi(t)− E [Xi(t)] | ≥ εE [Xi(t)]

]
≤ e−ε

2n1/3
.

Proof. The definition of the Xi’s imply for any t < T
and 1 ≤ i ≤ k − 1

E [Xi(t+ 1)] = E [Xi(t)]− pE [Xi(t)] + pE [Xi−1(t)]

and
E [X0(t+ 1)] = E [X0(t)]− pE [X0(t)] .

From this and the fact T ≤ n we readily deduce that

E [X0(t+ 1)] = (1− p)tx0n = (1 +O(n−1))x0(pt)n,

as by solving (1.6) we obtain x0(z) = e−zx0. Then by
applying induction over k we obtain

E [Xi(t+ 1)] = (1−p)E [Xi(t)]−(1+O(n−1))xi−1(pt)n,

or equivalently,

E [Xi(t)] = (1− p)tE [Xi(0)] + (1 +O(n−1))

·
t−1∑
j=0

(1− p)t−1−jxi−1(pj)

= (1 +O(n−1))

·
(
e−ptxi +

∫ t

0

ep(z−t)xi−1(pz)dz
)
n

= (1 +O(n−1))xi(pt)n,

where the last step follows from xi(z) = e−zxi +∫ z
0
eξ−zxi−1(ξ)dξ. This completes the proof of (3.15).

To show the concentration result, first note that the
number of neurons that are promoted due to a firing
neuron is dominated from above by a Bin (n, p) variable.
This implies that with probability at least 1−e−n1/3

the
number of promoted neurons is at most n1/3, for any
t ≤ T ≤ n. The proof completes with an application of
the Azuma-Hoeffding inequality.
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By exploiting the knowledge about the number of
neurons in each level during a burst, we now are able to
infer information about the actual size of the burst.

Lemma 3.5. Suppose that the system is in state
(x0, . . . , xk−1, w), where w > 0. Let s = 1− (

∑k−1
i=0 xi +

w), and set

(3.16) τ = min{t > 0 : t− xk(βkt) = s},

where xk is given in (1.6), and xk(0) = w. Then, the
system will have with high probability a burst of size T ,
where |T − τn| = o(n4/5).

Proof. First, note that for any t ≤ T we have

n = t+W (t) +
k−1∑
i=0

Xi(t)
W (T )=0

=⇒ n = T +
k−1∑
i=0

Xi(T ).

By applying Lemma 3.4 for t = T we obtain that
Xi(T ) = (1 + o(n−1/5))xi(pT )n is true with high
probability, for all 0 ≤ i ≤ k − 1. If we write T = αTn,
then the above relation becomes

(3.17) 1 = αT + (1 + o(n−1/5))
k−1∑
i=0

xi(βkαT ).

Note that for all z

k∑
i=0

xi(z) =
k−1∑
i=0

xi + w = 1− s

=⇒
k−1∑
i=0

xi(z) = 1− s− xk(z),

where xk is given in (1.6). The proof finishes by
plugging this into (3.17).

Our final task in this section is to show under which
conditions we will arrive in a state in which a big burst
will occur. The next lemma answers this question.

Lemma 3.6. Let ~x be such that xk−2βk > 1 and
xk−1βk ≥ 1 − ε, for some arbitrarily small ε > 0.
Then there are functions (εi(ε))1≤i≤4 such that ei → 0
when ε→ 0 with the following properties. Suppose that
the system starts in (x0, . . . , xk−1). Then, with high
probability, the system will arrive after at most ε1n time
steps in a state (x′0, . . . , x

′
k−1, w), such that

• x′i = xi ± ε2,

• w = Θ(ε3), and

• there was no burst of size larger than ε4n.

In words, the system will arrive in a configuration that
will generate a big burst, if xk−1 is arbitrarily close
to (βk)−1, and simultaneously xk−2 > (βk)−1. Note
that in such a configuration the expected number of
neurons that are promoted when a neuron fires from
level k−1 is very close to one, while the expected number
of neurons that are promoted from level k − 2 to level
k−1 is > 1. Hence the number of neurons in level k−1
increases quickly, and the big bursts gains unbounded
momentum.

4 Thresholds for Synchronous and
Asynchronous Behavior

In this section, we analyze the bursting behavior of
the neural network model introduced in Section 1 by
using the mean field approximation developed in Section
3. For simplicity, we ignore low probability events
in the lemmas of Section 3 and make deterministic
statements by assuming that the system behaves exactly
as specified by the mean field approximation.

The mean field system has two phases. The loading
phase that is described by the MGR differential equation
(1.4) and the burst phase that behaves according to the
BST differential equation (1.6). We assume that the
system starts in the loading phase, i.e., we assume that
initially xk−1 < 1 − δ for some δ > 0 and w = 0. By
Lemma 3.1, in this setting, the MGR equation describes
the system well. Specifically, for every t, there is a
’real’ time τ such that ~x(t) approximates the system
at time τ arbitrarily closely. The solution of the MGR
equation is given by Equation (1.5). We will sometimes
argue about the contribution of only x0 (the initial level
0) to the state at time t in the loading phase. Let
~g(t) = (g1(t), . . . , gk−1(t)) denote this contribution.3

For i = 0, . . . , k − 1, we have

(4.18) gi(t) = x0(0) · Pr
(
Po(t) ≡ i (mod k)

)
.

We set

ΩBB = {~x ∈ Ω : kxk−1β = 1, xk−2 > xk−1}

to define the set of states when the system changes from
the loading phase to the burst phase.4 Technically, by
Lemma 3.6, the burst starts when xk−2 > 1/(βk) and
xk−1 ≥ 1− ε for a sufficiently (arbitrarily) small ε > 0.
For simplicity, we ignore this technicality and assume

3The letter ’g’ stands for ’Gaussian wave’ as the distribution

of mass on the levels at time t is essentially Gaussian distributed

with mean t.
4To cover all cases, ΩBB should also contain those ~x ∈ Ω with

kxk−1β = 1 and, for some s ≥ 2, xk−1 = xk−2 = . . . = xk−s and

xk−s−1 > xk−1. We do not need them and thus do not discuss
them in this extended abstract.
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that the burst phase starts as soon as the loading phase
reaches a state in ΩBB. All proofs of this section can be
easily adapted by adding small error terms at a number
of places.

By Lemma 3.4, during the burst phase, the system
can accurately by described by the BST equation (1.6).
The burst stops as soon as xk(tB) = tB/(βk) where
tB is the time since the start of the burst. Note that
the size of a burst that finishes in time tB is tBβk (cf.
Lemma 3.5). Assume that there is a burst of size B, let
~y = (y0, . . . , yk−1) ∈ ΩBB be the state at the beginning
of the burst (i.e., at the end of the loading phase), and
let ~z = (z1, . . . , zk−1) be the sate at the end of the burst
before the next loading phase starts. For i = 0, . . . , k−1,
the vector ~z after the burst can be computed as
(4.19)

zi = (B, 0, 0, . . . , 0) +
k−1∑
j=0

yj · Pr
(
Po(B · βk) = j − i

)
.

When analyzing the mean field behavior of our
neural network system, we will need the following
definition.

Definition 4.1. We call a non-negative vector ~x ∈ Rk
safe if the MGR with initial condition ~x(0) = ~x has
xk−1(t) · βk ≤ 1/2 for all t ≥ 0.

Before studying the more interesting β < 1 case, let
us first prove Theorem 1.1.

Proof. [Proof Idea] Note that if β > 1, the average xi is
larger than 1/(βk). This together with Equation (1.5)
implies that regardless of the starting configuration, the
loading phase will always reach a state in ΩBB within a
finite amount of time. Whenever the state of the system
is in ΩBB, there is a burst of size Θ(n).

4.1 Synchronous Behavior for β < 1
The main objective of this section is to prove Theorem

1.2, i.e., we will show that for β significantly smaller
than 1, the system has a stable synchronous state.
Throughout the section, we denote the initial state of
the system by ~x = (x0, . . . , xk−1) and the system after
time t in the loading phase by ~x(t), i.e., ~x(0) = ~x. Note
that we measure time in the loading phase according to
the MGR equation. The system remains in the loading
phase until time t∗ where t∗ is the earliest time such
that ~x(t∗) ∈ ΩBB. At time t∗, there is a big burst. We
denote the state of the system before the burst starts by
~y = (y0, . . . , yk−1), i.e., ~y = ~x(t∗). Further, we denote
the state after the burst at the beginning of the next
loading phase by ~z = (z0, . . . , zk−1).

Before proving Theorem 1.2, we give a short
overview of the main ideas. Assume that the system

starts with all neurons in level 0. Then during the load-
ing phase, all the neurons are gradually shifted to higher
levels. While shifting the neurons, they are spread
across a set of levels. At time t of the MGR equation,
the distribution of the neurons are essentially Gaussian
distributed with expectation and variance t. The sys-
tem switches from the loading phase to the burst phase
when it reaches a state in ΩBB. At this time, the right
tail of the Gaussian distribution has already (cyclically)
moved from high levels back to level 0. Most of the
remaining mass will be part of the first burst. During
the burst, the mass from the tail that is in levels 0, . . .
at the beginning of the burst is moved to levels around
βk. In every burst, the mass of the right tail of the big
’Gaussian wave’ initiating the burst is moved to levels
around βk and the tail neurons of the previous burst
are promoted by roughly βk levels. When the system
stabilizes, at the beginning of the loading phase, most
of the mass is in level 0 and there is some additional
mass around levels iβk for i = 1, 2, . . . . We formally
define such a state (called a nice state) in Definition 4.2
and show that if the loading phase is started in a nice
state, the state after the next burst will be nice again
(according to the mean field approximation).

For simplicity, we will assume that β ≤ 1 through-
out the following considerations. Note that a much sim-
pler argument is sufficient to show an analogous state-
ment to Theorem 4.1 for β > 1.

For i ∈ {0, . . . , k − 1}, we define ηi = i/k4 and we
call ~η = (η0, . . . , ηk−1) the noise vector. For a system
state ~x = (x0, . . . , xk−1) ∈ Rk, let ~x′ = (x′0, . . . , x

′
k−1)

be the vector that is obtained by setting x′0 = 0 and
x′i = max{0, xi − ηi} for i > 0. Hence, we essentially
subtract the noise vector from the given state.

Definition 4.2. We call a state ~x = (x0, . . . , xk−1) ∈
Rk ε-nice for a value ε > 0 if there is an integer
` ≥ 1 such that the mass in ~x′ can be partitioned into
` vectors ~x′1, . . . , ~x

′
` where ~x′i = (x′i,0, . . . , x

′
i,k−1) such

that ~x′ = ~x′1 + · · ·+ ~x′` and the following conditions are
satisfied.

1. There are positive integers 0 < r1 < · · · < r` ≤ k
such that for i ≥ 1,

(1− ε)βk ≤ r1 ≤ βk(4.20)
and (1− ε)βk ≤ ri+1 − ri ≤ βk

and such that for all i ∈ [`], x′i,j = 0 for all
j < ri − ∆i and for all j > ri + ∆i, where
∆i = 12 · i ·

√
k ln k.
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2. The total mass in every vector ~x′i is at most
(4.21)

∀i ∈ [`] :
k−1∑
j=0

x′i,j =
ri+∆i∑
j=ri−∆i

x′i,j ≤

√
2 + D√

ln k

β ·
√
k ln k

.

where D = D(ε) ≥ 0 is a suitably chosen constant.5

3. The vector ~w = (w0, . . . , wk−1) with w0 = 0 and
wi = xi for i > 0 is safe. Further, for i > r1 + ∆1,
x′i ≤ 1/(3βk).

Note that the vector ~x = (1, 0, 0, . . . , 0) is clearly
ε-nice for every ε > 0. Based on Definition 4.2, we can
state our the main technical theorem.

Theorem 4.1. Let ε > 0 be a positive constant and
assume that

(4.22) β ≥ 21/4√
ε(1− ε) · (k ln k)1/4

·
(

1 +
c√
ln k

)
for a sufficiently large constant c. Then, for k suffi-
ciently large, when starting in an ε-nice state at time
0, the system stays in the loading phase until time
t∗ = k − o(k). At time t∗, there is a burst of size at
least 1 − ε such that after the burst, the system is back
in an ε-nice state.

Note that Theorem 1.2 directly follows as a corol-
lary of Theorem 4.1. Interestingly, Theorem 4.1 indi-
cates that in order to obtain a stable synchronous sys-
tem with bursts of size b < 1/2, the value of β has to be
larger than for a system with bursts of size 1/2. In or-
der to prove Theorem 4.1, we need a bunch of technical
lemmas.

Lemma 4.1. For ε > 0, let ~x = (x0, . . . , xk−1) be an ε-
nice state. If β is chosen as in Theorem 4.1 (Inequality
(4.22)), for k sufficiently large,

∑k−1
i=1 xi < ε − 1/k1/4

and thus x0 ≥ 1− ε+ 1/k1/4.

Proof. By the construction of the vectors ~η and ~x′, we
have

∑k−1
i=1 xi ≤

∑k−1
i=0 ηi + x′i as well as

∑k−1
i=0 ηi ≤

1/(2k2). It is therefore sufficient to show that∑k−1
i=0 ~x

′
i < ε− 1/k1/4 − 1/(2k2) for k sufficiently large.

Let us consider the number ` of vectors ~x′i into
which ~x′ is partitioned. Clearly, r` < k+ 12 · ` ·

√
k ln k.

Because by Definition 4.2, r1 ≥ (1−ε)βk and ri+1−ri ≥
(1− ε)βk for i ≥ 1, we therefore get

` ≤ k + 12 · ` ·
√
k ln k

(1− ε) · βk

5The constant D can be chosen to be twice the hidden constant

in the O(·)-notation in the statement of Lemma 4.5. We will not
explicitly determine the value of D.

and thus

` ≤ 1
(1− ε) · β

·

(
1 +O

(√
log k
k

))
.

Hence, the total mass in vector ~x′ is at most

` ·

√
2 + D√

ln k

β ·
√
k ln k

≤

(√
2 + D√

ln k

)
·
(

1 +O
(√

log k
k

))
(1− ε)β2 ·

√
k ln k

≤
ε
(√

2 +O
(

1√
log k

))
√

2

(
1 +

c√
ln k

)−2

.

This is smaller than ε−1/k1/4−1/(2k2) for sufficiently
large k and a sufficiently large constant c.

The following three lemmas follow from the solution
of the MGR differential equation given by Equation
(1.5) and from the Poisson tail probability bounds given
in Inequality (2.7). The first lemma states that the
infinite sums of Poisson probabilities that determine the
values of xi(t) in Equation (1.5) are either negligibly
small or dominated by a single term.

Lemma 4.2. Let ~x(t) = (x0(t), . . . , xk−1(t)) be the state
after time t ≤ k in the loading phase. We have

xi(t) =
k−1∑
j=0

xj(0) · Pr(Po(t) = νi,j) +O(e−k/16)

where νi,j is chosen such that νi,j ≡ i− j (mod k) and
νi,j ∈ [t− k/2, t+ k/2).

Lemma 4.3. For sufficiently large k, after time t ≤ k
of the loading phase, all but a 1/k5-fraction of the mass
starting in level i ∈ {0, . . . , k − 1} ends up in levels j
such that j − i ≡ h (mod k) for t − 5

√
k ln k < h <

t+ 5
√
k ln k.

For the following lemma, note that we only consider
β ≤ 1 and that therefore βk ≤ k.

Lemma 4.4. Assume that the burst starting with state
~y has size B. At the end of the burst (i.e., in vector
~z), all but a 1/k5-fraction of the mass starting in level
i ∈ {0, . . . , k − 1} ends up in level 0 or in levels j for
B · βk − 5

√
k ln k < j < B · βk + 5

√
k ln k.

Lemma 4.5. For β as given by Inequality (4.22), the
system for the first time switches from the loading phase
to the burst phase at a time t∗ in the range k−

√
k ln k−

O(
√
k) ≤ t∗ ≤ k −

√
k ln(k)/2 + O(

√
k). Hence, time

t∗ is the first time where the system reaches a state in
ΩBB. In particular, xk−2(t∗) > xk−1(t∗) = 1/(βk).
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Proof. We have to show that such a time t∗ exists
such that ~x(t∗) ∈ ΩBB and such that ~x(t) 6∈ ΩBB for
t < t∗. Hence, we have to find the smallest t∗ such
that xk−1(t∗) = 1/(βk) and we have to show that
xk−2(t∗) > xk−1(t∗).

Let us first argue why the smallest t∗ for which
xk−1(t∗) = 1/(βk) is in the given range. Because the
initial state ~x is nice, the vector ~x − (x0, 0, 0, . . . , 0)
is safe and thus xk−1(t) − gk−1(t) < 1/(2βk) for all
t. We therefore need gk−1(t) ≥ 1/(2βk) to have
xk−1(t) = 1/(βk). Clearly, xk−1(t) ≥ 1/(βk) as soon
as gk−1(t) ≥ 1/(βk). Let us therefore consider the
earliest times t1 and t2 for which gk−1(t1) ≥ 1/(2βk)
and gk−1(t2) ≥ 1/(βk). By Lemma 4.2 and Stirling’s
formula, we have

gk−1(t) = x0 ·
tk−1

(k − 1)!
· e−t + Θ(e−k/16)

=
(
x0 ±

1
Θ(k)

)
·
(

t

k − 1

)k−1

· e
k−t−1

√
2πk

.

For t = k − 1 − q with q = ρ
√
k ln k and ρ > 0, this

becomes

gk−1(t) =
(
x0 ±

1
Θ(k)

)
·
(

1− q

k − 1

)k−1

· eq√
2πk

=
(
x0 ±

1
Θ(k)

)
· e−q−

q2

2(k−1) +O
“
q3

k3

”
· eq√

2πk

=
(

x0√
2π
± 1

Θ(k)

)
· e−

q2

2(k−1)

=
(

x0√
2π
± 1

Θ(k)

)
· e−

1+ρ2

2 ·ln k

=
(

x0√
2π
± 1

Θ(k)

)
· k−

1+ρ2

2 .

By Lemma 4.1, we have x0 > 1 − ε where ε > 0 is a
constant. In order to obtain gk−1(k − 1 − ρ

√
k ln k) =

C/(βk) for a constant C, we therefore need to choose ρ
such that (1 + ρ2)/2 = ln(βk)/ ln k±Θ(1/ log k). For β
between Θ((k ln k)−1/4) and 1, this yields

√
k ln(k)/2−

O(
√
k) ≤ q ≤

√
k ln k +O(

√
k) as claimed.

It remains to show that at time t∗, xk−2(t∗) >
xk−1(t∗). We first show a lower bound on gk−2(t∗) −
gk−1(t∗). We have

gk−2(t∗)
gk−1(t∗)

=
x0 · Pr(Po(t∗) = k − 2)
x0 · Pr(Po(t∗) = k − 1)

=
k − 1
t∗

= 1 + Θ

(√
log k
k

)
.

From gk−1(t∗) = C/(βk) for a constant C, we therefore

get that
(4.23)

gk−2(t∗)−gk−1(t∗) =
1
βk
·Θ

(√
log k
k

)
= Θ

(√
log k
βk3/2

)
Let ~w = ~x(t∗)−~g(t∗). In order to complete the proof, we
show that ~wk−1 < ~wk−2 +O(k−3). By Lemma 4.3, from
the mass starting in levels 5

√
k ln k, . . . , k−2−5

√
k ln k

at time 0, at most 1/k5 ends in levels k − 2 or k − 1
after time t∗ of the loading phase. By Definition 4.2
(ε-nice), in an ε-nice state and thus at time 0, the mass
in levels i = 1, . . . , r1 −∆1 − 1 is at most i/k4. Hence,
the total mass in levels 1, . . . , 5

√
k ln k at time 0 is at

most Θ(
√

log k/k3.5). Except for the contribution from
levels k− 5

√
k ln k, . . . , k− 1, we therefore have ~wk−1 <

~wk−2 +O(1/k3). Let xi,j(t∗) = xj(0) ·Pr(Po(t∗) ≡ i− j
(mod k)) be the contribution of level j at time 0 to
level i at time t∗. Analogously to the reasoning about
gk−2(t∗) and gk−1(t∗), we have xk−2,j(t∗) > xk−1,j(t∗)
for j = k − 5

√
k ln k, . . . , k − 1 (since the mass is even

further away from the expected value of the respective
Poisson distribution, the ratio between xk−2,j(t∗) and
xk−1,j(t∗) is even larger than the ratio between gk−2(t∗)
and gk−1(t∗) for the considered values of j).

The next lemma specifies the number of neurons
in the tail of the big wave that are in the first few
levels when the burst starts. Interestingly, the number
of neurons hardly depends on the size of the ’wave’ (i.e.,
the number of neurons starting the loading phase in level
0). In fact, if the ’wave’ is smaller, the constant D in
the following lemma becomes even slightly larger.

Lemma 4.6. At the end of the loading phase, for a
sufficiently large constant D and a sufficiently large
value k, the mass in the first 5 ·

√
k ln k levels of ~y is

at most
b5·
√
k ln kc∑
i=0

yi ≤

√
2 + D√

ln k

β ·
√
k ln k

.

Proof. We consider the mass contributed from ~g(t∗) and
~x(t∗) − ~g(t∗) separately. Note that from the definition
of t∗, it holds that g0(t∗) ≤ gk−1(t∗) ≥ 1/(βk). By
Lemmas 4.2 and 2.1, we thus have

b5·
√
k ln kc∑
i=0

gi(t∗) ≤
b5·
√
k ln kc∑
i=0

x0 · Pr(Po(t∗) = k + i) + e−k/16

≤ k + 1
k + 1− t∗

· 1
βk

+ e−k/16.

(4.24)

In the partition of the vector ~x′ into vectors
~x′1, . . . , x

′
`, only vectors ~x′i for which ri + ∆i ≥ k −
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1 − 5
√
k ln k contribute to the mass in levels k − 1 −

5
√
k ln k, . . . , k−1 at time 0. Because ri+1−ri = Θ(βk),

~x′ is partitioned into O(k/(βk) = O(1/β) vectors ~xi
and thus ∆i = O(

√
k log k/β). The condition ri + ∆i ≥

k − 1− 5
√
k ln k is therefore only satisfied for

O
(

1 +
√
k log k
β

· 1
βk

)
= O

(
1 +
√

log k
β2
√
k

)
vectors ~x′i. The total mass in levels k − 1 −
5
√
k ln k, . . . , k − 1 at time 0 therefore is at most

(4.25)

O
(

1 +
√

log k
β2
√
k

)
· O
(

1
β
√
k log k

)
= O

(√
log k
β
√
k

)
.

Analogously to the proof of Lemma 4.5, the total
mass in levels 0, . . . , 12

√
k ln k at time 0 is negligible

(at most O(k−3)). By Lemma 4.3, all mass that
starts the loading phase in levels between 10

√
k ln k and

k − 1− 5
√
k ln k, contributes at most 1/k5 to the levels

0, . . . , 5
√
k ln k at time t∗. Combined with Inequalities

(4.24) and (4.25), we thus obtain that the total mass in
levels 0, . . . , 5

√
k ln k at the end of the loading phase is

at most

b5
√
k ln kc∑
i=0

xi(t∗) ≤ 1
β(k − t∗)

+O
(√

log k
β
√
k

)

≤
√

2
β ·
√
k ln k

+O
(

1
β ·
√
k · log k

)
.

The second inequality follows from the upper bound on
t∗ given by Lemma 4.5. The lemma now follows by
choosing the constant D sufficiently large.

The following lemma shows that except for the mass
(specified by Lemma 4.6) that finishes the loading phase
in the first few levels, almost all neurons the start the
loading phase in level 0 participate in the burst at time
t∗.

Lemma 4.7. The burst at time t∗ has size at least 1−ε.

Proof. By Lemma 4.1, at the beginning x0 ≥ 1 −
ε + 1/k1/4. We show that at least 1 − ε of this
mass is part of the big burst at time t∗. By Lemma
4.3, at most 1/k5 of the mass starting in level 0
is in levels 5

√
k ln k, . . . , t∗ − 5

√
k ln k at the end of

the loading phase. Further, by Lemma 4.6, at most
O(β−1(k log k)−1/2) = O((k log k)−1/4) of the mass
starting in x0 is in levels 0, . . . , 5

√
k ln k at time t∗.

Hence, when the burst starts, the total mass in levels
t∗ − 5

√
k ln k, . . . , k − 1 is at least 1 − ε + Θ(1/k1/4).

Recall that the state at the beginning of the burst is
denoted by ~y = ~x(t∗). Let ~y(t) be the state after time t

of the burst. The burst clearly does not end as long as
yk−1(t) ≥ 1/(βk). For t∗ + t ≥ k − 1, we have

yk−1(t) =
k−1∑
i=0

yi · Pr(Po(t) = k − 1− i)

≥
k−1∑
i=0

x0 · Pr(Po(t∗) = i) · Pr(Po(t) = k − 1− i)

= x0 · Pr(Po(t∗ + t) = k − 1)

= x0 ·
(t∗ + t)k−1

(k − 1)!
· e−t

∗−t

=
(
x0 −

1
Θ(k)

)
·
(

1 +
t∗ + t− (k − 1)

k − 1

)k−1

· ek−1−t∗−t

≥
(
x0 −

1
Θ(k)

)
· e(t∗+t−k−1)2/2

=
(
x0 −

1
Θ(k)

)
· e(t−Θ(

√
k log k))2/2.

Hence, we need to set t = Ω(
√
k log k) to obtain

yk−1(t) = 1/(βk). Let ρ(t) = x0 Pr(Po(t∗ + t) ≤
k − 1) + e−k/16 be the mass that started the loading
phase in level 0 and is still in levels 0, . . . , k−1 after time
t of the burst. Using Lemma 2.1, β = Ω((k log k)−1/4),
and t = Ω(

√
k log k), we get that

ρ(t) <
t+ t∗

t+ t∗ − k − 1
· 1
βk

+ e−k/16

= O
(

1
β
√
k log k

)
= O

(
1

(k log k)1/4

)
.

(4.26)

Because at the beginning of the burst, at least 1 − ε +
Θ(1/k1/4) of the mass x0 starting the loading phase in
level 0 is in levels −5

√
k ln k, . . . , k−1, Inequality (4.26)

implies that all except O((k log k)−1/4) of this mass has
to be part of the burst. For sufficiently large k, this is
at least 1− ε.

Based on Lemmas 4.1–4.7, we can now prove The-
orem 4.1.

Proof. [Proof of Theorem 4.1] Lemma 4.5 shows that if
the system starts in an ε-nice state, for sufficiently large
k it stays in the loading phase until a time t∗ = k−o(k)
and then changes to the burst phase. Lemma 4.7 proves
that the size of the burst at time t∗ is at least 1− ε if k
is sufficiently large. It remains to show that when the
burst ends, the system is again in an ε-nice state.

Recall the initial state ~x = ~x(0) (by ε-niceness) can
be decomposed as ~x ≤ (x0, 0, 0, . . . , 0) + ~η + ~x′1 + · · · ~x′`.
We have to show that the state ~z immediately after the
burst can be decomposed as ~z ≤ (z0, 0, 0, . . . , 0) + ~η +
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~z′1+· · · ~z′`′ such that the following conditions hold: There
are integers 0 < r′1 < · · · < r′`′ such that

1. (1 − ε)βk ≤ r′1 ≤ βk and ∀i ∈ {2, . . . , `′} :
(1− ε)βk ≤ r′i − r′i−1 ≤ βk

2. ∀i ∈ [`′]∀j 6∈ [r′i − ∆i, r
′
i + ∆i]z′i,j = 0 and for a

sufficiently large constant D,

(4.27) ∀i ∈ [`′] :
k−1∑
j=0

z′i,j ≤

√
2 + D√

ln k

β ·
√
k ln k

.

3. The vector ~z − (z0, 0, 0, . . . , 0) is safe and for i >
r1 + ∆1, z′i ≤ 1/(3βk).

Let b ∈ [1− ε, 1] be the size of the burst at time t∗. By
Lemma 4.3, during the loading phase, all but 1/k5 of the
mass in ~x is cyclically shifted by t∗ = k − Θ(

√
k log k)

and spread out by at most 5
√
k ln k. In the burst

phase, all but 1/k5 of the mass is non-cyclically shifted
by bβk and spread out by at most 5

√
k ln k. We can

handle the different components of the start vector ~x
independently.

Let us first consider how the vector ~η is shifted
during the loading phase and the burst phase. The
total mass of the noise vector ~η is

∑k−1
i=0 ηi =

(
k
2

)
/k4 <

1/(2k2). By Lemma 4.3, all but a 1/k5-fraction of this
mass (i.e., all but 1/(2k7)) is shifted to the right by
t∗ and spread to levels at most 5

√
k ln k from there.

Equivalently, everything is shifted to the left by k −
1 − t∗. Because all the mass is shifted an spread in
the same way and because the coordinates of ~eta are
monotonically increasing, we can shift ~η to the left by
k − t∗ − 1 + 5

√
k ln k (and sufficiently extend it to the

right) to get an upper bound on the shifted vector η. Let
us just consider the part of ~eta that is moved to levels
5
√
k ln k+1, . . . , k−1 during the loading phase (the part

that is moved to the first 5
√
k ln k is part of the mass

bounded by Lemma 4.6 and will be incorporated into
the vector ~z′1). Let η′i be the part of ~η that ends up in
level i at the end of the loading phase. For i > 5

√
k ln k,

we get η′i ≤ (i + k − 1 − t∗ + 5
√
k ln k)/k4 + 1/(2k7).

For i ≤ 5
√
k ln k, we define η′i = 0 and let ~η′ =

(η′0, . . . , η
′
k−1). During the burst phase, the vector ~η′ is

(non-cyclically) shifted to the right by bβk ≥ (1− ε)βk
and spread to levels at most 5

√
k ln k from there. Let

η′′i be the mass of ~η′ ending in level i after the burst.
Using the same argumentation as before, we have

η′′i ≤ min

{
1
k7
,
i+ k − 1− t∗ − bβk + 10

√
k ln k

k4
+

1
k7

}

≤ min
{

1
k7
,
i− (1− ε− o(1))βk

k4

}
.

(4.28)

We now show how to construct the vectors ~z′i into
which the state ~z after the burst is partitioned. Consider
a vector ~x′i of the initial state. Because we start in
an ε-nice state at time 0, ~x′i,j = 0 except for j ∈
[ri−∆i, ri+ ∆i]. Hence by Lemma 4.3, all but at 1/k5-
fraction of the mass of ~x′i is moved to levels in

[
ri−∆i−

(k− 1− t∗)− 5
√
k ln k, ri + ∆i− (k− 1− t∗) + 5

√
k ln k

]
during the loading phase and to levels in[

ri −∆i − (k − 1− t∗) + bβk − 10
√
k ln k,

ri + ∆i − (k − 1− t∗) + bβk + 10
√
k ln k

]
∈
[
ri −∆i + bβk − 11

√
k ln k −O(

√
k),

ri + ∆i + bβk + 10
√
k ln k

]
∈
[
ri + bβk −∆i+1, ri + bβk + ∆i+1

]
for sufficiently large k. For i ≥ 2, we thus define
r′i = ri−1 + bβk and let ~z′i contain all the mass of ~xi−1

that is moved to levels between r′i−∆i and r′i+∆i. The
vector ~z′1 is constructed by using the mass that starts
the burst in the first 5

√
k ln k levels and is specified

by Lemma 4.6. All but a 1/k5-fraction of this mass
is moved to levels bβk − ∆1, . . . , bβk + ∆1. We can
therefore set r′1 = bβk ∈ [(1−ε)βk, βk]. We clearly have
r′i+1 − ri ∈ [(1 − ε)βk, βk]. Further, the total mass of
each vector ~zi

′ is bounded as given by Inequality (4.27)
because of Lemma 4.6 and because the total mass of
each vector ~xi

′ is bounded accordingly. Hence, all but a
1/k5-fraction of the mass of vector ~x′ ends up in vector
~z′.

So far, we have analyzed what happens to vectors ~η
and ~x′ during the loading phase and during the burst.
Most of the mass starting in level 0 either goes to vector
~z′1 or participates in the burst and thus is in level 0 after
the burst. The mass that does not end up in z0 or ~z′1
can be bounded by

x0

(
Pr(Po(t∗ + bβk) ≤ k − 1) + Pr(Po(t∗) > 5

√
k ln k)

)
which is at most 2x0k

−5. In order to satisfy all necessary
conditions, we need to show that all the mass that is not
in level 0 or in one of the vector ~z′i (and thus in vector
~z′) after the burst is smaller than ~η. For sufficiently
large k, this is true due to Inequality (4.28).

To complete the proof, it remains to show that
the vector ~w = ~z − (z0, 0, 0, . . . , 0) is safe and that
z′i ≤ 1/(3βk) for k > r′1 + ∆1. To simplify the proof
of the latter, let us subtract max{z′i, 1/k5} from every
z′i (and the corresponding z′i,j). The mass that does
not end up in z0 or a vector ~z′ is still upper bounded
by ~η. A closer look at Equation (1.5) reveals that the
value of xi(t) at time t in the loading phase is a convex
combination of the values x0, . . . , xk−1. Hence, for all
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times t ≥ 0, maxi xi(t) ≤ maxi xi(0). Let ~w(0) = ~w
and ~w(t) be the state after time t in the loading phase
when starting in state ~w. Because for i > r1 + ∆1,
x′i ≤ 1/(3βk) for t ≤ k − 1 − r1 − ∆1 − 5

√
k ln k,

wk−1 ≤ 1/(3βk) + ηk−1 + 1/k5. Because the total mass
in levels r1 ±∆1 levels of ~w is only O(1/(β

√
k log k)) =

O((k log k)−1/4), the maximum contributed to any wi
by levels r1 ±∆1 is at most

O

(
Pr
(
Po(k −Θ(βk)) = k −Θ(βk)

)
(k log k)1/4

)
=

O
(

1

k3/4 log1/4 k

)
= o

(
1
βk

)
.

Therefore, at time t = k − 1 − r1 − ∆1 − 5
√
k ln k, all

coordinates wi(t) are clearly smaller than 1/(2βk) (for
sufficiently large k) and thus, the vector ~w is safe.

To show that zi ≤ 1/(3βk) consider the vector
resulting from ~x′ after time t∗ in the loading phase.
Using similar arguments to above, no coordinate of this
vector is larger than 1/(3βk) + 1/k5. Because all mass
in ~z′ in levels larger than r1 + ∆1 comes from ~x′ and
because we subtracted 1/k5 from every z′i, this implies
that zi ≤ 1/(3βk) for i > r1 + ∆1.

4.2 Below the Threshold
The key to understand the value of the threshold for
β is to understand the role of the part of the mass
that starts the loading phase in level 0 and does not
participate in the burst. Lemma 4.6 quantifies the
number of neurons that are already in levels 0, . . . when
the system switches from the loading phase to the burst
phase. Interestingly, up to lower order terms, the bound
given by Lemma 4.6 is not only an upper bound but also
a lower bound. If we start the system with all neurons in
level 0, in every burst, roughly

√
2n/(β

√
k ln k) neurons

that are in level 0 at the beginning of the preceding
loading phase are not part of the burst. All mass that
is in level i at the beginning of the loading phase ends
up in levels around i+ bβk after the next burst, where
b is the size of this burst. If β is chosen as given by
Theorem 1.3, the size of the burst reaches 1/2 after a
finite number (Θ(β

√
k log k)) of iterations.

Let us call the mass in the first 5
√
k ln k before

burst i, the lump of burst i. Once the size of each
burst is at most 1/2 the distance (in levels) between
lumps of subsequent bursts is at most βk/2. If β <
21/4/(k ln k)1/4, the total mass of the lumps is 2/β ·√

2/(β
√
k ln k) > 1/2. Hence, the size of the bursts will

become smaller than 1/2. If the burst becomes smaller
than 1/2, the total mass of the lumps becomes even
larger and it can be shown that then, the big bursts
become smaller quickly and finally disappear.
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