
Approximation Algorithms for Hierarchical Location
Problems

[Extended Abstract]

C. Greg Plaxton
∗

Department of Computer Science
University of Texas at Austin

plaxton@cs.utexas.edu

ABSTRACT
We formulate and (approximately) solve hierarchical ver-
sions of two prototypical problems in discrete location the-
ory, namely, the metric uncapacitated k-median and facility
location problems. Our work yields new insights into hier-
archical clustering, a widely used technique in data analysis.
First, we show that every metric space admits a hierarchical
clustering that is within a constant factor of optimal at ev-
ery level of granularity with respect to the average (squared)
distance objective. Second, we provide a natural solution
to the leaf ordering problem encountered in the traditional
dendrogram-based approach to the visualization of hierar-
chical clusterings.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

Keywords
discrete location theory, hierarchical clustering

1. INTRODUCTION
Inspired by the recent work of Dasgupta [4] on a hier-

archical version of the k-center problem, we formulate hi-
erarchical versions of the metric uncapacitated k-median
and facility location problems, two prototypical problems
in discrete location theory. Before defining and addressing
the hierarchical versions of these problems, we review the
definitions of the k-center, k-median, and facility location

∗This research was supported by NSF Grant CCR–9821053.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

problems. We also review certain “incremental” versions of
the k-center and k-median problems, and introduce a cor-
responding incremental version of the facility location prob-
lem. The incremental versions of these problems represent a
natural intermediate step towards defining their hierarchical
versions, as will be seen in Section 3.

1.1 Preliminaries
For any real α ≥ 1, we say that a distance function

d defined over a set of points satisfies the α-approximate
triangle inequality if, for any triple of points x, y, and z,
d(x, z) ≤ α(d(x, y) + d(y, z)). We define an α-approximate
metric space as a set of points with an associated distance
function d that satisfies positivity (d(x, y) > 0 unless x = y,
in which case d(x, y) = 0), symmetry (d(x, y) = d(y, x)), and
the α-approximate triangle inequality. Our motivation for
assuming such a relaxed triangle inequality is that squar-
ing each of the distances in a given metric space yields a
2-approximate metric space. More generally, raising the
distances of a metric space to any constant power yields
an α-approximate metric space for some constant α ≥ 1.
Consequently, the various constant-factor approximation al-
gorithms that we develop in this paper for α-approximate
metric spaces immediately imply constant-factor approxi-
mation algorithms for related problems on metric spaces in
which the objective function is altered by raising each dis-
tance to some constant power. In keeping with the foregoing
motivation, we will assume throughout the paper that the
parameter α governing the relaxed triangle inequality is a
constant.
In this paper we will define approximation versions of

various optimization problems. As a convenient shorthand,
throughout this paper we define an approximation algorithm
for a given problem to be nice if and only if it is constant-
factor approximate and runs in polynomial time. Remark:
The constant factor in the approximation bound is allowed
to depend on the constant α governing the relaxed triangle
inequality.
Throughout the remainder of the paper, we fix an arbi-

trary α-approximate metric space with associated nonempty
point set U and distance function d. We let n denote |U |, we
define an index as an integer in the range 1 to n inclusive,
and we define a scaling factor as a nonnegative real. Each
point x has an associated nonnegative weight w(x) and value
v(x). For any set of points X, we let w(X) =

P
x∈X w(x)

and v(X) =
P

x∈X v(x).

40

For any point x, nonempty sets of points X and Y , and
scaling factor λ, we define

d(x, Y) = min
y∈Y

d(x, y), (1)

radius(X,Y) = max
x∈X

d(x, Y), (2)

error (X,Y) =
X
x∈X

d(x, Y) · w(x), (3)

costλ(X,Y) = λ · error(X,Y) + v(Y). (4)

Remark: We occasionally abuse our notation slightly by
identifying a singleton set with its lone element. For exam-
ple, we generally write error(X,x) instead of error(X, {x}).
For any nonempty set of points X and integer k, 1 ≤

k ≤ |X|, we let radiusk(X) (resp., errork(X)) denote the
minimum, over all subsets Y of X such that |Y | = k, of
radius(X,Y) (resp., error (X,Y)). Similarly, for any scaling
factor λ and nonempty set of points X, we let costλ(X)
denote the minimum, over all nonempty subsets Y of X, of
costλ(X,Y).
In Sections 1.2 through 1.5 below, we define a number

of location problems and review the prior work on these
problems. In our discussions of prior work, we restrict our
attention to the important special case α = 1, since most of
the existing work assumes a strict triangle inequality. Sec-
tion 1.6 gives an outline of the remainder of the paper.

1.2 The k-center and k-median problems
A nonempty set of points X is said to achieve a radius

(resp., error) ratio of a if radius(U,X) (resp., error (U,X))
is at most a times radius |X|(U) (resp., error |X|(U)). Given
an index k, the k-center (resp., k-median) problem asks us
to determine a set of k points with minimum radius (resp.,
error) ratio. A k-center (resp., k-median) algorithm is a-
approximate if it computes a set of k points with radius
(resp, error) ratio a.
We now give a brief overview of the approximability re-

sults known for the k-center and k-median problems. The
farthest point technique of Gonzalez [5] yields a simple 2-
approximate k-center algorithm running inO(nk) time. This
factor-of-2 bound is matched by Hochbaum and Shmoys [7]
(albeit with a somewhat worse running time) using a more
general approximation technique that is applicable to a cer-
tain class of “bottleneck” problems that includes k-center.
Hochbaum and Shmoys [7] also show that no polynomial
time k-center algorithm can achieve an approximation fac-
tor better than 2 unlessP = NP. Thus, the approximability
of k-center is well understood. The situation with respect to
the k-median problem is somewhat more complicated. The
first nice k-median algorithm is due to Charikar et al. [3].
That result has subsequently been improved in terms of both
quality of approximation and running time. Currently, the
best approximation factor associated with any nice k-median
algorithm is 3 + ε, where ε is an arbitrarily small positive
constant; this result is due to Arya et al. [1]. Jain et al. [8]
show that there is no nice (1 + 2/e)-approximate k-median

algorithm unless NP ⊆ DTIME[nO(log log n)]. The reader
is referred to [8] for a more complete survey of prior work
on the k-median problem.

1.3 The incremental center and median
problems

We define a rank function as a numbering of the points

from 0 to n−1. A rank function r is said to achieve a radius
(resp., error) ratio of a if for any index k, radius(U, {x ∈ U |
r(x) < k) (resp., error (U, {x ∈ U | r(x) < k)), is at most a
times radiusk(U) (resp., errork(U)). The incremental cen-
ter (resp., median) problem asks us to determine a rank
function r with minimum radius (resp., error) ratio. An in-
cremental center (resp., median) algorithm is a-approximate
if it computes a rank function with radius (resp., error) ratio
a.
The farthest point technique of Gonzalez [5] provides a 2-

approximate O(n2)-time incremental center algorithm. The
hardness result for the k-center problem implies that no
polynomial time incremental center algorithm can achieve
a better radius ratio unless P = NP. The incremental
median problem is addressed in [10], where it is motivated
within an online framework and referred to as the online
median problem. The incremental k-median algorithm of
Mettu and Plaxton [10] runs in O(n2) time if the ratio of
the maximum interpoint distance to the minimum interpoint
distance is 2O(n), and achieves a cost ratio of approximately
30. More recently, Mettu and Plaxton [11] have presented
the fastest (randomized) nice k-median algorithm known.
That algorithm runs in O(nk) time for k between log n and

n
log2 n

; see [11] for the general time bound.

1.4 The facility location problem
We say that a nonempty set of points X has a cost ratio

of a with respect to a given scaling factor λ if costλ(U,X) ≤
a · costλ(U). The facility location problem asks us to de-
termine a nonempty set of points with minimum cost ratio
with respect to a given scaling factor. A facility location al-
gorithm is a-approximate if it computes a set of points with
cost ratio a with respect to any given scaling factor.
The first nice facility location algorithm is due to Shmoys

et al. [12]. That algorithm has subsequently been improved
in terms of both quality of approximation as well as running
time. Currently, the best approximation bound established
for any nice facility location algorithm is approximately 1.52;
this result is due to Mahdian et al. [9]. Guha and Kuller [6]
show that there is no nice 1.463-approximate facility loca-
tion algorithm unless NP ⊆ DTIME[nO(log log n)]. The
fastest nice facility location algorithm known is the O(n2)-
time greedy algorithm presented in [10], which achieves an
approximation ratio of 3. Another noteworthy result is Tho-
rup’s recent Õ(n +m)-time 1.62-approximate facility loca-
tion algorithm for the case in which the input metric space
is the shortest path metric of a weighted undirected graph
with n nodes and m edges. (Here the Õ notation suppresses
logarithmic factors.) The reader is referred to [9] and [13] for
a more complete survey of prior work on the facility location
problem.

1.5 The incremental facility location problem
In this section we introduce a new variant of the facility

location problem that we call the incremental facility loca-
tion problem. Our goal is to formulate a facility location
analogue of the incremental median problem discussed ear-
lier. In the incremental median problem, the objective is
to construct a sequence of near-optimal k-median solutions,
1 ≤ k ≤ n, such that no point is ever removed from our solu-
tion as k increases. Note that the facility location parameter
λ plays a qualitatively similar role as the parameter k in the
k-median problem: For small values of λ, a good solution

41

can be expected to contain a small number of facilities, and
for large values of λ, a good solution can be expected to con-
tain a large number of facilities. This observation motivates
us to ask whether there exists a rank function and a non-
decreasing function f from the set of scaling factors to the
set of indices such that for any scaling factor λ, if f(λ) = k,
then the set of k points with ranks less than k form a near-
optimal solution to the facility location problem. Given the
foregoing motivation, we now develop a formal definition of
the incremental facility location problem.
A threshold sequence is a nondecreasing sequence of values

0 = t1 ≤ t2 ≤ · · · ≤ tn drawn from R ∪ {∞}.
We say that a rank function r and threshold sequence

0 = t1 ≤ t2 ≤ · · · ≤ tn achieve a cost ratio of a if for any
scaling factor λ,

costλ(U, {x ∈ U | r(x) < k}) ≤ a · costλ(U) (5)

where k is the largest index such that tk ≤ λ.
The incremental facility location problem asks us to de-

termine a rank function and threshold sequence with mini-
mum cost ratio. An incremental facility location algorithm
is said to be a-approximate if it computes a rank function
and threshold sequence with cost ratio a.
There is no prior work on the incremental facility location

problem as we are introducing in the present paper.

1.6 Outline of the remainder of the paper
The remainder of the paper is organized as follows. Sec-

tion 2 presents a nice incremental facility location algorithm.
Section 3 develops hierarchical versions of the k-center, k-
median, and facility location problems. As discussed in Sec-
tion 3, the work of Dasgupta [4] provides a nice hierarchi-
cal center algorithm. In Section 4, we present a simple al-
gorithm for converting a good solution to the incremental
median (resp., facility location) problem into a good so-
lution for the hierarchical median (resp., facility location)
problem. This property is captured by our main techincal
lemma, Lemma 4.10. In Section 5, we use Lemma 4.10 and
the incremental median result of Mettu and Plaxton [10] to
establish our main theorem with respect to the hierarchical
median problem. Similarly, in Section 6, we use Lemma 4.10
and the incremental facility location result of Section 2 to
establish our main theorem with respect to the hierarchical
facility location problem.

2. A NICE INCREMENTAL FACILITY
LOCATION ALGORITHM

In this section we prove Theorem 1 below. Theorem 1
provides a key building block for the nice hierarchical facility
location algorithm of Section 6. (The hierarchical facility
location problem is defined in Section 3.4.)

Theorem 1. There is a nice incremental facility location
algorithm.

Let A be any existing c-approximate nice facility location
algorithm, where c is some positive constant. A number
of such algorithms have been presented in the literature,
though the presentation is typically restricted to the special
case α = 1 (i.e., the strict form of the triangle inequality is
assumed). In order to make use of such an algorithm in the
present context, we need to ensure that it can be modified

to yield a constant factor guarantee for any constant α. For-
tunately, this is invariably a straightforward exercise. For
example, it is easy to verify that the simple O(n2)-time fa-
cility location algorithm presented in [10] has this property.
Let I denote a given instance of the incremental facility

location problem. Thus for any scaling factor λ, (I, λ) is an
instance of the facility location problem.
If |U | = 1, or every point has value zero, or every point has

weight zero, then the theorem is straightforward to prove.
Therefore, in what follows, we assume that none of these
conditions hold. Let v− and v+ denote the minimum and
maximum nonzero point values, respectively. Let w− denote
the minimum nonzero point weight. Let W denote the sum
of the point weights. Let d− and d+ denote the minimum
and maximum interpoint distances.
We will prove Theorem 1 by using A as a subroutine in an

8c-approximate nice incremental facility location algorithm
B. (Remark: The factor of 8 can easily be improved to 4+ε,
for an arbitrarily small positive constant ε, and perhaps fur-
ther. Our current goal is to simply establish some constant
approximation bound.) We begin by studying optimal or
near-optimal solutions to the facility location instance (I, λ)
for various ranges of λ.
First let us consider the case where λ is sufficiently large.

In particular, let us assume that λ ≥ v+

d−w− . In this case,
we claim that X = {x | w(x) > 0} is an optimal solu-
tion to the facility location instance (I, λ). To see this, let
Y be an arbitrary solution and note that error(U,X) =
0 and error(U, Y) ≥ error(X,Y) ≥ d−w− · |X \ Y |, so
λ(error(U, Y) − error (U,X)) ≥ v+ · |X \ Y |. Furthermore,
v(X)−v(Y) ≤ v+ · |X \Y |. Thus costλ(U,X) ≤ costλ(U, Y)

for λ ≥ v+

d−w− .
Now let us consider the case where λ is sufficiently small.

In particular, let us assume that λ ≤ v−
d+W

. We consider
two subcases. For the first subcase, assume there exists a
point x such that v(x) = 0. In this subcase we claim that
X = {x | v(x) = 0} is an optimal solution to (I, λ). To
see this, let Y be an arbitrary solution, and observe that:
if Y ⊆ X then error (U,X) ≤ error (U, Y) and v(X) =
v(Y) = 0, so costλ(U,X) ≤ costλ(U,Y); if |Y \X| > 0, then
error (U,X) − error(U, Y) ≤ d+W and v(Y) − v(X) ≥ v−,
so costλ(U,X) ≤ costλ(U,Y) by the case assumption. For
the second subcase, assume that v(x) > 0 for every point x.
In this subcase we claim that the solution X = {x}, where
x is a point such that v(x) = v−, is within a factor of two
of optimal. To see this, note that costλ(U, Y) ≥ v(Y) ≥
v− for any solution Y , while error (U, x) ≤ d+W , so that
costλ(U, x) ≤ λd+W + v− ≤ 2v− by the case assumption.
We now define a sequence of scaling factors 〈λi | 0 ≤ i <

�〉, where λi =
v+

4id−w− and � is the least integer such that

λ�−1 ≤ v−
2d+W

. Thus � = Θ(log d+v+W
d−v−w−), which is bounded

by a polynomial in the size of the input. We compute a
solution Xi for each facility location instance (I, λi), 0 ≤
i < �, as follows. For i = 0 we use the approach discussed

above for the case where λ ≥ v+

d−w− . Thus X0 has optimal
cost with respect to any scaling factor λ greater than or
equal to λ0. For i = � − 1 we use the approach discussed

above for the case where λ ≤ v−
d+W

. Thus X�−1 has a cost
ratio of 2 with respect to any scaling factor less than or equal
to 2λ�−1. For each i such that 0 < i < � − 1, we run A on
the instance (I, λi) to obtain a solution Xi with cost ratio
c.

42

Let λ′0 = ∞, λ′i = 2λi for 0 < i < �, and λ
′
� = 0. Then the

claims established in the preceding paragraph, along with
Lemma 2.1 below, immediately imply that for every i, 0 ≤
i < �, the solution Xi has cost ratio 2c with respect to any
scaling factor λ such that λ′i+1 ≤ λ < λ′i.

Lemma 2.1. If X is a solution to the facility location in-
stance (I, λ) with cost ratio a, then for any scaling factor
λ′ such that λ/2 ≤ λ′ ≤ 2λ, X is a solution to the facility
location instance (I, λ′) with cost ratio 2a.

Proof. If λ ≤ λ′ ≤ 2λ then the result follows since

costλ′(U) ≥ costλ(U)

and

costλ′(U,X) ≤ 2 · costλ(U,X).

Similarly, if λ/2 ≤ λ′ ≤ λ, then
costλ′(U) ≥ costλ(U)/2

and

costλ′(U,X) ≤ costλ(U,X),

and the result follows.
We now inductively define an increasing sequence of inte-

gers 0 = a0 < a1 < · · · < am as follows. For each successive
positive integer i, we define ai as the least integer such that

2 · costλai
(U,Xai) ≤ costλai−1

(U,Xai−1)

if such an integer exists; otherwise, we set ai to � and ter-
minate the sequence. By the analysis of the preceding para-
graph, coupled with the observation that the cost of a solu-
tion does not increase if the scaling factor is decreased, we
obtain that for every i, 0 ≤ i < m, the solution Xai has
cost ratio 4c with respect to any scaling factor λ such that
λ′ai+1 ≤ λ < λ′ai

.
For each i, 0 ≤ i < m, let Yi = ∪i≤j<mXaj and note that

v(Yi) ≤
X

i≤j<m

v(Xaj)

and

error (U, Yi) ≤ error(U,Xai),

so

costλ(U, Yi) ≤
X

i≤j<m

costλ(U,Xaj)

≤ 2 · costλ(U,Xai)

for any scaling factor λ. Combining this with the claim of
the previous paragraph, we obtain that for every i, 0 ≤ i <
m, the solution Yi has cost ratio 8c with respect to any
scaling factor λ such that λ′ai+1 ≤ λ < λ′ai

.
Thus we have obtained a sequence of solutions Ym−1 ⊆

· · · ⊆ Y0 for which Ym−1 has cost ratio 8c with respect to
any scaling factor λ such that 0 = λ′am

≤ λ < λ′am−1 , Ym−2

has cost ratio 8c with respect to any scaling factor λ such
that λ′am−1 ≤ λ < λ′am−2 , and so on up to Y0, which has
cost ratio 8c with respect to any scaling factor λ such that
λ′a1 ≤ λ < λ′a0 = ∞. Given such a sequence of solutions it
is straightforward to compute a rank function and threshold
sequence with cost ratio 8c. This completes the proof of
Theorem 1.

The running time of the preceding algorithm is dominated
by the cost of computing near-optimal solutions to the � fa-
cility location instances obtained by varying the scaling fac-
tor λ. Using the O(n2)-time 3-approximate facility location
algorithm presented in [10], we obtain an overall time bound
of

O(n2�) = O

�
n2 log

d+v+W

d−v−w−

�
.

3. HIERARCHICAL CLUSTERING AND
SOME RELATED NOTIONS

Hierarchical clustering is a widely used technique in data
analysis. In Section 3.1 below, we review the definition of a
hierarchical clustering and describe the classic dendrogram-
based approach to depicting a given a hierarchical clustering.
Section 3.2 introduces a closely related structure that we
refer to as a hierarchical assignment. Section 3.3 defines
a special case of a hierarchical assignment that we refer to
as a hierarchical ordering. Section 3.4 uses the notion of a
hierarchical ordering to define several hierarchical location
problems.

3.1 Hierarchical Clustering
A clustering is a partition of U into a number of nonempty

sets, or clusters. A k-clustering is a clustering with k clus-
ters. The radius (resp., error) of a k-clustering with associ-
ated clusters Xi, 0 ≤ i < k, is defined as

max
0≤i<k

radius1(Xi)

(resp.,
P

0≤i<k error 1(Xi)).
A hierarchical clustering is a set of n clusterings contain-

ing one k-clustering for each index k, and such that for any
index k less than n, the (k+1)-clustering can be transformed
into the k-clustering by merging some pair of clusters.

Question 1. Does every metric space admit a hierarchi-
cal clustering for which each associated k-clustering has ra-
dius (resp., error) within a constant factor of optimal?

Dasgupta [4] answered the radius version of Question 1
in the affirmative. He left open the question of whether a
similar result holds with respect to error. In Section 3.3 we
define the notion of a hierarchical ordering and formulate a
stronger version of Question 1 with respect to hierarchical
orderings.
We remark that there are

Y
2≤k≤n

k

2

!
= n!(n− 1)!21−n

distinct hierarchical clusterings of U , since there is a unique
n-clustering and there are

�
k
2

�
different merge operations

that can be applied to any k-clustering to obtain a (k −
1)-clustering. Furthermore, the sequence of n − 1 merges
performed in successively transforming the n-clustering into
the 1-clustering induce an n-leaf binary tree in which each
leaf corresponds to a point and each of the n − 1 internal
nodes corresponds to a merge. Thus it is natural to consider
depicting a hierarchical clustering using a standard binary
tree diagram. The shortcoming of such a representation is
that information regarding the relative order of the merges
is, in general, lost. For example, in a binary tree in which

43

� � � � � � �

A B C D E F G

Figure 1: A dendrogram representation of a hier-
archical clustering of points A through G. For any
k, we can read off the k-clustering associated with
the hierarchical clustering by visualizing a horizon-
tal line that cuts k vertical lines of the dendrogram,
thereby partitioning the leaves into k sets. For ex-
ample, the dashed line shown above induces the 3-
clustering {{A,B}, {C,D}, {E, F,G}}.

several nodes appear at the same level, we cannot tell in
which order the corresponding merges are performed.
A dendrogram is a drawing of a binary tree that preserves

the total order on the internal nodes (induced by the merge
operations) by ensuring that no two internal nodes appear
at the same height on the page. In addition, the n leaves
are normally arranged along a horizontal line at the bottom
of the tree. See Figure 1 for an example of a dendrogram.
Remark: Sometimes the height of an internal node not

only encodes the relative order of the merges, but is in fact
proportional to some distance measure between the two clus-
ters being merged. This sort of approach is well-suited to the
depiction of hierarchical clusterings obtained via agglomer-
ative heuristics (e.g., single, complete, or average linkage)
that repeatedly merge the two closest clusters (according to
some distance measure such as closest pair, farthest pair, or
average distance) and for which it can be proven that the
distances associated with successive merges are nondecreas-
ing.
The primary appeal of the dendrogram representation of

a hierarchical clustering is that it enables one to visualize
the data at any desired level of granularity. To visualize
the k-clustering associated with some desired value of k,
one simply scans the dendrogram for the height at which a
horizontal line leaves k − 1 internal nodes above and n − k
internal nodes below. Note that the k tree edges cut by such
a horizontal line lead downwards to the roots of k subtrees.
The k sets of leaves associated with these k subtrees form
the desired k-clustering.
An issue that arises in generating a dendrogram represen-

tation of a given hierarchical clustering is that there is more
than one dendrogram corresponding to a given hierarchical
clustering. More precisely, it is well known that there are

2n−1 different dendrograms corresponding to a given hier-
archical clustering. This factor arises because exchanging
the left and right subtrees of any internal node in a dendro-
gram yields an alternative encoding of the same hierarchical
clustering. The problem of determining which of the 2n−1

possible dendrograms to use to represent a given hierarchi-
cal clustering is sometimes called the leaf ordering problem.
Various approaches have been proposed for addressing the
leaf ordering problem. For example, Bar-Joseph et al. [2]
have recently presented an O(n3)-time dynamic program-
ming algorithm that can be used to compute a leaf order-
ing minimizing the sum of the distances between adjacent
points in the ordering. In Section 3.3 we suggest a natural
alternative approach to the leaf ordering problem. We also
describe how our approach can be used in combination with
any given leaf ordering algorithm.

3.2 Hierarchical Assignment
An assignment is a function from U to U . A k-assignment

is an assignment with a range of size k. The radius (resp.,
error) of an assignment σ is defined as maxx∈U d(x, σ(x))
(resp.,

P
x∈U d(x, σ(x)) · w(x)).

A hierarchical assignment is a set of n assignments con-
taining one k-assignment for each index k, and such that
for any index k less than n, there exists a pair of points x
and y for which the (k + 1)-assignment can be transformed
into the k-assignment by reassigning to x all points assigned
to y. Note that this transformation may be viewed as an
“oriented merge” of the two sets of points mapped to x and
y in the (k + 1)-assignment. (We consider the merge to be
oriented because the union of these sets of points is assigned
to x, and not y, in the k-assignment.)
A notable difference between a hierarchical assignment

and a hierarchical clustering is that while there is only one
n-clustering of U , there are n! possible n-assignments, one
corresponding to each permutation. Furthermore, for k > 1,
there are k(k − 1) different oriented merge operations that
can be applied to any k-assignment to obtain a (k − 1)-
assignment. It follows that there are exactly (n!)2(n − 1)!
distinct hierarchical assignments of U .
We define a parent function p with respect to a given rank

function r as a mapping from U to U such that p(x) = x if
r(x) = 0 and r(p(x)) < r(x) otherwise.
The above discussion suggests the following permutation-

rank-parent representation in which a hierarchical assign-
ment with associated k-assignment σk, 1 ≤ k ≤ n is repre-
sented by specifying the following information: (1) The per-
mutation σn; (2) The rank function r such that the range of
σk is equal to {x | r(x) < k}; (3) The parent function p with
respect to r such that for any index k less than n, the ori-
ented merge operation transforming σk+1 into σk reassigns
to p(x) all points assigned to x, where r(x) = k.
Note that there are n! choices for the permutation σn and

n! choices for the rank function r. Furthermore, for ev-
ery choice of σn and r, there are (n − 1)! choices for the
parent function p. Thus there are (n!)2(n − 1)! possible
permutation-rank-parent representations, one for each hier-
archical assignment.

3.3 Hierarchical Orderings
We define a hierarchical ordering as a hierarchical assign-

ment for which the associated k-assignment is idempotent
for all k. Note that the identity assignment is the only idem-

44

potent n-assignment on a set of n points. Furthermore, for
any index k < n, if the (k + 1)-assignment associated with
a hierarchical assignment is idempotent, then so is the k-
assignment. Thus we can equivalently define a hierarchical
ordering as a hierarchical assignment for which the asso-
ciated n-assignment is the identity assignment. Thus the
permutation-rank-parent representation for hierarchical as-
signments described in Section 3.2 corresponds to a rank-
parent representation for hierarchical orderings, and there
are exactly n!(n− 1)! hierarchical orderings.

Question 2. Does every metric space admit a hierarchi-
cal ordering for which each associated k-assignment has ra-
dius (resp., error) within a constant factor of optimal?

The following view of a hierarchical ordering may be useful
in order to better understand the relationship between Ques-
tion 2 above and Question 1 posed (and answered, for the
radius case) by Dasgupta [4]. A hierarchical ordering may be
interpreted as a hierarchical clustering in which the points of
each cluster are assigned to a unique “representative” point
in the cluster, subject to the additional constraint that when
two clusters X and Y are merged, the representative of the
resulting cluster is required to be chosen as either the rep-
resentative of X or the representative of Y . If we were to
drop the latter constraint, there would be no difference be-
tween the hierarchical ordering questions posed above and
the corresponding hierarchical clustering questions posed by
Dasgupta. But by constraining the choice of representative,
we only make it more difficult to remain within a constant
factor of optimal for all indices k.
For the radius version of the problem, the α-approximate

triangle inequality implies that for any cluster X and point
x in X, radius(X,x) ≤ 2α · radius1(X). Given that we
are assuming α to be a constant, this implies that a given
metric space admits a hierarchical ordering for which each
associated k-assignment has radius within a constant factor
of optimal if and only if it admits a hierarchical clustering
for which each associated k-clustering has radius within a
constant factor of optimal. So, Dasgupta’s work [4] imme-
diately provides a positive answer to the radius version of
Question 2.
For the error version of the problem, which is the primary

focus of the present paper, note that the (weighted) sum of
distances to the representative of a given cluster can vary
dramatically (by a factor essentially as large as the diameter
of the metric space) depending on the choice of cluster rep-
resentative. Thus the error version of Question 2 is stronger
than the error version of Question 1 in that a positive an-
swer to the former question immediately implies a positive
answer to the latter question, but not vice versa.
In Section 5 we resolve the error version of Question 2 in

the affirmative, thereby also providing a positive answer to
the error version of Question 1. (In fact, for any constant
α, we provide a positive answer to Question 2 for any α-
approximate metric space.)
Let us now briefly return to the leaf ordering problem

mentioned at the end of Section 3.1. Earlier we saw that the
leaf ordering problem arises because there are 2n−1 different
dendrograms corresponding to a given hierarchical cluster-
ing. But the number of dendrograms is exactly equal to the
number of hierarchical orderings, so if we encode a hierar-
chical ordering as a dendrogram by adopting the convention
that the leftmost leaf in each subtree is the representative

� � � � � � �

A B C D E F G

Figure 2: The above dendrogram variant encodes
a hierarchical ordering in which F has rank 0 and
parent F , D has rank 1 and parent F , A has rank
2 and parent D, B has rank 3 and parent A, E has
rank 4 and parent F , G has rank 5 and parent F , and
C has rank 6 and parent D. The dashed line induces
the idempotent 3-assignment in which A and B are
mapped to A, C and D are mapped to D, and the
three remaining points are mapped to F .

of the cluster corresponding to that subtree, then the leaf
ordering problem goes away.
On the other hand, there may be applications in which

the flexibility associated with the leaf ordering problem is
viewed as advantageous, since it allows us the opportunity
to optimize some auxiliary objective function in the choice
of the particular dendrogram to be used to represent a given
hierarchical clustering. In such a context, if we wish to rep-
resent a hierarchical ordering instead of a hierarchical clus-
tering, it may be preferable to apply a given leaf ordering
technique, and then to use the following modified dendro-
gram diagram to indicate the representative of each cluster.
In a typical dendrogram, when two clusters are merged, a
horizontal line is drawn that connects the roots of the two
clusters, and a vertical line is drawn from the center of this
horizontal line upward, to represent the root of the merged
cluster. Instead, the vertical line representing the new root
can be drawn so that it simply extends the vertical line asso-
ciated with the representative, as in the example of Figure 2.
With this modified dendrogram diagram, we can apply an
arbitrary leaf ordering heuristic and still represent any given
hierarchical ordering.

3.4 Hierarchical Location Problems
A hierarchical ordering is said to achieve a radius (resp.,

error) ratio of a if each associated k-assignment has radius
(resp., error) at most a times radiusk(U) (resp., errork(U)).
The hierarchical center (resp., median) problem is to deter-
mine a hierarchical ordering with minimum radius (resp.,
error) ratio. A hierachical center (resp., median) algorithm
is a-approximate if it is guaranteed to return a solution with
radius (resp., error) ratio a.

45

As indicated earlier, Dasgupta’s work provides a nice hi-
erarchical center algorithm. (Dasgupta only considers the
case α = 1, but his work is easily extended to handle an
arbitrary constant α.) In Section 5, we provide a nice hier-
archical median algorithm.
A hierarchical ordering and a threshold sequence

0 = t1 ≤ t2 ≤ · · · ≤ tn,
together achieve a cost ratio of a if for any scaling factor
λ, if k is the largest index such that λ ≥ tk, then the
k-assignment associated with the hierarchical ordering has
cost at most a times costλ(U). The hierarchical facility lo-
cation problem asks us to determine a hierarchical ordering
and threshold sequence with minimum cost ratio. A hierar-
chical facility location algorithm is a-approximate if it com-
putes a hierarchical ordering and threshold sequence with
cost ratio a. In Section 6 we present a nice hierarchical
facility location algorithm.
In Section 3.3 we discussed two ways to represent a hier-

archical ordering as a dendrogram. It is worth remarking
that the solution to an instance of the hierarchical facility
location problem, that is, a hierarchical ordering and asso-
ciated threshold sequence, also has a natural dendrogram
representation, since we can use the heights of the internal
nodes of the dendrogram to encode the threshold sequence.

4. AN ERROR-PRESERVING PARENT
FUNCTION

Throughout this section, we assume a fixed (and arbi-
trary) rank function that numbers the points in U from 0
to n − 1. For the sake of brevity, we use the term “par-
ent function” to refer to any parent function with respect
to this rank function. In order to streamline our notation,
throughout this section we identify each point with its rank.
Thus, throughout this section, an expression such as “point
i” refers to the point with rank i, where 0 ≤ i < n. As an
additional notational convenience, for any natural number
i, we let [i] denote the set {j | 0 ≤ j < i}. For example, in
this section we use the expression [n] to refer to the set of
points U .
As discussed in Section 3.3, once we specify a parent func-

tion p to go along with the rank function fixed above, we
have specified a hierarchical ordering. For any parent func-
tion p and index k, let σp

k denote the k-assignment associated
with the hierarchical ordering determined by p, and let τp

k

denote the assignment such that for any point i,

τp
k (i) =

�
i if i < k,
p(i) otherwise.

(6)

Lemma 4.1. For any parent function p, σp
n is the identity

assignment and

σp
k = τ

p
kσ

p
k+1.

for any index k less than n.

Proof. The claim that σp
n is the identity assignment is

immediate. The remaining claim would also be immediate
if the condition i < k appearing in Equation 6 were changed
to i �= k. By the definition of σp

k, the range of σ
p
k is [k] for

any parent function p and index k. Thus, for any parent
function p and index k less than n, the assignment τp

kσ
p
k+1

is not altered if the condition i < k appearing in Equation 6
is changed to i �= k, completing the proof.

For any parent function p and point i, we inductively de-
fine the set T p

i in terms of the sets T p
j associated with points

j > i as follows:

T p
i = {i} ∪ {T p

j | p(j) = i}.

Lemma 4.2. For any parent function p and index k, {T p
i |

p(i) < k ≤ i} is a partition of {i | k ≤ i < n}.

Proof. We prove the claim by reverse induction on k.
The base case, k = n, is trivial. For the induction step, let
k be any index less than n, and note that {i | p(i) < k ≤ i}
is equal to

({i | p(i) < k + 1 ≤ i} ∪ {k}) \ {i | p(i) = k},
so the claim follows by the induction hypothesis and the
definition of T p

k .
The following lemma gives a useful recharacterization of

of the error associated with σp
k for any parent function p and

index k.

Lemma 4.3. For any parent function p and index k, the
error of assignment σp

k is equal toX
i:p(i)<k≤i

error (T p
i , p(i)).

Proof. See Appendix A.
The remainder of this section is organized as follows. Sec-

tion 4.1 presents a simple algorithm for computing a “good”
parent function with respect to our arbitrary fixed choice of
rank function. Section 4.2 shows that for any index k, the
parent function computed by this algorithm minimizes the
error of the assignment σp

k to within a constant factor.

4.1 Algorithm
Our algorithm for determining a “good” parent function

p proceeds by computing p(i) for successively lower values
of i, ranging from n−1 down to 1. (Recall that p(0) = 0 for
any parent function.) Hence T p

i is fully determined by the
time we are ready to compute p(i), so that T p

i can be used
in the computation of p(i). In particular, we set p(i) to the
minimum j in [i] such that

d(i, j) = d(i, [i]) ∨ d(i, j) · w(T p
i) ≤ c1 · error(T p

i , i), (7)

where c1 is a sufficiently large constant to be specified later.
(We ultimately choose c1 = 2α + 1.) It is straightforward
to give an O(n2)-time implementation of the above parent
function computation.

4.2 Analysis
Throughout this section, we let p denote the particular

parent function computed by the algorithm of Section 4.1.
The following lemma is a straightforward consequence of

the α-approximate triangle inequality.

Lemma 4.4. For any point z and nonempty sets of points
X and Y , we have

d(z, Y) · w(X)
α

− error(X, z)

≤ error(X,Y)

≤ α [d(z, Y) · w(X) + error (X, z)] .

46

Proof. In the arguments that follow, let σ denote an
assignment mapping each point in U to a nearest point in
Y . To establish the lower bound on error (X,Y), let x be
an arbitrary point in X, and note that

d(x, Y) = d(x, σ(x))

≥ d(z, σ(x))

α
− d(x, z)

≥ d(z, Y)

α
− d(x, z),

where the first inequality follows from the α-approximate
triangle inequality. The lower bound now follows by multi-
plying through by w(x) and summing over all x in X:

error(X,Y) =
X
x∈X

d(x, Y) · w(x)

≥
X
x∈X

�
d(z, Y)

α
− d(x, z)

�
· w(x)

=
d(z, Y)

α
· w(X)− error (X, z).

We now use a similar argument to establish the desired
upper bound on error (X,Y). Let x be an arbitrary point in
X, and note that

d(x, Y) ≤ d(x, σ(z))

≤ α [d(z, σ(z)) + d(x, z)]

= α [d(z, Y) + d(x, z)] ,

where the second inequality follows from the α-approximate
triangle inequality. The upper bound now follows by multi-
plying through by w(x) and summing over all x in X:

error(X,Y) =
X
x∈X

d(x, Y) · w(x)

≤
X
x∈X

α [d(z, Y) + d(x, z))] · w(x)

= α [d(z, Y) · w(X) + error (X, z)] .

Lemma 4.5. For any nonzero point i such that d(i, p(i)) =
d(i, [i]) and d(i, p(i)) · w(T p

i) > c1 · error(T p
i , i), we have

error(T p
i , p(i)) <

α2(c1 + 1)

c1 − α · error(T p
i , [i]).

Proof. By Lemma 4.4, we have

error(T p
i , [i]) ≥ d(i, [i]) · w(T p

i)

α
− error (T p

i , i)

=
d(i, p(i)) · w(T p

i)

α
− error (T p

i , i),

Lemma 4.4 also implies

error(T p
i , p(i)) ≤ α[d(i, p(i)) · w(T p

i) + error (T p
i , i)].

The claim of the lemma follows since

d(i, p(i)) · w(T p
i) > c1 · error (T p

i , i).

Lemma 4.6. For any nonzero point i such that d(i, p(i)) ·
w(T p

i) ≤ c1 · error (T p
i , i), we have

error(T p
i , p(i)) ≤ α(c1 + 1) · error (T p

i , i).

Proof. Immediate from Lemma 4.4.

Lemma 4.7. For any nonzero point i such that d(i, p(i)) ·
w(T p

i) ≤ c1 · error (T p
i , i), and p(i) �= 0, we have

error(T p
i , p(i)) <

α2(c1 + 1)

c1 − α · error (T p
i , [p(i)]).

Proof. By the minimality of our choice of p(i) as speci-
fied in Equation 7, we have

d(i, j) · w(T p
i) > c1 · error (T p

i , i)}
for all j in [p(i)], and hence

d(i, [p(i)]) · w(T p
i) > c1 · error(T p

i , i)}.
Thus

error(T p
i , [p(i)]) ≥ d(i, [p(i)]) · w(T p

i)

α
− error(T p

i , i)

>
� c1
α

− 1
�
· error (T p

i , i),

where the first inequality follows from Lemma 4.4. The
lemma then follows from Lemma 4.6.

Lemma 4.8. For any point i such that p(i) �= 0, we have

error(T p
i , p(i)) ≤ α2(c1 + 1)

c1 − α · error (T p
i , [p(i)]).

Proof. If d(i, p(i)) = d(i, [i]) and d(i, p(i)) · w(T p
i) >

c1 · error (T p
i , i), then the desired inequality follows from

Lemma 4.5 and the observation that [p(i)] ⊆ [i].
Otherwise, d(i, p(i)) · w(T p

i) ≤ c1 · error (T p
i , i), and the

result follows from Lemma 4.7.
Let

c2 =
α3(c1 + 1)2

c1 − α .

Lemma 4.9. For any nonzero point i, we have

error(T p
i , p(i)) ≤ c2 · error(T p

i , [i]).

Proof. If d(i, p(i)) = d(i, [i]) and

d(i, p(i)) · w(T p
i) > c1 · error (T p

i , i),

then the desired inequality follows from Lemma 4.5.
Otherwise,

d(i, p(i)) · w(T p
i) ≤ c1 · error (T p

i , i),

and Lemma 4.6 implies

error(T p
i , p(i)) ≤ α(c1 + 1) · error(T p

i , i).

The result then follows since

error(T p
i , i)

= error(i, i) +
X

j:p(j)=i

error (T p
j , i)

≤ α2(c1 + 1)

c1 − α ·
X

j:p(j)=i

error (T p
j , [i])

≤ α2(c1 + 1)

c1 − α ·
0
@error(i, [i]) +

X
j:p(j)=i

error (T p
j , [i])

1
A

=
c2

α(c1 + 1)
· error (T p

i , [i]).

47

(The first step follows from the definition of T p
i and the

observation that error (i, i) = 0. The second step follows
from Lemma 4.8 since i �= 0. The final step follows from the
definition of T p

i .)

Lemma 4.10. For any index k, the error of σp
k is at most

c2 · error([n], [k]).
Proof. By Lemma 4.3, the error of σp

k isX
i:p(i)<k≤i

error(T p
i , p(i)) ≤

X
i:p(i)<k≤i

c2 · error (T p
i , [i])

≤ c2 ·
X

i:p(i)<k≤i

error (T p
i , [k])

= c2 · error([n], [k]).
(The first step follows from Lemma 4.9. The second step
follows since k is at most i. The third step follows from
Lemma 4.2.)
In order to minimize the approximation ratio of c2 asso-

ciated with the preceding lemma, we set c1 = 2α + 1 and
obtain c2 = 4α3(α+ 1).

5. A NICE HIERARCHICAL MEDIAN
ALGORITHM

Theorem 2. There is a nice algorithm for the hierarchi-
cal median problem.

Proof. Immediate from Lemma 4.10 and the incremen-
tal median algorithm of Mettu and Plaxton [10].
For any real α ≥ 1, the running time of the above algo-

rithm is dominated by that of the incremental median algo-
rithm of Mettu and Plaxton. As discussed in Section 1.3,
the running time of the latter algorithm is O(n2) assuming
that the ratio of the maximum interpoint distance to the
minimum interpoint distance is 2O(n). (See [10] for a more
general running time bound.)
Even if α is equal to 1, the approximation factor estab-

lished above is over 200, since it is 8 times the factor associ-
ated with the Mettu and Plaxton algorithm, which is close
to 30 as indicated in Section 1.3. It would be interesting to
significantly improve this approximation factor.

6. A NICE HIERARCHICAL FACILITY
LOCATION ALGORITHM

Theorem 3. There is a nice algorithm for the hierarchi-
cal facility location problem.

Proof. Immediate from Theorem 1 and Lemma 4.10.
The running time of the above algorithm is dominated by

the running time of the incremental facility location algo-
rithm of Section 2. The approximation factor is 4α3(α+ 1)
times that associated with the incremental facility location
algorithm.

Acknowledgments
The author would like to thank Sanjoy Dasgupta, Xiaozhou
Li, Ramgopal Mettu, Vinayaka Pandit, Yu Sun, and Arun
Venkataramani for their valuable comments on earlier ver-
sions of this paper. Also, the author would like to thank
Joydeep Ghosh for suggesting the modified dendrogram di-
agram discussed at the end of Section 3.3.

7. REFERENCES
[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson,

K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. In
Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, pages 21–29, July 2001.

[2] Z. Bar-Joseph, E. D. Demaine, D. K. Gifford, A. M.
Hamel, T. S. Jaakkola, and N. Srebro. K-ary
clustering with optimal leaf ordering for gene
expression data. In R. Guigó and D. Gusfield, editors,
Proceedings of the 2nd International Workshop on
Algorithms in Bioinformatics, volume 2452 of Lecture
Notes in Computer Science, pages 506–520. Springer,
September 2002.

[3] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys.
A constant-factor approximation algorithm for the
k-median problem. Journal of Computer and System
Sciences, 65:129–149, 2002.

[4] S. Dasgupta. Performance guarantees for hierarchical
clustering. In J. Kivinen and R. H. Sloan, editors,
Proceedings of the 15th Annual Conference on
Computational Learning Theory, volume 2375 of
Lecture Notes in Computer Science, pages 351–363.
Springer, July 2002.

[5] T. F. González. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
38:293–306, 1985.

[6] S. Guha and S. Khuller. Greedy strikes back:
Improved facility location algorithms. Journal of
Algorithms, 31:228–248, 1999.

[7] D. S. Hochbaum and D. B. Shmoys. A best possible
heuristic for the k-center problem. Mathematics of
Operations Research, 10:180–184, 1985.

[8] K. Jain, M. Mahdian, and A. Saberi. A new greedy
approach for facility location problems. In Proceedings
of the 34th Annual ACM Symposium on Theory of
Computing, pages 731–740, May 2002.

[9] M. Mahdian, Y. Ye, and J. Zhang. Improved
approximation algorithms for metric facility location
problems. In K. Jansen, S. Leonardi, and V. Vazirani,
editors, Proceedings of the 5th International Workshop
on Approximation Algorithms for Combinatorial
Optimization, volume 2462 of Lecture Notes in
Computer Science, pages 229–242. Springer,
September 2002.

[10] R. R. Mettu and C. G. Plaxton. The online median
problem. In Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science,
pages 339–348, November 2000. The journal version,
to appear in SIAM Journal on Computing, provides
details regarding the extension of the online median
result to α-approximate metric spaces for any
constant α.

[11] R. R. Mettu and C. G. Plaxton. Optimal time bounds
for approximate clustering. In Proceedings of the 18th
Conference on Uncertainty in Artifical Intelligence,
pages 344–351, August 2002.

[12] D. B. Shmoys, É. Tardos, and K. Aardal.
Approximation algorithms for facility location
problems. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 265–274,
May 1997.

48

[13] M. Thorup. Quick and good facility location. In
Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 178–185,
January 2003.

APPENDIX

A. PROOF OF LEMMA 4.3
For any parent function p and index k, we now define

an associated assignment σ̃p
k as follows. If i < k, we let

σ̃p
k(i) = i. Otherwise, appealing to Lemma 4.2, we define
σ̃p

k(i) as the unique point j such that i belongs to T
p
j and

p(j) < k ≤ j.
For any parent function p and index k, let τ̃p

k denote the
assignment

τ̃p
k (i) =

�
i if p(i) < k,
p(i) otherwise.

(8)

Lemma A.1. For any parent function p, σ̃p
n is the identity

assignment and

σ̃p
k = τ̃

p
k σ̃

p
k+1

for any index k less than n.

Proof. The claim that σ̃p
n is the identity assignment is

immediate. For the rest of the lemma, fix a parent function
p and an index k less than n. We now complete the proof
by arguing that

σ̃p
k(i) = τ̃

p
k (σ̃

p
k+1(i)) (9)

for all points i. We consider three cases.
First, suppose that i < k. In this case, it is immediate

that σ̃p
k, τ̃

p
k , and σ̃

p
k+1 all map i to i, so Equation 9 holds.

Next, suppose that i = k. We claim that σ̃p
k, τ̃

p
k , and σ̃

p
k+1

all map k to k, so Equation 9 holds as in the preceding case.
The claim is immediate for σ̃p

k+1. Since p(k) < k, the claim
also holds for τ̃p

k . To see that σ̃
p
k(k) = k, note that k belongs

to T p
k and p(k) < k.

Finally, suppose that i > k. Let j denote σ̃p
k+1(i). Thus i

belongs to T p
j and p(j) < k + 1 ≤ j, or equivalently, p(j) ≤

k < j. Also, the RHS of Equation 9 is equal to τ̃p
k (j). We

now complete our analysis by considering two subcases.
For the first subcase, suppose that p(j) = k. Then T p

j ⊆
T p

k . Furthermore, p(k) < k, so the LHS of Equation 9 is
equal to k. Furthermore, the subcase assumption implies
that the RHS is equal to k.
For the second subcase, suppose that p(j) < k. Then i

belongs to T p
j and p(j) < k < j, so the LHS of Equation 9

is equal to j. Furthermore, the subcase assumption implies
that the RHS is equal to j.

Lemma A.2. For any parent function p and index k such
that k < n, we have

τp
k τ

p
k+1 = τ

p
k τ̃

p
k .

Proof. For any point i, τp
k+1(i) = τ̃p

k (i) unless p(i) <
k < i, in which case τp

k+1(i) = p(i) and τ̃p
k (i) = i. The

lemma follows since the condition p(i) < k ≤ i implies that
τp

k (i) = τ
p
k (p(i)) = p(i).

Lemma A.3. For any parent function p and index k, we
have

σp
k = τ

p
k σ̃

p
k.

Proof. We prove the claim by reverse induction on k.
The base case, k = n, holds since σp

n, τ
p
n , and σ̃

p
n are all

equal to the identity assignment. For the induction step,
assume that σp

k+1 = τ
p
k+1σ̃

p
k+1 for some index k less than n,

and note that

σp
k = τp

kσ
p
k+1

= τp
k τ

p
k+1σ̃

p
k+1

= τp
k τ̃

p
k σ̃

p
k+1

= τp
k σ̃

p
k.

(The first step follows from Lemma 4.1. The second step
follows by applying the the induction hypothesis. The third
step follows from Lemma A.2. The last step follows from
Lemma A.1.)
We are now ready to complete the proof of Lemma 4.3.

For any parent function p and index k, the error of assign-
ment σp

k isX
i∈[n]

d(i, σp
k(i)) · w(i)

=
X
i∈[n]

d(i, τp
k (σ̃

p
k(i))) · w(i)

=
X
i∈[k]

d(i, i) · w(i) +
X

k≤i<n

d(i, τp
k (σ̃

p
k(i))) · w(i)

=
X

i:p(i)<k≤i

X
j∈T

p
i

d(j, τp
k (σ̃

p
k(j))) · w(j)

=
X

i:p(i)<k≤i

X
j∈T

p
i

d(j, τp
k (i)) · w(j)

=
X

i:p(i)<k≤i

X
j∈T

p
i

d(j, p(i)) · w(j)

=
X

i:p(i)<k≤i

error (T p
i , p(i)).

(The first step follows from Lemma A.3. For the second
step, note that σ̃p

k(i) = τ
p
k (i) = i for all i in [k]. For the third

step, note that the first summation vanishes since d(i, i) = 0,
and the second summation can be rewritten as a double
summation using Lemma 4.2. For the fourth step, note that
j ∈ T p

i where p(i) < k ≤ i implies σ̃p
k(j) = i. For the fifth

step, note that k ≤ i implies τp
k (i) = p(i). The last step

follows from Equation 3.)

49

