
SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. 1761–1781

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES
ON UNWEIGHTED GRAPHS∗

YUVAL EMEK† AND DAVID PELEG†

Abstract. Given a graph G and a spanning tree T of G, we say that T is a tree t-spanner
of G if the distance between every pair of vertices in T is at most t times their distance in G.
The problem of finding a tree t-spanner minimizing t is referred to as the Minimum Max-Stretch
spanning Tree (MMST) problem. This paper concerns the MMST problem on unweighted graphs.
The problem is known to be NP-hard, and the paper presents an O(log n)-approximation algorithm
for it. Furthermore, it is established that unless P = NP, the problem cannot be approximated
additively by any o(n) term.

Key words. spanning trees, low stretch, spanners

AMS subject classifications. 05C05, 05C12, 05C85

DOI. 10.1137/060666202

1. Introduction.

1.1. The problem. Consider a connected n-vertex graph G. Let T be a span-
ning tree of G and let x and y be two vertices in G. The stretch of x and y in T ,
denoted strT (x, y), is the ratio of the distance between x and y in T to their distance
in G. The maximum stretch1 of T , denoted max-str(T), is defined as the maximum
of strT (x, y), taken over all pairs of vertices x, y in G. The problem of finding a
spanning tree T minimizing max-str(T) is referred to as the Minimum Max-Stretch
spanning Tree (MMST) problem. In this paper we study the MMST problem on un-
weighted graphs. This problem is known to be NP-hard [5], and this paper presents
the first nontrivial approximation algorithm for it, achieving an approximation ra-
tio of O(log n). Our algorithm is inspired by the algorithm presented in [16] for the
Minimum Restricted Diameter spanning Tree (MRDT) problem. We then establish
a hardness of approximation result, showing that it is NP-hard to approximate the
problem additively by a term of o(n).

The MMST problem finds applications in network design and, in particular, in the
context of distributed systems. One such application is the arrow distributed directory
protocol introduced in [7]. This protocol supports the location of mobile objects in a
distributed network. It is implemented over a spanning tree T that spans the network,
and, as shown in [19], the worst case overhead ratio of the protocol is proportional
to the maximum stretch of T . Therefore, a good candidate for the backbone of the
arrow protocol is a spanning tree with low maximum stretch (see also [17]).

1.2. Related work. The notion of stretch can be defined for any spanning
subgraph. Formally, given a graph G, a spanning subgraph H of G, and a pair of

∗Received by the editors July 27, 2006; accepted for publication (in revised form) September
15, 2008; published electronically December 19, 2008. An extended abstract appeared in [11]. This
research was supported in part by a grant from the Israel Science Foundation.

http://www.siam.org/journals/sicomp/38-5/66620.html
†Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science,

Rehovot, 76100 Israel (yuval.emek@weizmann.ac.il, david.peleg@weizmann.ac.il).
1In some papers the notion of stretch refers to the maximum taken over all vertex pairs. To avoid

misunderstanding, we distinguish between stretch, defined in the current paper for a specific vertex
pair, and maximum stretch, defined for the whole tree.

1761

1762 YUVAL EMEK AND DAVID PELEG

vertices x, y in G, the stretch of x and y in H is defined as the ratio of the distance
between x and y in H to their distance in G. A spanning subgraph with maximum
stretch t is called a t-spanner. Spanners for general graphs were first introduced in
[22]. Sparse spanners (namely, spanners with a small number of edges) were first
studied in [20], where the problem of determining for a given graph G and a positive
integer m whether G has a t-spanner with at most m edges is shown to be NP-
complete for t = 2 while a polynomial time construction is presented for a (4t + 1)-
spanner with O

(
n1+1/t

)
edges for every n-vertex graph and t ≥ 1. Simple algorithms

for constructing sparse spanners for arbitrary weighted graphs are presented in [2],
including the construction of a (2t+1)-spanner with at most n

⌈
n1/t

⌉
edges for every

n-vertex graph and t > 0. For any fixed t ≥ 3 the problem of determining, for an
arbitrary graph G and a positive integer m, whether G has a t-spanner with at most
m edges is proved to be NP-complete in [4]. A polynomial time construction for a
3-spanner with O

(
n3/2

)
edges is presented in [9].

Cast in this terminology, the MMST problem can therefore be redefined as the at-
tempt to find a tree t-spanner minimizing t. The NP-hardness of the MMST problem,
even on unweighted graphs, is established in [5], where it is proved that determining
whether an arbitrary weighted (respectively, unweighted) graph has a tree t-spanner is
NP-complete for every fixed t > 1 (respectively, t ≥ 4). The same paper also presents
a polynomial time algorithm for constructing a tree 1-spanner in a weighted graph
(if such a spanner exists) and a polynomial time algorithm for constructing a tree
2-spanner in an unweighted graph (if such a spanner exists).

Low stretch spanning trees in planar graphs were first studied in [12], where it is
proved that finding a spanning tree T with minimum max-str(T) is NP-hard even for
unweighted planar graphs. Polynomial time algorithms are presented therein for the
problem of deciding for a fixed parameter t whether a planar unweighted graph with
bounded face length has a tree t-spanner and for the problem of deciding whether an
arbitrary unweighted planar graph has a tree 3-spanner. A polynomial time algorithm
for the MMST problem on outerplanar graphs is presented in [21].

Hardness of approximation is established in [19], where it is shown that approxi-
mating the MMST problem within a factor better than (1 +

√
5)/2 is NP-hard. This

is improved in [18] by observing that the 2− ε inapproximabilty result established in
[14] for the min-max strictly fundamental cycle basis problem also holds in the context
of the MMST problem on unweighted graphs. A number of papers have studied the
related but easier problem of finding a spanning tree with good average stretch factor
[1, 3, 13, 10].

Given a complete graphG = (V (G),E (G)) with edge weights obeying the triangle
inequality and a subset R ⊆ E (G) called the requirements of G, the MRDT problem
is to find a spanning tree T of G that minimizes the restricted diameter of T defined
as the diameter of T restricted to vertex pairs in R. The MRDT problem is presented
and proved to be NP-hard in [16]. The same paper presents anO(log n)-approximation
algorithm for this problem. It can be shown that the MMST problem on complete
graphs with edge weights arising from the distances in some unweighted graph is a
special case of the MRDT problem.

1.3. A brief description of the technique. Our main result is the first non-
trivial approximation algorithm for the MMST problem on unweighted graphs. This
algorithm relies on a graph decomposition technique that, given an unweighted graph
G of size n, breaks it into disjoint connected components, each of size at most n/2, by
discarding the edges internal to some ball B of radius proportional to the maximum

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1763

stretch ρ of an optimal solution to the MMST problem on G. The spanning trees gen-
erated by recursive invocations of the algorithm on each such connected component
are combined with a single source shortest paths spanning tree of B to produce a
spanning tree T of G.

Consider an arbitrary edge (x, y) in G. Our analysis relies on observing that the
number of edges added to the unique path between x and y in T on each recursive
level is O(ρ). Since there are at most logn recursive levels (as the size of the graph
decreases by a factor of 2 on each recursive level), the stretch of x and y in T is
O(log n).

The technique presented in [16] for the approximation algorithm of the MRDT
problem is similar to that described above. The novel approach in this paper is the
adaptation of this technique to graphs which are not necessarily complete.

1.4. Outline of the paper. In section 2 we present the basic notation and defi-
nitions used throughout this paper. Two lower bounds on the minimum max-stretch of
unweighted graphs are established in section 3. Our approximation algorithm, named
Algorithm Construct Tree, is presented in section 4. In section 5 we prove that the
output of Algorithm Construct Tree is a spanning tree, and in section 6 we analyze
the performance guarantee of the algorithm, establishing an O(log n) upper bound on
the approximation ratio. Our analysis is based on the lower bounds of section 3. In
section 7 we prove that the analysis of the performance guarantee of the algorithm
is tight. The hardness of approximating the MMST problem on unweighted graphs is
studied in section 8, proving that unless P = NP, the problem cannot be approximated
additively by a term of o(n).

2. Preliminaries. Throughout, we consider a connected unweighted undirected
n-vertex graph G. Let V (G) and E (G) denote the vertex and edge sets of G, respec-
tively. The length of a path P in the graph is the number of edges in the path, denoted
by len(P). For two vertices u, v in V (G), let distG(u, v) denote the distance between
them in G, i.e., the length of a shortest path between u and v. The definition of dis-
tance is extended to vertex subsets as follows. Let U and W be two subsets of V (G).
The distance between U and W is the minimum distance between any pair of vertices
in U and W , denoted by distG(U,W) = min{distG(u,w) | u ∈ U and w ∈ W}.

For a subset U ⊆ V (G), let G(U) denote the subgraph of G induced by U , that
is, V (G(U)) = U and E (G(U)) = E (G) ∩ (U × U). Denote the set of edges internal
to U by E (U) = E (G(U)).

Although the notion of stretch can be defined for every spanning subgraph, our
focus in the current paper is on spanning trees only. Consider some spanning tree T
of G. Denote the stretch of u and v in T with respect to G by

strT,G(u, v) =
distT (u, v)
distG(u, v)

.

Denote the maximum stretch of T with respect to G by

max-str(T,G) = max
x,y∈V (G)

{strT,G(x, y)}.

When the graphG is clear from the context we may omit it and write simply strT (u, v)
and max-str(T). Denote the minimum max-stretch of G by

max-str(G) = min {max-str(T,G) | T is a spanning tree of G}.

1764 YUVAL EMEK AND DAVID PELEG

Consider two metrics τ and δ over the vertices V . We say that τ dominates δ if
τ(u, v) ≥ δ(u, v) for every u, v ∈ V . We say that τ is a tree metric2 if τ is induced by
the distances in some weighted tree over V . We extend the definitions of stretch and
maximum stretch for tree metrics as follows. For every two vertices u, v ∈ V , denote
the stretch of u and v in τ with respect to δ by

strτ,δ(u, v) =
τ(u, v)
δ(u, v)

.

The maximum stretch of τ with respect to δ, denoted max-str(τ, δ), is defined accord-
ingly.

Consider some metric δ over the vertices V . Given a vertex set U ⊆ V , we define
the diameter of U with respect to δ as

diamδ(U) = max{δ(u, v) | u, v ∈ U}.
Given a vertex u ∈ V and some positive real ρ, we denote the ball centered at u of
radius ρ with respect to δ by Bδ(u, ρ) = {v ∈ V (G) | δ(u, v) ≤ ρ}.

A partition of a set S is a collection P = {U1, . . . , Uk}, where Ui ∩ Uj = ∅ for
every 1 ≤ i < j ≤ k and

⋃
1≤i≤k Ui = S. Unless stated otherwise, we assume that Ui

is nonempty for every 1 ≤ i ≤ k. If S is the set of vertices of some graph, then the
subsets U1, . . . , Uk are called the clusters of the partition. (Note that our definition
does not require a cluster to be connected in G.)

For a partition P = {U1, . . . , Uk} of V (G), let E (P) denote the set of edges
internal to the clusters of P , i.e., E (P) =

⋃
Ui∈P E (Ui). Denote the set of edges

external to P , namely, the edges connecting vertices in two different clusters, by
E (P) = E (G)−E (P). Every edge set F ⊆ E (P) induces a logical cluster graph on P ,
obtained by contracting each cluster in P into a single node and replacing each edge
(u, v) ∈ F , where u ∈ Ui and v ∈ Uj , by the edge (Ui, Uj). We say that F induces a
tree on P if the cluster graph induced by F on P is a tree. For a subset X ⊆ V (G),
denote the set of clusters in P that intersect X by I(P,X) = {Ui ∈ P | Ui ∩X 	= ∅}.

A central tool in our construction is a graph decomposition based on eliminating
the edges of some ball of radius ρ. This decomposition is obtained as follows. For a
metric δ over V (G), a vertex u ∈ V (G), and a positive integer ρ, erase from G the
internal edges (but not the vertices) of the ball centered at u of radius ρ with respect
to δ, E (Bδ(u, ρ)), and let G1, . . . , Gr be the connected components in the remaining
graph. The collection {G1, . . . , Gr} is referred to as the (u, ρ, δ)-decomposition of G.
Figure 1 illustrates the (u, 2, distG(·, ·))-decomposition of a graph G. We say that the
vertex u is a ρ-center with respect to G and δ if |V (Gi)| ≤ n/2 for every 1 ≤ i ≤ r.

3. Lower bounds on the minimum max-stretch. In this section we establish
some general lower bounds on the minimum max-stretch of a graph G. These lower
bounds are used in section 6 to yield the performance guarantee of our approximation
algorithm.

We begin with correlating the existence of a ρ-center with the minimum max-
stretch of the graph.

Theorem 3.1. Consider a graph G and a connected vertex induced subgraph H
of G, and let δ be the restriction of distG(·, ·) to the vertices of H. Then H admits a
(2κ)-center with respect to δ, where κ = max-str(G).

2Our definition of a tree metric differs from the standard definition, where τ is induced by the
distances between pairs of vertices from V in some weighted tree over a superset of V . Clearly, a tree
metric according to our definition is also a tree metric according to the standard definition.

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1765

7G

G
G

G

GG

G

1
4

2

56

3

ρ
u

Fig. 1. The decomposition of G with respect to distG(·, ·), u, and ρ = 2. The dashed circle
represents BdistG(·,·)(u, 2).

Proof. Clearly, every spanning tree of G induces a tree metric over V (G) that
dominates the distances in G. In particular, there exists such a tree metric τ with
max-str(τ, distG(·, ·)) = κ. In [15] it is proved that a tree metric τ over the vertex set
V can be transformed into a tree metric τ ′ over an arbitrary vertex subset U ⊆ V ,
such that τ(x, y) ≤ τ ′(x, y) ≤ 8 τ(x, y) for every two vertices x, y in U . This result is
improved in [16] for the special case where τ arises from the distances in an unweighted
tree over V so that τ(x, y) ≤ τ ′(x, y) ≤ 4 τ(x, y). It follows that there exists a tree
metric τ ′ over V (H) that dominates δ such that max-str(τ ′, δ) ≤ 4κ. We next show
that this implies that H admits a (2κ)-center with respect to δ.

Recall that in every n-vertex tree T , there exists a vertex u, named the centroid
of T , such that the removal of all edges incident with u disconnects T to subtrees of
size at most n/2 each. Consider the tree T over V (H) that corresponds to τ ′, and let
u be a centroid of T . (Observe that T is not necessarily a spanning tree of H .) Let
T1, . . . , Tk be the subtrees of T obtained from the removal of all edges incident with
u.

Let {H1, . . . , Hr} be the (u, 2κ, δ)-decomposition of H , namely, the connected
components of H after erasing the internal edges of Bδ(u, 2κ). We claim that for
every 1 ≤ i ≤ r, there exists some 1 ≤ j ≤ k such that V (Hi) ⊆ V (Tj); hence u is
a (2κ)-center of H and the theorem holds. Assume by way of contradiction that the
claim is false, and let Hi be a subgraph of H that falsifies the claim, i.e., such that
V (Hi) � V (Tj) for any 1 ≤ j ≤ k. Since Hi is connected, it follows that there exists
an edge (x, y) ∈ E (Hi) such that x ∈ V (Tj) and y ∈ V (Tj′) for some 1 ≤ j < j′ ≤ k.
The edge (x, y) was not removed by the (u, 2κ, δ)-decomposition of H ; thus δ(u, x) ≥
2κ and δ(u, y) ≥ 2κ, where at least one of these two inequalities is strict. Therefore,
δ(u, x) + δ(u, y) > 4κ. Since τ ′ dominates δ, it follows that τ ′(u, x) + τ ′(u, y) > 4κ.
But x and y are in different subtrees obtained from the removal of the edges incident
with u; therefore, τ ′(x, y) = τ ′(u, x) + τ ′(u, y) > 4κ, in contradiction to the fact that
max-str(τ ′, δ) ≤ 4κ. The theorem follows.

Consider a graph G, and let H be a connected vertex induced subgraph of G. Let
H̄ be the subgraph induced on G by V (G)−V (H). Denote the set of edges that cross
between H and H̄ by F (H) = {(x, y) ∈ E (G) | x ∈ V (H) and y ∈ V (H̄)}. Let W (H)
be the set of endpoints of edges in F (H). We say that H is a κ-outspread subgraph
of G if F (H) can be partitioned into two remote parts F1 and F2 with endpoints W1

1766 YUVAL EMEK AND DAVID PELEG

x1

W1
+

W
+
2

W1
-

W-
2

F2
F1

κ

H

2x

Fig. 2. A κ-outspread subgraph H. The vertices x1 and x2 are connected in H̄.

and W2, respectively, such that
• distG(W1,W2) ≥ κ and
• there exist two vertices x1 ∈ W1 ∩ V (H̄) and x2 ∈ W2 ∩ V (H̄) such that H̄

admits a simple path between x1 and x2.
Note that H̄ is not necessarily connected, but it is assumed to have some “con-
nectivity” between endpoints of F1 and endpoints of F2. In what follows, we define
W+
i = Wi ∩ V (H) and W−

i = Wi ∩ V (H̄) for i = 1, 2. A κ-outspread subgraph is
illustrated in Figure 2. The existence of an outspread subgraph in a graph implies a
lower bound on its minimum max-stretch, as established in the following theorem.

Theorem 3.2. If a graph G admits a κ-outspread subgraph, then max-str(G) > κ.
Proof. Consider a graph G, and let H be a κ-outspread subgraph of G, with

remote parts F1 and F2 with endpoints W1 and W2. Let T be a spanning tree of G
and suppose, toward deriving contradiction, that max-str(T) ≤ κ.

We begin by strengthening the second requirement of a κ-outspread subgraph
and proving that W−

1 and W−
2 are connected by a path fully contained in T ∩ H̄. To

show this, we prove that T contains a subtree T ′ such that
• V (T ′) ∩W−

1 	= ∅;
• V (T ′) ∩W−

2 	= ∅;
• T ′ lies entirely in H̄ ; and
• T ′ is maximal; namely, if T ′′ is a subtree of T and V (T ′) ⊂ V (T ′′), then

V (T ′′) ∩ V (H) 	= ∅.
By definition, since H is a κ-outspread subgraph of G, the subgraph H̄ admits a
simple path between W−

1 and W−
2 . Let ψ = (x0

1, x
1
1, . . . , x

s
1, x

t
2, x

t−1
2 , . . . , x0

2) be the
shortest such path, where x0

1 ∈ W−
1 , x0

2 ∈ W−
2 , κ ≤ len(ψ) = s+ t + 1, and len(ψ)

2 −
1 ≤ s ≤ t ≤ len(ψ)

2 . Since ψ is a shortest path between W−
1 and W−

2 , it follows
that distG(xji ,W

−
i) = j for i = 1, 2 and every vertex xji in ψ. By the definition

of a κ-outspread subgraph, we have distG(xji ,W
+
i) = j + 1 and distG(xji ,W

+
3−i) ≥

min{κ+ j+1, s+ t+2− j} for i = 1, 2 and every xji in ψ. Therefore, distG(xs1,W
+
i)+

distG(xt2,W
+
i) > κ for i = 1, 2. Consequently, the unique path between xs1 and xt2 in T

does not contain any vertex in W+
1 ∪W+

2 , as, otherwise, it is of length greater than κ,
in contradiction to the assumption that max-str(T) ≤ κ. Moreover, distG(xji ,W

+
3−i)+

distG(xj−1
i ,W+

3−i) > κ for i = 1, 2 and every xji and xj−1
i in ψ; hence the unique path

between xji and xj−1
i in T does not contain any vertex in W+

3−i.
Let πs,t be the unique path between xs1 and xt2 in T . As πs,t does not contain

any vertex in W+
1 ∪W+

2 , it must lie entirely in H̄ . We would like to develop πs,t into
a subtree T ′ as described above. For i = 1, 2, apply the following process to extend

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1767

πs,t up to a vertex in W−
i without adding any edge of F (H). Initialize the variable

subtree Υ to be the path πs,t. Initialize the variable integer jmin by jmin = min{j |
xji ∈ V (Υ)} (jmin is well defined, as xs1 and xt2 are in Υ). If jmin = 0, then we are
done since the subtree Υ now contains a W−

i vertex and V (Υ) ⊆ V (H̄).
Otherwise, apply a “developing step” as follows. Let χ be the unique path between

xj
min

i and xj
min−1
i in T . The path χ does not contain any edge in F3−i since, otherwise,

it also contains a vertex in W+
3−i. If χ contains an edge in Fi, then it must contain a

vertex in W−
i right before that edge, in which case the subtree Υ can be extended up

to a vertex in W−
i without adding any F (H) edge, and we are done. Otherwise, the

path χ does not contain any F (H) edge at all; thus Υ can be extended so that jmin

decreases by a positive integral term without adding any edge in F (H). We repeat the
“developing step” until jmin = 0. Applying this process for i = 1, 2 yields a subtree T ′

of T such that T ′ contains a vertex in W−
1 and a vertex in W−

2 and E (T ′)∩F (H) = ∅;
hence T ′ lies entirely in H̄ . If T ′ is not maximal, then extend it by adding adjacent
edges of E (T) ∩ E (H̄) as long as possible.

We now turn to label the vertices of H by their location in T with respect to the
subtree T ′. Pick an arbitrary vertex r ∈ V (T ′) and direct the edges of T toward r.
Consider a vertex v in V (H), and let πv be the unique path from v to r in T . If u is
the first vertex on πv such that u ∈ V (T ′), then we say that v is covered by u with
respect to T ′. Since T ′ is maximal, if v is covered by u, then the edge entering u on
πv is in F and u must lie in W−

i for some i ∈ {1, 2}. For i = 1, 2, let

Ui = {v ∈ V (H) | v is covered by some vertex u ∈ W−
i with respect to T ′}.

Note that {U1, U2} is a partition of V (H). For two vertices x, y ∈ V (H), we say
that x and y are separated by T ′ if x ∈ U1 and y ∈ U2 (or vice versa). Observe that
this implies that the unique path between x and y in (the undirected) T contains an
edge in F1 and an edge in F2; thus its length is at least κ+ 2. It follows that for an
edge (x, y) in E (H), the vertices x and y cannot be separated by T ′ since, otherwise,
we have max-str(T) > κ. But, by definition, the subgraph H is connected; therefore,
V (H) = Ui for some i ∈ {1, 2} and U3−i = ∅. Without loss of generality, suppose that
V (H) = U1.

Let y−2 be a vertex in V (T ′) ∩W−
2 , and consider a neighbor y+

2 ∈ W+
2 of y in

G. As y+
2 is in U1, it is covered by some vertex y−1 ∈ W−

1 ; hence distT (y−2 , y
+
2) =

distT (y−2 , y
−
1) + distT (y+

2 , y
−
1). Since distG(W1,W2) ≥ κ, and since the distances in T

dominate the distances in G, it follows that distT (y−2 , y
+
2) ≥ 2κ, in contradiction to

the assumption that max-str(T) ≤ κ. The theorem follows.

4. The approximation algorithm.

4.1. Overview. The main idea behind our algorithm is that, given an n-vertex
graph Ĝ with max-str(Ĝ) = κ, there exists (as proved in Theorem 3.1) a vertex
u ∈ V (Ĝ) with the property that discarding the internal edges of the ball centered at
u of radius 2κ decomposes the graph into several connected components, each of size
at most n/2, with no edges crossing between them. Using this fact, our algorithm is
invoked on the integer test values ρ ∈ (1, 2n], suspected of being 2κ. For every such
test value, the algorithm tries to construct the output spanning tree T̂ by looking for
a vertex u and a decomposition as above and merging a spanning tree Tlocal of the
ball centered at u of radius 3ρ/2 (a superset of the ball of radius ρ) with the spanning
trees returned from the recursive calls made for every connected component of the
decomposition. The ρ/2 gap between the radius of the ball used for decomposing

1768 YUVAL EMEK AND DAVID PELEG

the graph and the radius of the ball being spanned by the tree Tlocal guarantees the
connectivity of the spanning tree produced by the algorithm. A detailed description
of this process is presented in the following sections.

4.2. Algorithm Construct Tree. We present an algorithm named Algorithm
Construct Tree, that, given an n-vertex graph Ĝ and integral test value ρ, constructs
a spanning tree T̂ of Ĝ with maximum stretch at most 3ρ logn or reports failure. In
section 6 we prove that the algorithm does not fail if ρ ≥ 2max-str(Ĝ). Since the
minimum max-stretch of Ĝ is an integer in [1, n], a test value ρ ≤ 2max-str(Ĝ) on
which the algorithm does not fail can be guessed in O(log n) attempts, to yield a
(6 logn)-approximation algorithm.

Algorithm Construct Tree works in a “divide and conquer” (recursive) approach.
Throughout the execution of the algorithm, we maintain a forest (i.e., a cycle-free
subgraph containing all the vertices) F of the input graph Ĝ. The forest is a global data
structure shared by all recursive invocations of the algorithm. Initially, the forest F is
empty (does not contain any edge), and, upon termination of the algorithm, F contains
the spanning tree T̂ of Ĝ. On each recursive invocation, Algorithm Construct Tree
gets a vertex induced subgraph G of Ĝ as input and adds some edges of G to F .
Upon termination of the recursive invocation on G, the vertices of V (G) all belong
to a single tree in F (each connected component in F is a tree).

Consider a recursive invocation of Algorithm Construct Tree on the vertex in-
duced subgraph G of Ĝ. Due to some earlier recursive invocations, the forest F may
already contain some edges of G. Let P be the partition of V (G) that corresponds
to the connected components of F ; that is, each cluster in P is a subset of V (G),
and two vertices x, y ∈ V (G) are in the same cluster in P if and only if F admits
a path between x and y. We refer to the partition P as the connectivity partition
of V (G) with respect to F . To prevent the possibility of creating cycles in F , the
algorithm will add an edge e ∈ E (G) to F only if e is external to P . Let U be an
arbitrary cluster in P . Note that the vertex induced subgraph G(U) is not necessarily
connected, although every two vertices in U are connected by a path in F (it may be
the case that some of the vertices of this path are missing in G).

Throughout we denote the metric defined by distances in Ĝ by δ̂. Let δ be the re-
striction of δ̂ to the vertices of G. Algorithm Construct Tree works as follows. It first
finds a ρ-center u with respect to δ and identifies the set of clusters I(P ,Bδ(u, 3ρ/2)),
namely, the clusters of P that intersect the ball centered at u of radius 3ρ/2. If a
ρ-center cannot be found, then the algorithm halts and reports “failure.” Next, a
subset of the external edges of the partition P that induces a tree (referred to as the
local tree Tlocal) on these clusters is added to F . The choice of the subset of edges
that induces the local tree on the clusters I(P ,Bδ(u, 3ρ/2)) is made by Procedure
Construct Local Tree. The edges internal to the ball centered at u of radius ρ (but
not the vertices) are discarded from the graph, and subsequently the graph decom-
poses3 into separate connected components G1, . . . , Gr. A recursive call is then made
on the graph4 G(V (Gi)) for every 1 ≤ i ≤ r.

Let F ′ be the forest F after the edges of the local tree were added to it, and let
P ′ be the connectivity partition of V (G) with respect to F ′. Observe that the connec-

3The connected components of this graph decomposition should not be confused with the clusters
of the connectivity partition P.

4Observe that G(V (Gi)) is not necessarily identical to Gi, as some of the edges in G(V (Gi)) may
be internal to Bδ(u, ρ). Such edges were discarded in the decomposition process, and they cannot be
found in Gi.

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1769

tivity partition P ′ is obtained from the connectivity partition P (that corresponds to
F before the edges of the local tree were added) by merging all clusters that intersect
Bδ(u, 3ρ/2) into a single cluster, referred to as the kernel cluster U ′. It is easy to
verify (a stronger claim is proved later on) that the kernel cluster disintegrates into
several connected components of the graph decomposition G1, . . . , Gr. Consequently,
a pair of vertices in the kernel cluster may be separated on this recursive invocation.
However, it is crucial for the correctness of Algorithm Construct Tree that all other
clusters in P ′ remain intact (see section 5). In fact, assuming that ρ ≥ 2max-str(Ĝ),
the ρ/2 gap between the radius of the ball used for decomposing the graph and that
being spanned by the local tree ensures (as proved in section 6.1) that this is indeed
the case.

Formally, we say that the connectivity partition P ′ is a hub with respect to the
connected components G1, . . . , Gr of the graph decomposition if, for every cluster U ∈
P ′−{U ′}, there exists a connected component Gi, 1 ≤ i ≤ r, such that U ⊆ V (Gi). In
other words, there is at most one cluster in P ′ that disintegrates into several connected
components of the graph decomposition. (Recall that the connectivity partition is
defined with respect to the global forest regardless of the connectivity in G; hence the
subgraphs induced on G by its clusters are not necessarily connected to begin with. A
cluster that induces a nonconnected subgraph on G may be disintegrated into several
connected components even if none of its internal edges were discarded in the graph
decomposition.) If P ′ is not a hub with respect to G1, . . . , Gr, then the algorithm
halts and reports “failure.”

The current recursive invocation of the algorithm is said to succeed if it manages
to avoid the two failures, namely, if it finds a ρ-center and P ′ is a hub. Otherwise,
we say that the current recursive invocation fails, in which case the algorithm should
be reinvoked on Ĝ with a larger test value ρ. A formal description of Algorithm
Construct Tree is given in Table 1.

Table 1

Algorithm Construct Tree.

Input: A vertex induced subgraph G of Ĝ.
Let δ be the restriction of δ̂ to the vertices V (G).

1. If |V (G)| = 1, then return.
2. Find a ρ-center u with respect to G and δ.

If none exists, then halt and report “failure.”
3. Tlocal ← Construct Local Tree(G, u).
4. Set F ← F ∪ Tlocal.
5. Let G1, . . . , Gr be the connected components of the graph remaining from G after

discarding the edges in E(Bδ(u, ρ)).
6. Let P ′ be the connectivity partition of V (G) with respect to the (modified) forest F .
7. If P ′ is not a hub with respect to G1, . . . , Gr, then halt and report “failure.”
8. For every 1 ≤ i ≤ r, invoke Construct Tree(G(V (Gi))).

Since the connected components G1, . . . , Gr of the (u, ρ, δ)-decomposition of G
are formed by discarding the edges internal to Bδ(u, ρ), we have the following.

Observation 4.1. The vertex set Bδ(u, ρ) intersects Gi for every 1 ≤ i ≤ r.

4.3. Procedure Construct Local Tree. Consider a graph G. Let ξ be a metric
over V (G), and let P = {U1, . . . , Uk} be a partition of V (G). We say that the graph
R is the transitive graph of G with respect to P and ξ if each cluster in P is completed

1770 YUVAL EMEK AND DAVID PELEG

(b) After

ρ

(a) Before

localT

2
u3

Fig. 3. The operation of Procedure Construct Local Tree. (a) The clusters of P and the ball
centered at u of radius 3ρ/2. (b) Tlocal induces a tree on the clusters of I(P,Bδ(u, 3ρ/2)). The shaded
area forms the kernel cluster U ′.

into a clique in R, namely,
• V (R) = V (G) and
• E (R) = E (P) ∪ ⋃

1≤i≤k (Ui × Ui).
The graph R is weighted with edge lengths �(e) = ξ(e) for every e ∈ E (R). (Distances
in a weighted graph are defined with respect to the length of the edges.)

Recall that P is the connectivity partition of V (G) with respect to the forest F
and that δ is the restriction of δ̂ to the vertices V (G). The purpose of the following
procedure, named Construct Local Tree, is to find a subset Tlocal of external edges
from E (P) that induces a tree on the clusters of I(P ,Bδ(u, 3ρ/2)). Let P ′ be the
connectivity partition of V (G) with respect to F ∪ Tlocal. Note that by the choice of
Tlocal, it follows that P ′ − P contains a single cluster, named the kernel cluster U ′,
which is the union of all the clusters in P that intersect Bδ(u, 3ρ/2). (See Figure 3.)
The subset Tlocal should be chosen so that the diameter of the kernel cluster is not
much greater than the sum of diameters of the P-clusters it replaces (this requirement
is presented formally in section 6).

In principle, this task can be achieved by using a depth-(3ρ/2) shortest path tree
rooted at u on the transitive graph R. However, a naive choice of such a short-
est path tree might create cycles in the cluster graph induced on P . Procedure
Construct Local Tree carefully avoids this complication. The procedure begins by
constructing the transitive graph R of G with respect to P and δ. Next, the vertex set
U ′ is initiated to consist of the cluster of u in P , and the edge set Tlocal is initiated to
be empty. The vertices of R are then processed in increasing order of distances from
the vertex u. In section 5 we prove that whenever Procedure Construct Local Tree
is invoked, the distances in R agree with δ; hence if the procedure processes the vertex
x before it processes the vertex y, then δ(u, x) ≤ δ(u, y).

Consider a vertex v when it is processed by the procedure, and let Ui be v’s cluster
in the partition P . If v /∈ U ′, then the procedure adds the vertices of Ui to U ′ and
adds the edge (w, v) to Tlocal, where w is the predecessor of v in some shortest path
from u to v. Note that (w, v) is an edge in E (G). This is justified since v must be the
first vertex in Ui to be processed by the procedure (as otherwise, it was already in
U ′), and since w was processed before v (as distR(u,w) < distR(u, v)). The procedure

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1771

halts when all vertices at distance at most 3ρ/2 from u are processed and returns the
edge set Tlocal. A formal description of Procedure Construct Local Tree is given in
Table 2. Procedure Construct Local Tree can be implemented as a simple variant
of the well-known Dijkstra algorithm for finding shortest paths from a single source
[8, 6].

Table 2

Procedure Construct Local Tree.

Input: A vertex induced subgraph G of Ĝ and a vertex u ∈ V (G).
Output: An edge set Tlocal ⊆ E(P) that induces a tree on the clusters of I(P,Bδ(u, 3ρ/2)).

1. Construct the transitive graph R of G with respect to P and δ.
2. Let U be u’s cluster in P.
3. Set U ′ ← U and Tlocal ← ∅.
4. Let v1, . . . , vn be the vertices of R in increasing order of distances from u, namely,

v1 = u and distR(vi, u) ≤ distR(vi+1, u) for every 1 ≤ i < n.

5. For i = 2, . . . , n, and as long as distR(vi, u) ≤ 3ρ
2

, do:
(a) Let Ui be vi’s cluster in P.
(b) If vi /∈ U ′, then do:

i. Set U ′ ← U ′ ∪ Ui.
ii. Let π be a shortest path from u to vi in R. Let w be the predecessor of vi

in π.
iii. Set Tlocal ← Tlocal ∪ (w, vi).

6. return Tlocal.

Observation 4.2. The edge set Tlocal output by the procedure induces a tree on
the clusters of I(P , U ′).

5. Correctness. In this section we prove that Algorithm Construct Tree gen-
erates a spanning tree of the given graph. In what follows, Ĝ and T̂ stand for the
unweighted n-vertex connected graph input to the first invocation of the algorithm
and the subgraph stored in F upon termination of the algorithm, respectively. In or-
der to analyze the recursive algorithm, we shall label each recursive invocation with a
string in N∗. The labeling is done in an inductive manner. The top recursive invocation
(on the graph Ĝ) is labeled with the empty string ω. Consider a recursive invocation
labeled with the string σ on the graph G (which is a vertex induced subgraph of Ĝ) for
some σ ∈ N∗, and let G1, . . . , Gr be the connected components of the graph decompo-
sition of G (see line 5 of Algorithm Construct Tree)). Then the recursive invocation
on the graph G(V (Gi)) is labeled with the string σi for every 1 ≤ i ≤ r. We refer to
the recursive invocation labeled with the string σ as the σ-recursive invocation.

We shall use subscript σ to denote the various ingredients of the σ-recursive
invocation. Let Gσ, δσ, and uσ denote the input graph G, the restriction of δ̂ to the
vertices V (G), and the center vertex u, respectively, in the σ-recursive invocation.
Observe that the original graph Ĝ input to the top recursive invocation is denoted by
Gω. Let Fσ and F ′

σ be snapshots of the forest F at the beginning of the execution
of the σ-recursive invocation and after the addition of the local tree, respectively. Let
Pσ and P ′

σ denote the connectivity partitions of V (Gσ) with respect to Fσ and F ′
σ,

respectively. Let U ′
σ be the single cluster in P ′

σ − Pσ (the kernel cluster). Finally, let
Rσ be the transitive graph of Gσ with respect to Pσ and δσ.

We begin with establishing a few fundamental facts regarding the execution of
our algorithm.

Lemma 5.1. Consider the σ-recursive invocation for some string σ in N∗.

1772 YUVAL EMEK AND DAVID PELEG

1. If there exists a path π between some two vertices x and y in the graph Ĝ
such that len(π) > 1 and V (π) ∩ V (Gσ) = {x, y}, then both x and y are in
the same cluster in Pσ. In fact, if |σ| > 0, then both x and y are in the same
cluster in P ′

σ−1
, where σ−1 is the longest proper prefix of σ.

2. The distances in the transitive graph Rσ agree with δσ.
Proof. We prove the two claims simultaneously by induction on the length of the

string σ. On the top recursive invocation, which is labeled with the empty string ω,
we have the following.

1. The graphs Gω and Ĝ are identical; hence such a path π does not exist and
the first claim holds vacuously.

2. The graphs Rω and Ĝ are identical and the second claim holds trivially.
Now assume that the claims hold for the σ−1-recursive invocation, where σ−1 is

the longest proper prefix of σ, and consider the σ-recursive invocation. We first prove
claim 1. Consider a path π between the vertices x and y as in the claim. If all internal
vertices of the path π (namely, vertices other than the endpoints x and y) were already
missing on the previous recursion level, i.e., if V (π) ∩ V (Gσ−1) = {x, y}, then, due
to the inductive hypothesis, x and y are in the same tree in Fσ−1 ; thus they remain
in the same tree in F ′

σ−1
(and in Fσ) and the assertion holds. Otherwise, there must

be some internal vertices of the path π that have existed in the graph Gσ−1 on the
previous recursion level.

We argue that vertex x must be in the kernel cluster U ′
σ−1

. The same line of
reasoning shows that y ∈ U ′

σ−1
as well; hence both x and y are in the same tree in

F ′
σ−1

(and they remain in the same tree in Fσ) so that the assertion holds. Let w be
the internal vertex of π that still existed in Gσ−1 which is closest to x in π; that is, the
vertex w satisfies distπ(w, x) ≤ distπ(w′, x) for any vertex w′ ∈ V (π) ∩ V (Gσ−1) −
{x, y}. We consider two cases (illustrated in Figure 4).

Case (a). If (x,w) is an edge in E (Ĝ), then since w does not exist in Gσ, it follows
that both w and x were in Bδσ−1

(uσ−1 , ρ); hence δσ−1(uσ−1 , x) ≤ ρ. By the inductive
hypothesis on claim 2, the distances in Rσ−1 agree with δσ−1 ; thus distRσ−1

(uσ−1 , x) ≤
ρ. Therefore, since Procedure Construct Local Tree halted at distance 3ρ/2 from the
center vertex uσ−1 (see line 5 of the procedure), it follows that x is in the kernel cluster
U ′
σ−1

.
Case (b). If (x,w) is not an edge in E (Ĝ), then let Uw be w’s cluster in the

partition Pσ−1 . By the inductive hypothesis, the vertex x is in Uw as well (due to the
subpath of π that starts at x and ends at w); thus w and x are in the same cluster
in Pσ−1 and they remain in the same cluster Ūw in P ′

σ−1
. Since w is not a vertex in

Gσ, it follows that the cluster Ūw disintegrated into different connected components
in the decomposition of the graph Gσ−1 . Therefore, the cluster Ūw must be the kernel
cluster U ′

σ−1
since, otherwise, the recursive invocation of Algorithm Construct Tree

on Gσ−1 would have failed as P ′
σ−1

is not a hub (see line 7 of the algorithm).
We now turn to prove claim 2. Consider the transitive graph Rσ as in the claim.

Let x and y be any two vertices in V (Gσ), and let π be a shortest path between x

and y in Ĝ. Some segments of the path π (namely, some consecutive sequences of
vertices and edges between them) may be missing in the graph Gσ. Consider such a
missing segment, and let x′ and y′ be the vertices in π right before and right after that
missing segment, respectively; i.e., the path π consists of a segment between x and x′, a
segment between x′ and y′, and a segment between y′ and y, where the internal vertices
of the segment between x′ and y′ are all missing in Gσ. By claim 1, the vertices x′ and
y′ must be in the same tree in Fσ (see Figure 5); hence they are in the same cluster in

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1773

(a) (b)

-1

-1

w

is an edge

U

(x,w) is not an edge(x,w)

σu

σGvertex not in

ρ

x w

y
y

x

w

Fig. 4. The two cases in the proof of Lemma 5.1’s claim 1. In both cases, the vertex x is in the
kernel cluster U ′

σ−1
.

σ

σ

vertex not in
vertex in

G
G

x y

same tree same tree

Fig. 5. Proof of claim 2 of Lemma 5.1. The path π contains some missing segments.

the partition Pσ, and by the definition of the transitive graph Rσ, we conclude that
distRσ (x′, y′) = δσ(x′, y′). The assertion follows as δσ(x, y) = len(π).

By claim 2 of the last lemma and since Procedure Construct Local Tree halts
at distance 3ρ/2 from the source vertex u (see line 5 of Procedure Construct Local
Tree), we have the following.

Corollary 5.2. Consider the σ-recursive invocation for some string σ in N∗.
The kernel cluster U ′

σ satisfies

Bδσ (uσ, ρ) ⊆ Bδσ (uσ, 3ρ/2) ⊆ U ′
σ.

Next, we prove that the subgraph T̂ output by the algorithm is indeed a spanning
tree of Ĝ.

Proposition 5.3. Consider an edge (x, y) ∈ E (Ĝ). There exists some string σ
in N∗ such that both x and y are in the kernel cluster U ′

σ.
Proof. Let σ be the longest string in N∗ such that both x and y are in Gσ. This

means that x and y are separated in the graph decomposition on the σ-recursive
invocation; hence x, y ∈ Bδσ (uσ, ρ). The assertion follows as Corollary 5.2 guarantees
that Bδσ (uσ, ρ) ⊆ U ′

σ.
Since edges are added to F only if they are external to the connectivity partition

P (see Procedure Construct Local Tree), it follows that T̂ is cycle-free. To see that
T̂ is connected, consider an arbitrary edge (x, y) ∈ E (Ĝ). By Proposition 5.3, at some
stage during the execution of the algorithm, both x and y belong to the kernel cluster

1774 YUVAL EMEK AND DAVID PELEG

2G

G1

U

’U

U

ρ
u

Fig. 6. The cluster U decomposes into the connected components G1 and G2 of the graph
decomposition.

U ′; hence the forest F at that stage admits a path between x and y. Therefore, T̂
admits a path between x and y. As Ĝ is connected, we have the following.

Theorem 5.4. The graph T̂ output by Algorithm Construct Tree is a spanning
tree of the input graph Ĝ.

6. Analysis. In this section we analyze the performance of our algorithm. In
section 6.1 we prove that the recursive invocations of Algorithm Construct Tree
on all vertex induced subgraphs of Ĝ succeed as long as the test value ρ is at least
2max-str(Ĝ). The approximation ratio guaranteed by our algorithm is then established
in section 6.2, where we prove that if the algorithm succeeds to generate a spanning
tree T̂ with test value ρ, then max-str(T̂) ≤ 3ρ�logn. In section 6.3 we analyze the
running time of the algorithm.

6.1. Successful recursive invocation. Consider some invocation of Algorithm
Construct Tree on the vertex induced subgraphG of Ĝwith test value ρ ≥ 2max-str(Ĝ).
The proof that a ρ-center can be found (see line 2 of the algorithm) follows directly
from Theorem 3.1. Let G1, . . . , Gr be the connected components of the graph decom-
position on this recursion level. In order to prove that the connectivity partition P ′ of
V (G) with respect to F ′ is a hub (see line 7 of the algorithm), we have to show that
the kernel cluster is the only cluster in P ′ that decomposes into several connected
components.

Suppose toward deriving contradiction that there exists a cluster U in P ′ − {U ′}
that decomposes into several connected components of the graph decomposition. (The
execution of the algorithm halts at that stage.) Formally, let Xi = U ∩V (Gi), where
without loss of generality Xi 	= ∅ for 1 ≤ i ≤ t and Xi = ∅ for t < i ≤ r, and suppose
that t ≥ 2. Figure 6 illustrates a cluster U ∈ P − {U ′} that decomposes into two
connected components.

Let δ be the restriction of δ̂ to the vertices of G, and let u be the current ρ-center.
By the definition of the graph decomposition, every edge e in E (G) that crosses
between V (Gi) and V (Gj), where 1 ≤ i < j ≤ r, satisfies e ∈ Bδ(u, ρ) × Bδ(u, ρ).
Thus, by Observation 4.1 and Corollary 5.2, we have the following.

Observation 6.1. Every edge e that crosses between V (Gi) and V (Gj), where
1 ≤ i < j ≤ r, is in U ′×U ′. Furthermore, the kernel cluster U ′ satisfies U ′∩V (Gi) 	= ∅

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1775

for every 1 ≤ i ≤ r.

Let T be the tree in F that corresponds to the cluster U , and let H be the
subgraph induced on Ĝ by V (T). We prove that H is a ρ/2-outspread subgraph of
Ĝ (refer to section 3 for the definition of an outspread subgraph), in contradiction to
Theorem 3.2.

Following the notation of section 3, let H̄ denote the subgraph induced on Ĝ
by the vertices in V (Ĝ) − V (T). Let F (H) be the set of edges in E (Ĝ) that cross
between H and H̄ , and let W (H) be the set of endpoints of edges in F (H). Let
F1 = {e ∈ F (H) | e ∈ E (G1)}; namely, the edge set F1 consists of the edges that
cross between U vertices and other vertices in the connected component G1 of the
decomposition of G. Let F2 = F (H)−F1. By the choice of U and by Observation 6.1,
the connected components G1, . . . , Gt contain some vertices in U and some vertices
not in U ; thus F1 and F2 are nonempty.

Let Wi be the endpoints of edges in Fi for i = 1, 2. Let W+
i = Wi ∩ V (H) and

W−
i = Wi ∩ V (H̄). In order to prove that H is a ρ/2-outspread subgraph of Ĝ, we

have to show that the distance between W1 and W2 in Ĝ is large and to establish
some connectivity properties of H and H̄ . We start with the latter.

Clearly, the vertex induced subgraph H is connected (as T is a tree in F). For H̄
we have the following proposition.

Proposition 6.2. There exist two vertices x1 ∈ W−
1 and x2 ∈ W−

2 such that H̄
admits a simple path between x1 and x2.

Proof. Let T ′ be the tree in F that corresponds to the cluster U ′. Consider the
subgraph G′ induced on Ĝ by V (T ′) ∪ (V (G) − U). This subgraph is not necessarily
connected; however, the vertices of T ′ all belong to the same connected component
G′′ of G′ as T ′ is connected by its own rights. Since U ′ ⊆ V (T ′) ⊆ V (G′′), it follows
due to Observation 6.1 that V (G′′)∩V (Gj) 	= ∅ for every 1 ≤ j ≤ t. Therefore, there
exists a vertex xi in W−

i ∩ V (G′′) for i = 1, 2. The proposition follows as G′′ is a
(connected) subgraph of H̄ .

We now turn to prove that distĜ(W1,W2) ≥ ρ/2. We first argue that if two
adjacent vertices were separated in the graph decomposition on some recursive invo-
cation, then on the subsequent recursive invocations, they both lie far away from the
boundary of their corresponding clusters.

Proposition 6.3. Consider the σ-recursive invocation for some string σ in N∗.
Let x be a vertex in V (Gσ), and let Ux be its cluster in the connectivity partition Pσ.
If x admits a neighbor y in Ĝ such that y /∈ V (Gσ), then Bδσ (x, ρ/2) ⊆ Ux.

Proof. Let α be the longest string in N∗ such that both x and y are in Gα. The
vertices x and y must have been separated in the graph decomposition on the α-
recursive invocation (α is a proper prefix of σ). As (x, y) ∈ E (Gα), this could have
happened only if both x and y were in Bδα(uα, ρ). By Corollary 5.2, the kernel cluster
U ′
α satisfies Bδα(uα, 3ρ/2) ⊆ U ′

α; thus w ∈ U ′
α for every vertex w ∈ V (Gα) such

that distĜ(w, x) = δα(w, x) ≤ ρ/2, and w remains in x’s tree in the forest from that
moment on. Therefore, if such a vertex w still exists in the graph Gσ, then it must lie
in Ux.

Recall that the vertex set W1 consists of the endpoints of edges in F1. Since every
edge in F1 crosses between different clusters of the connectivity partition P , we have
the following.

1776 YUVAL EMEK AND DAVID PELEG

Corollary 6.4. Every vertex x ∈ V (Ĝ) such that distĜ(x,W1) ≤ ρ/2 is in
V (G).

Assume by way of contradiction that distĜ(W1,W2) < ρ/2. Let π be a shortest
path in Ĝ between any vertex in W1 and any vertex in W2. Since F is a cut, it follows
that π lies entirely in H or in H̄ , but it does not cross between them (as, otherwise,
π is not shortest). Corollary 6.4 implies that π lies entirely in the graph G as every
vertex in π is at distance less than ρ/2 from W1. By Observation 6.1, every path from
W1 to W2 in G must intersect U ′. Since V (H) ∩ V (G) = U , it follows that π cannot
lie entirely in H ; thus π connects between W−

1 and W−
2 in the subgraph induced by

V (G) − U on G (and, in particular, in H̄).
Recall that Algorithm Construct Tree employs the ball centered at u of radius

ρ to decompose the graph (see line 5 of the algorithm), while the ball of radius (3ρ/2)
is contained in the kernel cluster U ′ (see Corollary 5.2). Since every vertex in W−

i

has a neighbor outside U ′ for i = 1, 2, we conclude that distĜ(W−
i ,Bδ(u, ρ)) ≥ ρ/2.

As len(π) < ρ/2, π cannot contain any edge internal to Bδ(u, ρ). But this implies
that the all vertices of π should have been in the same connected component of the
(u, ρ, δ)-decomposition of G, in contradiction to the fact that π has one endpoint in
G1 and another in Gj for some 1 < j ≤ t. This establishes the following theorem.

Theorem 6.5. Given an input graph Ĝ and a test value ρ ≥ 2max-str(Ĝ), Algo-
rithm Construct Tree succeeds on each recursive invocation.

6.2. Approximation ratio. In this section we prove that if Algorithm
Construct Tree succeeds on each recursive invocation when invoked with test value
ρ, then the output spanning tree T̂ satisfies distT̂ (x, y) ≤ 3ρ�logn for every edge
(x, y) in E (Ĝ) (recall that n is the number of vertices in the input graph Ĝ). By
Proposition 5.3, we know that at some stage during the execution of the algorithm,
the vertices x and y are both in the kernel cluster. Consequently we would like to
bound the diameter of the kernel cluster with respect to the distances in the output
spanning tree T̂ . In an attempt to establish such a bound, we will actually prove a
stronger claim, stating that the sum of the diameters of many clusters, the kernel
cluster being one of them, is sufficiently small.

Let τ̂ be the metric defined by the distances in the output tree T̂ . For a collection
of vertex subsets Λ = {U1, . . . , Uk}, let

ϕ(Λ) =
∑

1≤i≤k
diamτ̂ (Ui).

Our subsequent analysis revolves on bounding the measure ϕ(P ′
σ) as a function of the

length of the string σ ∈ N∗.
Proposition 6.6. Consider the σ-recursive invocation for some string σ in N∗.

The kernel cluster U ′
σ satisfies

diamτ̂ (U ′
σ) ≤ 3ρ+ ϕ(I(Pσ , U ′

σ)).

Proof. The execution of Procedure Construct Local Tree halts at distance 3ρ/2
from the source vertex uσ (see line 5 of the procedure). Therefore, the tree induced
by Tlocal on the clusters of I(Pσ, U ′

σ) is of depth at most 3ρ/2 (when the cluster
containing uσ is considered to be the root). Consider some two vertices x, y ∈ U ′

σ,
and let π be the unique path between x and y in T̂ . The path π contains at most
2 · (3ρ/2) = 3ρ edges from the local tree Tlocal. Let π′ = π − Tlocal be the rest of the
path π. Since π′ is a collection of segments internal to the Pσ-clusters replaced by U ′

σ,

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1777

it follows that len(π′) ≤ ϕ(I(Pσ , U ′
σ)). Therefore, len(π) ≤ 3ρ + ϕ(I(Pσ , U ′

σ)), and
the assertion holds.

The next proposition enables us to bound the sum of the diameters of the clusters
in I(Pσ, U ′

σ).
Lemma 6.7. Consider the σ-recursive invocation for some string σ = αi, where

α ∈ N∗ and i ∈ N. For every cluster U in Pσ, there exists a cluster Ū in P ′
α such that

U ⊆ Ū .
Proof. Suppose toward deriving contradiction that there exists a cluster U ∈ Pσ

such that U � Ū for any cluster Ū in P ′
α. This implies that Fσ contains a path π

between some two vertices x, y ∈ U that are not in the same cluster in P ′
α. Let π be

such a path of minimum length. The path π must satisfy V (π) ∩ V (Gσ) = {x, y},
since, otherwise, there exists some subpath of π with endpoints x′, y′ ∈ U , where x′

and y′ are in different clusters in P ′
α, in contradiction to π being the shortest such

path.
The path π must contain some edges that do not exist in F ′

α. Every such edge was
added to F by some αjβ-recursive invocation, where j 	= i and β ∈ N∗. The graph
Gαjβ must contain some internal vertices of the path π; thus len(π) > 1. Therefore,
Lemma 5.1, when applied to the σ-recursive invocation, implies that x and y are in
the same cluster in P ′

α, which derives a contradiction. The assertion follows.
We are now ready to establish the main lemma of this section.
Lemma 6.8. Consider the σ-recursive invocation for some string σ in N∗. The

connectivity partition Pσ satisfies

ϕ(Pσ) ≤ 3ρ(|σ| + 1).

Proof. We prove the assertion by induction on the length of the string σ. The only
nonsingleton cluster in the connectivity partition Pω is the kernel cluster U ′

ω, whose
diameter with respect to the distances in T̂ is at most 3ρ. The diameter of a singleton
cluster is 0. Therefore, the sum of the diameters of all clusters in Pω is at most 3ρ, and
the assertion holds. Let σ−1 ∈ N∗ be the longest proper prefix of σ, and assume that
the assertion holds for σ−1. Lemma 6.7 implies that for every cluster U ∈ P ′

σ −{U ′
σ},

there exists a cluster Ū ∈ P ′
σ−1

− I(P ′
σ−1

, U ′
σ) such that U ⊆ Ū . Since diamτ̂ (U) is

monotone under set inclusion, i.e., U ⊆ Ū implies diamτ̂ (U) ≤ diamτ̂ (Ū), it follows
that

ϕ(P ′
σ) − diamτ̂ (U ′

σ) = ϕ(P ′
σ − {U ′

σ}) ≤ ϕ(P ′
σ−1

− I(P ′
σ−1

, U ′
σ))

= ϕ(P ′
σ−1

) − ϕ(I(P ′
σ−1

, U ′
σ)).

Thus

ϕ(P ′
σ) ≤ diamτ̂ (U ′

σ) − ϕ(I(P ′
σ−1

, U ′
σ)) + ϕ(P ′

σ−1
).

Another application of Lemma 6.7 guarantees that for every cluster U ∈ I(Pσ, U ′
σ),

there exists a cluster Ū ∈ I(P ′
σ−1

, U ′
σ) such that U ⊆ Ū ; hence ϕ(I(Pσ , U ′

σ)) ≤
ϕ(I(P ′

σ−1
, U ′

σ)), and we can bound

ϕ(P ′
σ) ≤ diamτ̂ (U ′

σ) − ϕ(I(P ′
σ, U

′
σ)) + ϕ(P ′

σ−1
).

Proposition 6.6 is employed to deduce that

ϕ(P ′
σ) ≤ 3ρ+ ϕ(P ′

σ−1
).

The assertion follows by the inductive hypothesis as |σ−1| = |σ| − 1.

1778 YUVAL EMEK AND DAVID PELEG

Let (x, y) be an arbitrary edge in E (Ĝ). By Proposition 5.3, there exists a string
σ ∈ N∗ such that both x and y are in the kernel cluster U ′

σ. Therefore,

distT̂ (x, y) ≤ diamτ̂ (U ′
σ) ≤ ϕ(P ′

σ).

By Lemma 6.8, and since the depth of the recursion is at most �logn (as the size of
each graph input to the recursive algorithm decreases by a factor of at least 2), we
conclude that

distT̂ (x, y) ≤ 3ρ(|σ| + 1) ≤ 3ρ�logn.

As the maximum stretch of a spanning tree is always obtained on a pair of vertices
that form an edge in the original graph [5], Theorems 5.4 and 6.5 imply the following.

Theorem 6.9. Given an n-vertex graph Ĝ, Algorithm Construct Tree can be
invoked with O(log n) different test values to generate a spanning tree T̂ of Ĝ satisfying
max-str(T̂) = O(log n) · max-str(Ĝ).

6.3. Running time. We now turn to analyze the running time of Algorithm
Construct Tree when invoked with test value ρ on input graph Ĝ with n̂ vertices
and m̂ edges. The distance metric δ̂ is constructed in a preprocessing stage in time
O(n̂m̂) (a trivial implementation); thus in what follows we assume that δ̂ and its
restrictions to subsets of V (Ĝ) are known.

Consider a recursive invocation of the algorithm on vertex induced subgraph G
of Ĝ, and let δ be the restriction of δ̂ to the vertices V (G). Denote n = |V (G)| and
m = |E (G)|. Given a vertex u ∈ V (G), we can construct the graph G′ remaining
from G after the edges in E (Bδ(u, ρ)) are discarded in time O(m). Identifying the
connected components of G′ can be done in time O(m) as well; hence we can decide
whether u is a ρ-center with respect to G and δ in time O(m). By repeating this
process for every vertex u ∈ V (G), a ρ-center is found (if one exists) in time O(nm).

Procedure Construct Local Tree is merely a variant of Dijkstra’s single source
shortest paths algorithm on the transitive graph R that has O(n2) edges; hence it
can be implemented to run in time O(n2). Using a disjoint-set data structure [6],
connectivity queries in the forest F are answered in near-constant time, and the
condition that the connectivity partition P ′ is a hub is verified in near-linear time.
Therefore, the dominant term in the running time of the recursive invocation on G
is proportional to nm. Accounting for all recursive invocations, the running time of
Algorithm Construct Tree is O(min{n̂m̂ log n̂, n̂3}).

7. Tightness of the analysis. In this section we prove that the analysis pre-
sented in section 6 is tight. Recall that our approximation algorithm invokes Algorithm
Construct Tree with different test values ρ ∈ (1, 2n], finally returning the output of
a successful invocation with the smallest ρ. For the sake of the analysis, in this section
we assume that the approximation algorithm ignores the spanning trees output by
successful invocations with larger test values, although some of these spanning trees
may admit smaller maximum stretch.

Lemma 7.1. For every d ∈ N>0 there exists an unweighted graph Gd with n(d) =
Θ(2d) vertices such that max-str(Gd) is constant while Algorithm Construct Tree,
when invoked on Gd with test value ρ = 2, constructs a spanning tree with maximum
stretch Ω(log n).

Proof. Given an integer d ≥ 1, construct the unweighted graph Gd as follows. Let
T and T ′ be two complete binary trees of depth d, with roots r and r′, respectively.

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1779

r’r edges of

edges of

T

T’

bridge edges

Fig. 7. Gd for d = 4.

Connect the two trees to each other by adding a bridge edge between every pair of
corresponding vertices. Split every edge (x, y) in T by adding a new vertex z and
replacing (x, y) with new edges (x, z) and (y, z). Figure 7 illustrates the construction
of G4.

Since the number of vertices in a depth d complete binary tree is 2d+1 − 1 and
since the number of new vertices added to T is 2d+1−2 (equal to the number of edges
in a depth d complete binary tree), it follows that

n(d) = |V (Gd)| = 2 (2d+1 − 1) + 2d+1 − 2 = 6 · 2d − 4.

It is easy to verify that the spanning tree obtained by removing the edges of T ′ and
remaining with the edges of T plus the bridge edges has maximum stretch 4. On the
other hand, when Algorithm Construct Tree is invoked on Gd with test value ρ = 2,
if the “original” vertices of T (those that existed in T before splitting the edges) are
chosen to be the 2-centers on each recursive invocation, then the spanning tree T̂
returned by the algorithm is merely the union of T and T ′ with their roots connected
by an edge, i.e., E (T̂) = E (T) ∪ E (T ′) ∪ {(r, r′)}.

Let l be an arbitrary leaf in T , and let l′ be its corresponding leaf in T ′. The unique
path between l and l′ in T̂ goes via the edge (r, r′), and it is of length 2d+1+d = 3d+1.
Therefore, T̂ has maximum stretch Ω(d) = Ω(log (n(d))).

8. Hardness of approximation. As mentioned in section 1.2, it is NP-hard
to decide, for an arbitrary unweighted graph G, whether or not max-str(G) ≤ 4 [5].
Moreover, since the maximum stretch of a tree on an unweighted graph is always
obtained on a pair of vertices that form an edge in the original graph, it follows that
max-str(G) must be an integer. Therefore, we have the following.

Corollary 8.1. It is NP-hard to approximate the MMST problem on unweighted
graphs by a ratio better than 5/4.

We show that unless P = NP, the problem cannot be approximated additively by
a term of o(n).

Lemma 8.2. It is NP-hard to distinguish between unweighted graphs with mini-
mum max-stretch at most 5k− 1 and those with minimum max-stretch at least 6k− 1
for any positive integer k.

Proof. The proof is by reduction from the problem of deciding whether an arbitrary
unweighted graph has minimum max-stretch at most 4. Consider some positive integer
k. Given an arbitrary unweighted graph G, construct the unweighted graph G′

k by
replacing every edge (u, v) ∈ E (G) with a unique path Pu,v of length k between u

1780 YUVAL EMEK AND DAVID PELEG

and v. Observe that every spanning tree T ′ of G′
k corresponds to a spanning tree T

of G where the edge (u, v) is in E (T) if and only if all the edges of Pu,v are in E (T ′).
Moreover, if the spanning tree T ′ of G′

k corresponds to the spanning tree T of G,
then, since T ′ is connected, it follows that

|E (T ′) ∩ E (Pu,v)| =
{
k if (u, v) ∈ E (T),
k − 1 otherwise

for every (u, v) ∈ E (G); i.e., the tree T ′ is missing at most a single edge from every
such path Pu,v. Therefore, max-str(T ′, G′

k) = k · (max-str(T,G) + 1) − 1. Thus if G
has minimum max-stretch at most 4, then G′

k has minimum max-stretch at most
5k − 1. Otherwise, if G has minimum max-stretch at least 5, then G′

k has minimum
max-stretch at least 6k − 1.

Given an approximation algorithm A for the MMST problem on unweighted
graphs and an unweighted graph G, let A(G) denote the tree returned by A when
invoked on G.

Corollary 8.3. If there exist some real δ = o(n) and ε > 0 and an approximation
algorithm A for the MMST problem on unweighted graphs with performance guarantee

max-str(A(G), G) ≤ δ + (6/5 − ε) · max-str(G)

for every unweighted graph G, then P = NP.

REFERENCES

[1] N. Alon, R. M. Karp, D. Peleg, and D. West, A graph-theoretic game and its application
to the k-server problem, SIAM J. Comput., 24 (1995), pp. 78–100.

[2] I. Althöffer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted
graphs, Discrete Comput. Geom., 9 (1993), pp. 81–100.

[3] Y. Bartal, On approximating arbitrary metrics by tree metrics, in Proceedings of the 30th
Annual ACM Symposium on Theory of Computing (STOC), ACM, New York, 1998, pp.
161–168.

[4] L. Cai, NP-completeness of minimum spanner problems, Discrete Appl. Math., 48 (1994), pp.
187–194.

[5] L. Cai and D. G. Corneil, Tree spanners, SIAM J. Discrete Math., 8 (1995), pp. 359–387.
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

MIT Press, Cambridge, MA, 2001.
[7] M. J. Demmer and M. Herlihy, The arrow distributed directory protocol, in Proceedings of the

12th International Symposium on Distributed Computing (DISC), 1998, Springer-Verlag,
New York, pp. 119–133.

[8] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[9] D. Dor, S. Halperin, and U. Zwick, All pairs almost shortest paths, in Proceedings of the
37th IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer
Society, Washington, DC, 1996, pp. 452–461.

[10] M. Elkin, Y. Emek, D.A. Spielman, and S.-H. Teng, Lower-stretch spanning trees, in Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), ACM,
New York, 2005, pp. 494–503.

[11] Y. Emek and D. Peleg, Approximating minimum max-stretch spanning trees on unweighted
graphs, in Proceedings of the Fifteenth ACM-SIAM Symposium on Discrete Algorithms
(SODA), ACM, New York, SIAM, Philadelphia, 2004, pp. 261–270.

[12] S. P. Fekete and J. Kremer, Tree spanners in planar graphs, in Proceedings of the 24th In-
ternational Workshop on Graph Theoretic Concepts in Computer Science, Springer-Verlag,
London, 1998, pp. 298–309.

[13] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, in Proceedings of the 35th Annual ACM Symposium on Theory
of Computing (STOC), ACM, New York, 2003, pp. 448–455.

APPROXIMATING MINIMUM MAX-STRETCH SPANNING TREES 1781

[14] G. Galbiati, On min-max cycle bases, in Proceedings of the 12th International Symposium on
Algorithms and Computation (ISAAC), Springer-Verlag, London, 2001, pp. 116–123.

[15] A. Gupta, Steiner points in tree metrics don’t (really) help, in Proceedings of the Twelfth ACM-
SIAM Symposium on Discrete Algorithms (SODA), ACM, New York, SIAM, Philadelphia,
2001, pp. 220–227.

[16] R. Hassin and A. Levin, Minimum restricted diameter spanning trees, in Proceedings of the
5th International Workshop on Approximation Algorithms for Combinatorial Optimization
(APPROX), Springer-Verlag, New York, 2002, pp. 175–184.

[17] M. Herlihy, F. Kuhn, S. Tirthapura, and R. Wattenhofer, Dynamic analysis of the arrow
distributed protocol, Theory Comput. Syst., 39 (2006), pp. 875–901.

[18] C. Liebchen and G. Wünsch, The zoo of tree spanner problems, Discrete Appl. Math., 156
(2008), pp. 569–587.

[19] D. Peleg and E. Reshef, Low complexity variants of the arrow distributed directory, J. Com-
put. System Sci., 63 (2001), pp. 474–485.

[20] D. Peleg and A.A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[21] D. Peleg and D. Tendler, Low Stretch Spanning Trees for Planar Graphs, Technical report

MCS01-14, The Weizmann Institute of Science, Rehovot, Israel, 2001.
[22] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, SIAM J. Comput.,

18 (1989), pp. 740–747.

