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ABSTRACT 
We propose a new form of software transactional memory 
(STM) designed to support dynamic-sized data structures, 
and we describe a novel non-blocking implementation. The 
non-blocking property we consider is obstruction-~eedom. 
Obstruction-freedom is weaker than lock-freedom; as a re- 
sult, it admits substantially simpler and more efficient im- 
plementations. A novel feature of our obstruction-free STM 
implementation is its use of modular contention managers to 
ensure progress in practice. We illustrate the utility of our 
dynamic STM with a straightforward implementation of an 
obstruction-free red-black tree, thereby demonstrating a so- 
phisticated non-blocking dynamic data structure that would 
be difficult to implement by other means. We also present 
the results of simple preliminary performance experiments 
that  demonstrate that an "early release" feature of our STM 
is useful for reducing contention, and that our STM lends 
itself to the effective use of modular contention managers. 

1. INTRODUCTION 
Using locks in programs for shared-memory multiproces- 

sors introduces well-known software engineering problems. 
Coarse-grained locks, which protect relatively large amounts 
of data, generally do not scale: threads block one another 
even when they do not really interfere, and the lock be- 
comes a source of contention. Fine-grained locks can miti- 
gate these scalability problems, but they introduce software 
engineering problems as the locking conventions for guarart- 
teeing correctness and avoiding deadlock become complex 
and error-prone. Locks also cause vulnerability to thread 
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failures and delays. For example, a thread preempted while 
holding a lock will obstruct other threads. 

Dynamic Software Transactional Memory (DSTM) is a 
low-level application programming interface (API) for syn- 
chronizing shared data without using locks. A transaction 
is a sequence of steps executed by a single thread. Transac- 
tions are atomic: each transaction either commits (it takes 
effect) or aborts (its effects are discarded). Transactions 
are linearizable [9]: they appear to take effect in a one-at- 
a-time order. Transactional memory supports a computa- 
tional model in which each thread announces the start of 
a transaction, executes a sequence of operations on shared 
objects, and then tries to commit the transaction. If the 
commit succeeds, the transaction's operations take effect; 
otherwise, they are discarded. Although transactional mem- 
ory was originally proposed as a hardware architecture [8], 
there have been several proposals for non-blocking 1 software 
transactional memory (STM) and similar constructs [3, 4, 
10, 13, 14, 15]. 

We present the first dynaraic STM. Prior STM designs 
required both the memory usage and the transactions to be 
defined statically in advance. In contrast, our new DSTM 
allows transactions and transactional objects to be created 
dynamically, and transactions may determine the sequence 
of objects to access based on the values observed in objects 
accessed earlier in the same transaction. As a result, DSTM 
is well suited to the implementation of dynamic-sized data 
structures such as lists and trees. 

We have developed prototype implementations of DSTM 
in the C + +  and Java T M  programming languages. In this 
paper, we focus on the Java version, which is considerably 
simpler because there is no need for explicit memory man- 
agement. Our Java implementation uses an experimental 
prototype of Doug Lea's j ava. u t i l .  concur ren t  package [1] 
to call native compare-and-swap (CAS) operations. 

1We use "non-blocking" broadly to include all progress con- 
ditions requiring that  the failure or indefinite delay of a 
thread cannot prevent other threads from making progress, 
rather than as a synonym for "lock-free", as some authors 
prefer. 
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Much of the simplicity of our implementation is due to 
our choice of non-blocking progress condition. A synchro- 
nization mechanism is obstruction-free [7] if any thread that 
runs by itself for long enough nmkes progress (which implies 
that a thread makes progress if it runs for long enough with- 
out encountering a synchronization conflict from a concur- 
rent thread). Like stronger non-blocking progress conditions 
such as lock-freedom and wait-freedom, obstruction-freedom 
ensures that  a halted thread cannot prevent other threads 
from making progress. 

Unlike lock-freedom, obstruction-freedom does not rule 
out livelock; interfering concurrent threads may repeatedly 
prevent one another from making progress. Livelock is, of 
course, unacceptable. Nonetheless, we believe that there is 
great benefit in treating the mechanisms that ensure progress 
as a matter of policy, evaluated by their empirical effective- 
ness tbr a given application and execution environment. As 
demonstrated here and elsewhere [7, 11], compared to lock- 
freedom, obstruction-freedom admits substantially simpler 
implementations that are more efficient in the absence of 
synchronization conflicts among concurrent threads. 

Obstruction-freedom also allows simple schemes for pri- 
oritizing transactions because it allows any transaction to 
abort any other t ransaction at. any time. In particular, a 
high-priority transaction may always abort a low-priority 
transaction. In a lock-based approach, the high-priority 
transaction would be blocked if the low-priority transac- 
lion held a lock that the high-priority transaction required, 
resulting in priority inversion and intricate schemes to cir- 
cumvent this inversion. On the other hand, in a lock-free 
implementation, the high-priority transaction may have to 
help the low-priority transaction complete in order to ensure 
that some transaction will complete. 

Our obstruction-free DSTM implementation provides a 
simple open-ended mechanism ~ r  guaranteeing progress and 
prioritizing transactions. Specifically, one transaction can 
detect that it is about abort another before it does so. In 
this case, it consults a contention manager to determine 
whether it should abort the other transaction immediately 
or wait for some time to allow the other transaction a chance 
to complete. Contention managers in our implementation 
axe modular: various contention management schemes can 
be implemented and "plugged in" without affecting the cor- 
rectness of the transaction code. Thus we can design, imple- 
ment and verify an obstruction-free data structure once, and 
then vary the contention managers to provide the desired 
progress guarantees and transaction prioritization. These 
contention managers can exploit information about time, 
operating systems services, scheduling, hardware environ- 
ments, and other details about; the system and execution 
environment, as well as programmer-supplied information. 
These practical sources of information have been largely ne- 
glected in the literature on lock-free synchronization. We 
believe that  this approach will yield simpler and more effi- 
cleat concurrent data structures, which will help accelerate 
their widespread acceptance and deployment. 

Section 2 illustrates the use of DSTM through a series of 
simple examples. To evaluate the utility of DSTM for im- 
plementing complex data structures, we have also used it 
to implement an obstruction-free red-black tree. As far as 
we are aware, this red-black tree is the most complex non- 
blocking data structure achieved to date. Although our ira- 
plementation is a reasonably straightforward transformation 

of a sequential implementation [6], it would be very difficult 
to construct such a non-blocking implementation from first 
principles. Indeed, it would be difficult to implement even 
a lock-based red-black tree that  allows operations accessing 
different parts of the tree to proceed in parallel. 

Section 3 describes how our STM detects synchronization 
conflicts and how transactions commit and abort, with an 
emphasis on how the obstruction-free property simplifies the 
underlying algorithm. In Section 4, we describe how our im- 
plementation interfaces with contention managers, which are 
responsible for ensuring progress. Section 5 describes some 
simple experiments conducted with our prototype DSTM 
implementation. Concluding remarks appear in Section 6. 
Code for our DSTM implementation, contention managers, 
and related experiments is publicly available [2]. 

2. OVERVIEW AND EXAMPLES 
In this section, we illustrate the use of DSTM through 

a series of simple examples. DSTM manages a collection 
of transactional objects, which are accessed by transactions. 
A transaction is a short-lived, single-threaded computation 
that either commits or aborts. A transactional object is a 
container for a regular Java object. A transaction can access 
the contained object by opening the transactional object, 
and then reading or modifying the regular object. Changes 
to objects opened by a transaction are not seen outside the 
transaction until the transaction commits. If the transaction 
commits, then these changes take effect; otherwise, they are 
discarded. 

Transactional objects can be created dynamically at any 
time. The creation and initialization of a transactional ob- 
ject is not performed as part of any transaction. 

Concretely, the basic unit  of parallel computation is the 
TMThread class, which extends regular Java threads. Like a 
regular Java thread, it provides a run( )  method that  does 
all the work. In addition, the TMThread class provides addi- 
tional methods for starting, committing or aborting trans- 
actions, and for checking on the status of a transaction. 
Threads can be created and destroyed dynamically. 

Transactional objects are implemented by the TM0bject 
class. To implement an atomic counter, one would create 
a new instance of a Counter class (not shown), and then 
create a TM0bject to hold it: 

Counter counter = new Counter(0); 

TM0bject tm0bject = new TM0bject(counter) ; 

Any class whose objects may be encapsulated within a 
transactional object must implement the TMCloneable in- 
terface. This interface requires the object to export a public 
clone O method that returns a new, logically disjoint copy 
of the object. DSTM uses this method when opening trans- 
actional objects, as described below. (DSTM guarantees 
that the object being cloned does not change during the 
cloning, so no synchronization is necessary in the clone() 
method.) 

A thread calls beginTransaction () to start a transaction. 
Once it is started, a transaction is active until it is either 
committed or aborted. 

While it is active, a transaction can access the encapsu- 
lated counter by calling open():  

Counter counter = (Counter)tm0bject.open(WRITE) ; 
counter.inc(); // increment the counter 
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The argument to open() is a constant indicating that  the 
caller may modify the object. The open() method returns a 
copy of the encapsulated regular Java object 2 created using 
that  object's c lone( )  method; we call this copy the trans- 
action's version. 

The thread can manipulate its version of an object by 
calling its methods in the usual way. DSTM guarantees 
that no other thread can access this version, so there is no 
need for further synchronization. 

Note that  a transaction's version is meaningful only dur- 
ing the lifetime of the transaction. References to versions 
should not be stored in other objects; only references to 
transactional objects are meaningful across transactions. 

A thread at tempts to commit its transaction by invoking 
commitTransact ion() ,  which returns t~te if and only if the 
commit is successful. A thread may also abort its transac- 
tion by invoking a b o r t T r a n s a c t i o n ( ) .  

We guarantee that  successfully committed transactions 
are linearizable: they appear to execute in a one-at-a-time 
order. But what kind of consistency guarantee should we 
make for a transaction that  eventually aborts? One might 
argue that  it does not matter, as the transaction's changes to 
transactional objects are discarded anyway. However, syn- 
chronization conflicts could cause a transaction to observe 
inconsistencies among the objects it opens before it aborts. 
For example, while a transaction T is executing, another 
transaction might modify objects that T has already ac- 
cessed as well as objects that  T will subsequently access. In 
this case, T will see only partial effects of that transaction. 
Because transactions should appear to execute in isolation, 
observing such inconsistencies may cause a transaction to 
have unexpected side-effects, such as dereferencing a null 
pointer, array bounds violations, and so on. 

DSTM addresses this problem by validating a transac- 
tion whenever it opens a transactional object. Validation 
consists of checking for synchronization conflicts, that  is, 
whether any object opened by the transaction has since 
been opened in a conflicting mode by another transaction. 
If a synchronization conflict has occurred, open() throws a 
Denied exception instead of returning a value, indicating to 
the transaction that  it cannot successfully commit in the 
fllture. The set of transactional objects opened before the 
first such exception is guaranteed to be consistent: open() 
returns the actual states of the objects at some recent in- 
stant. (Throwing an exception also allows the thread to 
avoid wasting effort by continuing the transaction.) 

Ultimately, we would like DSTM to support nested trans- 
actions, so that  a class whose methods use transactions can 
invoke from within a transaction methods of other classes 
that  also use transactions. However, we have not acquired 
sufficient experience programming with DSTM to decide on 
the appropriate nesting semantics, so we do not specify this 
behavior for now. 3 

2.1 Extended Example 
Consider a linked list whose values are stored in increasing 

order. We will use this list to implement an integer set (class 

2The open() method actually returns an object of class 
j a v a . l a n g . 0 b j e c t ,  which we must explicitly cast back to 
class Counter. 
3Our implementation does support a rudimentary form of 
nested transactions, but we do not use it in any of the ex- 
amples discussed in this paper. 

public class IntSet { 
private TM0bject first; 

class List implements TMCloneable { 
int value; 
TM0bject next; 

List(int v) { 
this.value = v; 

} 

public Object clone() { 
List newList = new List(this.value); 
newList.next = this.next; 
return newList; 

} 

public IntSet() { 
List firstList = new List(Integer.MIN_VALUE); 
this.first = new TM0bject(firstList); 
firstList.next = 
new TM0bject(new List(Integer.MAX_VALUE)); 

} 

public boolean insert(int v) { 
List newList = new List(v); 
TM0bject newNode = new TM0bject(newList); 
TMThread thread = 

(TMThread)Thread.currentThread(); 
while (true) { 

thread.beginTransaction(); 
boolean result = true; 
try { 

List prevList = 
(List)this.first.open(WRITE); 

List currList = 
(List)prevList.next.open(WRITE); 

while (eurrList.value < v) { 
prevList = currList; 
currList = 

(List)currList.next.open(WRITE); 
} 
if (currList.value == v) { 

result = false; 
} else { 

result = true; 
newList.next = prevList.next; 
prevList.next = newNode; 

} 
} catch (Denied d){} 
if (thread.commitTransaction()) 

return result; 
} 

F i g u r e  1: I n t e g e r  Set  E x a m p l e  

In tSe t )  that provides i n s e r t ( ) ,  d e l e t e ( ) ,  and member() 
methods. Relevant code excerpts are shown in Figure 1. 

The In tSe t  class uses two types of objects: nodes and list 
elements; nodes are transactional objects (class TMObject) 
that contain list elements (class Lis t ) ,  which are regular 
Java objects. The L i s t  class has the following fields: va lue  
is the integer value, and next  is the TM0bject containing the 
next list element. We emphasize that  next  is a TM0bject, 
not a list element, because this field must be meaningful 
across transactions. Because list elements are encapsulated 
within transactional objects, the L i s t  class implements the 
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TMCloneable interface, providing a public c lone( )  method. 
The I n t S e t  constructor allocates two sentinel nodes, con- 

taining list elements holding the. minimum and maximum in- 
teger values (which we assume are never inserted or deleted). 
For brevity, we focus on i n s e r t ( ) .  This method takes an 
integer value; it returns true if the insertion takes place, and 
false if the value was already in the set. It first creates a 
new list element to hold the integer argument, and a new 
node to hold that  list element. It then repeatedly retries 
the following transaction until :it succeeds. The transaction 
traverses the list, maintaining a "current" node and a "pre- 
vious" node. At the end of the traversal, the current node 
contains the smallest value in the list that  is greater than or 
equal to the value being inserted. Depending on the value of 
the current node, the transaction either detects a duplicate 
or inserts the new node between the previous and current 
nodes, and then tries to commit. If the commit succeeds, 
the method returns; otherwise, it resumes the loop to retry 
the transaction. 

An attractive feature of DSTM is that  we can reason 
about this code almost as if it were sequential. The principal 
differences are the need to catch Denied exceptions and to 
retry transactions that  fail to commit, and the need to dis- 
tinguish between transactional :nodes and non-transactional 
list elements. Note that  after catching a Denied exception, 
we must still call commitTransact ion()  to terminate the 
transaction, even though it is guaranteed to fail. 

2.2 Conflict Reduction 
A transaction A will typically fail to commit if a con- 

cnrrent transaction B opens an object already opened by 
A. Ultimately, it is the responsibility of the contention 
manager (discussed in Section 4) to ensure that  conflict- 
ing transactions eventually do not overlap. Even so, the 
I n t S e t  implementation just described introduces a number 
of unnecessary conflicts. For example, consider a transac- 
tion that  calls member O to test whether a particular value is 
in the set, running concurrently with a transaction that  calls 
i n s e r t  () to insert a larger value. One transaction will cause 
the other to abort, since they will conflict on opening the 
first node of the list. Such a conflict is unnecessary, however, 
because the transaction inserting the value does not modify 
any of the nodes traversed by the other transaction. Design- 
ing the operations to avoid such conflicts reduces the need 
for contention management, and thereby generally improves 
performance and scalability. 

DSTM provides several mechanisms for eliminating un- 
needed conflicts. One conventional mechanism is to allow 
transactions to open nodes in read-only mode, indicating 
that  the transaction will not modify the object. 

List list = (List)node.open(READ); 

Concurrent transactions that open the same transactional 
object for reading do not conflict. Because it is often diffi- 
cult, especially in the face of aliasing, for a transaction to 
keep track of the objects it has opened, and in what mode 
each was opened, we allow a transaction to open an object 
several times, and in different modes. 

The revised i n s e r t ( )  (not shown) method walks down 
the list in read-only mode until it identifies which nodes to 
modify. It then "upgrades" its access from read-only to reg- 
ular access by reopening that  transactional object in WRITE 
mode. Read-only access is particularly useful for navigating 

public boolean delete(int v) { 
TMThread thread = 

(TMThread) Thread. currentThread O ; 
while (true) { 

thread.beginTransaction(); 
boolean result = true; 
try { 

TM0bject lastNode = null; 
TM0bject prevNede = this.first; 
List prevList = (List)prevNede.open(READ); 
List currList = 

(List)prevList.next.epen(RFEAD); 
while (currList.value < v) { 

if (lastNode != null) 
lastNede.release(); 

lastNode = prevNode; 
prevNode = prevList.next; 
prevList = currList; 
currList = (List)currList.next.open(READ); 

} 
if (currList.value != v) { 

result = false; 
} else { 

result = true; 
prevList = (List)prevNode.open(WRITE); 
prevList.next.open(WRITE); 
prevList.next = currList.next; 

} 
} catch (Denied d){} 
if (thread.commitTransaction()) 

return result; 

F i g u r e  2 :  D e l e t e  m e t h o d  w i t h  e a r l y  release  

through tree-like data structures where all transactions pass 
through a common root, but most do not modify the root. 

DSTM also provides a novel and more powerful (and more 
dangerous!) way to reduce conflicts. Before it commits, a 
transaction may release an object that  it has opened in 
READ mode by invoking the r e l e a s e ( )  method. Once an 
object has been released, other transactions accessing that  
object do not conflict with the releasing transaction over the 
released object. The programmer must ensure that  subse- 
quent changes by other transactions to released objects will 
not violate the linearizability of the releasing transaction. 
The danger here is similar to the problem mentioned earlier 
to motivate validation; releasing objects from a transaction 
causes future validations of that  transaction to ignore the 
released objects. Therefore, as before, a transaction can 
observe inconsistent state. The effects in this case are po- 
tentially even worse because that  transaction can actually 
commit, even though it is not linearizable. 

In our I n t S e t  exarnple, releasing nodes is useful for nav- 
igating through the list with a minimum of conflicts, as 
shown in Figure 2. As a transaction traverses the list, open- 
ing each node in READ mode, it releases every node before its 
prey node. 4 A transaction that  adds an element to the list 
"upgrades" its access to the node to be modified by reopen- 
ing that  node in WRITE mode. A transaction that  removes 
an element from the list opens in WRITE mode both the node 
to be modified and the node to be removed. It is easy to 
check that  these steps preserve linearizability. 

Because a transaction may open the same object several 
times, the DSTM matches, for each object, invocations of 

4This is analogous to the technique of lock coupling (see [5], 
e.g.), but of course does not use any locks. 
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aborted 

T.Ob e   ) 

1 
F i g u r e  3: T r a n s a c t i o n a l  o b j e c t  s t r u c t u r e  

r e l e a s e ( )  with invocations of open(READ); an object is not 
actually released until r e l e a s e ( )  has been invoked as many 
times as open(KEAD) for that  object. "Objects opened in 
WRITE mode by a transaction cannot be released before the 
transaction commits; if a transaction opens an object in 
READ mode and then "upgrades" to WRITE mode, subsequent 
requests to release the object are silently ignored. 

Clearly, the release facility must be used with care; care- 
less use may violate transaction linearizability. Nevertheless, 
we have found it useful for designing shared pointer-based 
data structures such as lists and trees, in which a transaction 
reads its way through a complex structure. 

3. IMPLEMENTATION 
We now describe our DSTM implementation. A transac- 

tion object (class Transac t ion)  has a s t a t u s  field that  is 
initialized to be ACTIVE, and is later set to either COMMITTED 
or AB01:tTED using a CAS instruction. 5 (CAS functionality is 
provided by the AtemicRe:f class in the experimental proto- 
type of Doug Lea's j a v a . u t i l ,  concur ren t  package [1].) 

3.1 Opening a Transactional Object 
Recall that  a transactional object (class TM0bject) is a 

container for a regular Java object, which we call a version. 
Logically, each transactional object has three fields: 

• t r a n s a c t i o n  points to the transaction that  most re- 
cently opened the transactional object in WRITE mode; 

• o l d 0 b j e c t  points to an old object version; and 

• new0bject  points to a new object version. 

The current (i.e., most recently committed) version of a 
transactional object is determined by the status of the trans- 
action that  most recently opened the object in WRITE mode. 
If that  transaction is committed, then the new object is the 
current version and the old object is meaningless. If the 
transaction is aborted, then the old object is the current 
version and the new object is meaningless. If the transac- 
tion is active, then the old object is the current version, and 
the new object is the active transaction's tentative version. 
This version will become current if the transaction com- 
mits successfully; otherwise, it will be discarded. Observe 
that, if several transactional objects have most recently been 
opened in WRITE mode by the same active transaction, then 
changing the s t a t u s  field of that  transaction from ACTIVE 

5A CAS (a, e ,n)  instruction takes three parameters: an ad- 
dress a, an expected value e, and a new value n. If the value 
currently stored at address a matches the expected value e, 
then CAS stores the new value n at address a and returns 
true; we say that  the CAS succeeds in this case. Otherwise, 
CAS returns false and does not modify the memory; we say 
that  the CAS fails in this case. 

F i g u r e  4: O p e n i n g  transactional  object  after recent 
commit  

T 

Figure 5: Opening transactional  object  after recent 
abort 

to COMMITTED atomically changes the current version of each 
respective object from its old version to its new version; 6 
this is the essence of how atomic transactions are achieved 
in our implementation. 

The interesting part of our implementation is how a trans- 
action can safely open a transactional object without chang- 
ing its current version (which should occur only when the 
transaction successfully commits). To achieve this, we need 
to atomically access the three fields mentioned above. How- 
ever, current architectures do not generally provide hard- 
ware support for such atomic updates. Therefore, we in- 
troduce a level of indirection, whereby each TMObject has a 
single reference field s t a r t  that  points to a Loca tor  object 
(Figure 3). The Locator  object contains the three fields 
mentioned above: t r a n s a c t i o n  points to the transaction 
that  created the Locator ,  and o l d 0 b j e c t  and new0bject  
point to the old and new object versions. This indirection 
allows us to change the three fields atomically by calling 
CAS to swing the s t a r t  pointer from one Loca tor  object to 
another. 

We now explain in more detail how transaction A opens 
a TM0bject in WRITE mode. Let B be the transaction that  
most recently opened the object in WRITE mode. A prepares 
a new Locator  object with t r a n s a c t i o n  set to A. Suppose 
B is committed. A sets the new locator's o l d 0 b j e c t  field 

6Because objects opened for reading by a transaction that  
successfully commits can change after the transaction suc- 
cessfully validates them but before it executes the CAS that  
changes its status, the transaction is linearized to the invoca- 
tion of the commit, not to the point that  the CAS succeeds. 
This point is subtle and we defer a complete discussion and 
the proof of linearizability to the full version of this paper. 
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to the current new0bject,  and the new new0bject field to a 
copy of the the current new0bject  (Figure 4). (ReCall that 
every class that  can be encapsulated by a transactional ob- 
ject must export a public c loneO method.) A then calls 
CAS to change the object 's s t a r t  field from B's old locator 
to A's new locator7 If the CAS succeeds, the open() method 
returns the new version, which :is now the transaction's ten- 
tative version of this object. A can update that version 
without further synchronization. If the CAS fails, the trans- 
action rereads the object's s t a r t  field and retries. Suppose, 
instead, that B is aborted. A :follows the same procedure, 
except that  it sets the new locator's old0bj eet  field to the 
current o ld0b jec t  (Figure 5). 

Finally, suppose B is still active. Because B may com- 
mit or abort before A changes the object's s t a r t  field, A 
cannot determine which version is current at the moment 
its CAS succeeds. Thus, A cannot safely choose a version to 
store in the o ld0b jec t  field of its Locator. The beauty of 
obstruction-freedom is that  A does not need to guarantee 
progress to B, and can therefore resolve this dilemma by 
attempting to abort B (by using CAS to change B's s t a t u s  
field from ACTIVE to ABORTED) and ensuring that B's s t a t u s  
field is either ABORTED or COMMrrTED before proceeding (the 
change may have been effected by the action of some other 
transaction). This resolution also highlights an important 
property of our algorithm with :respect to the integration of 
contention managers: Because A can determine in advance 
that  it will interfere with B, it can decide, based on the 
policy implemented by its contention manager (discussed in 
the next section), whether to abort B or to give B a chance 
to finish. 

Read-only access is implemented in a slightly different 
way. When A opens a transactional object o for reading, it 
identifies the last committed version v (possibly by aborting 
an active transaction) exactly as for write access. However, 
instead of installing a new Locator object, A adds the pair 
(o, v) to a thread-local read-only table. 

To match invocations of open(READ) and r e l e a s e ( ) ,  the 
transaction also maintains a counter for each pair in its read- 
only table. If an object is opened in READ mode when it 
already has an entry in the table, the transaction increments 
the corresponding counter instead of inserting a new pair. 
This counter is decremented by the r e l e a s e ( )  method, and 
the pair is removed when the counter is reduced to zero. 

3.2 Validating and Committing a Transaction 
After open() has determined which version of an object 

to return, and before it actually returns that  version, the 
DSTM must validate the calling transaction in order to en- 
sure that the user transaction code can never observe an 
inconsistent state. Validation requires two steps: 

1. For each pair (o, v) in the calling thread's read-only 

7Readers familiar with the use of CAS may be concerned 
about the ABA problem [12], in which a CAS operation fails 
to notice that the location it accesses has changed to a new 
value and then back to the original value, causing the CAS 
to succeed when it should have failed. This problem does 
not arise in our Java implementation, because garbage col- 
lection (GC) ensures that a Locater  object does not get 
recycled until no thread has a pointer to it. While GC elim- 
inates the ABA problem in this case, we caution the reader 
against assuming that  the ABA problem can never occur in 
environments that  support GC. 

table, verify that v is still the most recently committed 
version of o. 

2. Check that the s t a t u s  field of the T r a n s a c t i o n  object 
remains ACTIVE. 

Committing a transaction requires two steps: validating 
the entries in the read-only table as described above, and 
calling CAS to at tempt to change the s t a t u s  field of the 
Transaction object from ACTIVE to COMMITTED. 8 

3.3 Costs 
In the absence of synchronization conflicts, a transaction 

that opens W objects for writing requires W + 1 CAS op- 
erations: one for each open() call, and one to commit the 
transaction. Synchronization conflicts may require more CAS 
operations to abort other transactions. These are the only 
strong synchronization operations needed by our DSTM im- 
plementation: once open() returns an object version, there 
is no need for further synchronization to access that version. 
A transaction also incurs the cost of cloning objects opened 
for writing; cloning is achieved using simple load and store 
instructions because the DSTM ensures objects being cloned 
do not change during the cloning. 

Validating a transaction that has opened W objects for 
writing and R objects for reading (that have not been re- 
leased) requires O(R) work. Because validation must be 
performed whenever an object is opened and when the trans- 
action commits, the total overhead due to the DSTM imple- 
mentation for a transaction that opens R for reading and W 
objects for writing is O((R + W)R) plus the cost of copy- 
ing each of the W objects opened for writing once. Note 
that, in addition to reducing the potential for conflict, re- 
leasing objects opened for reading also reduces the overhead 
due to validation: released objects do not need to be vali- 
dated. Thus, if at most K objects are open for reading at 
any time, then the total overhead for a transaction is only 
O((R + W)K)  plus the cost of cloning the W objects. 

4. CONTENTION MANAGEMENT 
Despite our advocacy of obstruction-free synchronization, 

we do not expect progress to take care of itsel£ On the con- 
trary, we have found that explicit measures are often neces- 
sary to avoid starvation. Obstruction-free synchronization 
encourages a clean distinction between the obstruction-free 
mechanisms that ensure correctness (such as conflict detec- 
tion and recovery) and additional mechanisms that ensure 
progress (such as adaptive backoff or queuing). 

In our transactional memory implementation, progress is 
the responsibility of the contention manager. Each thread 
has its own contention manager instance, which it consults 
to decide whether to force a conflicting thread to abort. In 
addition, contention managers of different threads may con- 
sult one another to compare priorities and other attributes. 

The correctness requirement for contention managers is 
simple and quite weak. Informally, any active transaction 
that asks sufficiently many times must eventually get per- 
mission to abort a conflicting transaction. More precisely, 

SA further optional step can reduce space overhead by stor- 
ing null to whichever of the object pointers in a locator 
becomes obsolete after its transaction either commits or 
aborts, thereby allowing the garbage collector to claim it. 
(Straightforward changes would be required in order to avoid 
dereferencing these null pointers.) 
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every call to a contention manager method eventually re- 
turns (unless the invoking thread stops taking steps for some 
reason), and every transaction that repeatedly requests to 
abort another transaction is eventually granted permission 
to do so. This requirement is needed to preserve obstruction- 
freedom: A transaction T that  is forever denied permission 
to abort a conflicting transaction will never commit even if 
it runs by itself. 9 If the conflicting transaction is also con- 
tinually requesting permission to abort T, and incorrectly 
being denied this permission, the situation is akin to dead- 
lock. Conversely, if T is eventually allowed to abort any 
conflicting transaction, then T will eventually commit if it 
runs by itself for long enough. 

The correctness requirement for contention managers does 
not guaxazltee progress in the presence of conflicts. Whether 
a particular contention manager should provide such a 
guarantee--and under what assumptions and system mod- 
els it should do so--is a policy decision that  may depend 
on applications, environments, and other factors. The prob- 
lem of avoiding livelock is thus delegated to the contention 
manager. 

Rather than mandate a specific contention-management 
policy, we define a ContentionManager interface that every 
contention manager must implement. This interface speci- 
fies two kinds of methods, notification methods and feedback 
methods, which are invoked by our DSTM implementation. 

Notification methods inform a contention manager of rele- 
vant events in the DSTM; they do not return any value. For 
example, the commitTransactionSucceeded() method is in- 
voked whenever a transaction commits successfully, and the 
commitTransac t ionFai led( )  method is invoked whenever 
an at tempt to commit a transaction fails. Some notification 
methods correspond to events internal to our DSTM imple- 
mentation. For example, the openReadAttempt O method 
is called to notify a contention manager before any at tempt 
to open in READ mode an object that  is not already open; 
similarly, the openWriteAttempt () method is called before 
any at tempt to open an object in WRITE mode. 

Feedback methods axe called by the DSTM to determine 
what action should be taken in various circumstances. One 
important feedback method is shouldAbort() ,  which is in- 
voked whenever the DSTM detects a conflicting transaction 
during an at tempt to open art object. The shonldAbort O 
method is passed the object being opened and the manager 
of the conflicting transaction, and it returns a boolean indi- 
cating whether to try to abort the conflicting transaction. 

In addition to their explicit purposes, the contention man- 
ager's methods may implement other measures, such as back- 
off and queuing, to manage contention. We have done only 
preliminary work using these methods to implement some 
simple contention management strategies, and we expect the 
Contention.Manager interface to evolve as we gain experi- 
ence with what methods--especially notification methods--  
are useful for implementing more sophisticated strategies. 

4.1 Examples 
As a baseline for the experimental results reported in 

Section 5, we implemented a trivial Aggressive contention 
manager that  always and immediately grants permission to 
abort any conflicting transaction. We also intplemented a 

9Here and elsewhere "runs by itself" means that no concur- 
rent transaction takes a step, not that  no concurrent trans- 
action exists. 

simple Polite contention manager, that  adaptively backs 
off a few times when it encounters a conflict. Specifically, 
when a transaction first invokes shouldAbort()  for an ob- 
ject, the method sleeps for a random duration before re- 
turning false, refusing permission to abort the other thread. 
Each subsequent call to shouldAbort () for the same object 
doubles the expected sleep time, until  a threshold is reached. 
Beyond that threshold, shouldAbort () returns immediately 
and returns true, granting the caller permission to abort the 
conflicting transaction. 

One can imagine many variations on this strategy, as well 
as different strategies based on queuing rather than backoff 
combined with spinning. Discovering which strategies work 
best remains an open area of research. 

5. RESULTS 
In this section, we briefly present the results of some sim- 

ple performance experiments we conducted on a Sun Fire T M  

15K server with 72 1050MHz SPARC® processors. 
In each experiment, we implemented an integer set and 

measured how many operations completed on the integer set 
in 20 seconds, varying the number of participating threads 
between 1 and 576 (a multiprogramming level of 8). For each 
operation, we randomly choose a value between 0 and 255 
and randomly choose whether to insert or delete the value. 
The restricted range ensures significant contention among 
concurrent threads, and thus exercises the contention man- 
agers. In each experiment, each thread executes operations 
repeatedly with no delay between them in order to examine 
how the implementations scale with increased contention. 

The results of our experiments are presented in Figure 6. 
The graphs show results as throughput in operations per 
millisecond. Each point represents the average of at least 
ten runs of the relevant experiment. The upper graph shows 
the results for the various experiments, running from 1 to 
576 threads. The lower graph presents a more detailed look 
at the experiments in which the number of threads does not 
exceed the number of processors (72). Of course, many more 
experiments should be conducted to test various implemen- 
tation approaches at the transaction, contention manager, 
and STM levels. The simple experiments presented here are 
intended only to illustrate some broad principles. 

We first implemented a simple linked list synchronized 
with a single lock (see "Simple Locking" in Figure 6). Due to 
its simplicity, this implementation yields a higher through- 
put than any other configuration in the single-threaded case 
(768 operations per millisecond). However, as the number 
of threads increases, the throughput of this implementation 
quickly falls off; in particular, when there are more threads 
than processors, this implementation performs very badly 
due to preemption while holding the lock. 1° 

Next, we used DSTM to implement the simple trans- 
actional integer set shown in Figure 1. When composed 

l°There are specialized optimistic locking algorithms that  ex- 
ploit the simple semantics of linked lists to substantially 
improve performance. However, these algorithms involve 
unsynchronized reads of shared data, and thus require care- 
ful reasoning about concurrency to ensure correctness and 
avoid deadlock. Furthermore, these algorithms do not gen- 
eralize straightforwardly to more complex data structures. 
Because our purpose here is to illustrate the implications of 
different implementation approaches, not to construct the 
best implementation of integer sets, we do not consider such 
algorithms in this paper. 
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with the trivial Aggressive contention manager (IntSetSim- 
pie/Aggressive in Figure 6), this implementation immedi- 
ately livelocks as soon as there is more than one thread. 
However, when we compose the same implementation with 
the slightly more sophisticated P o l i t e  contention manager, 
it performs much better. In fact, it outperforms the simple 
lock-based implementation when there are more than about 
10 threads. These results demonstrate the necessity and 
effectiveness of contention management. 

As discussed in Section 2, it is often preferable to avoid 
contention rather than merely manage it. We therefore aJso 
tested the linked list implementation with early release, as 
shown in Figure 2. This implementation greatly reduces 
contention because a transaction has many fewer objects 
open at any time• As seen in Figure 6, this implementa- 
tion does not livelock even when used with the Aggressive 
contention manager (IntSetRelease/Aggressive in Figure 6), 

demonstrating that this programming technique is effective 
at reducing contention. Because this implementation gives 
rise to less contention, the effect of contention management 
is less pronounced. Interestingly, however, the early release 
implementation performs better with the Aggressive con- 
tention manager than with the P o l i t e  one, especially when 
the number of threads exceeds the number of processors. 
One possible explanation for this difference is that  we have 
not tuned the P o l i t e  manager for the case in which there 
is no contention• Also, when there are more threads than 
processors, a transaction might conflict with another trans- 
action whose thread is preempted, in which case, it may 
be best to abort that  other transaction immediately. We 
have yet to conduct more detailed experiments to test these 
conjectures and fully understand the cause of this effect• 

In the context of sequential algorithms, it is standard 
practice to design more complex algorithms that outperform 
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simpler ones (for example, by implementing a balanced tree 
instead of a list). For non-blocking algorithms, however, 
implementing more complex data structures has been pro- 
hibitively difficult. Our work on DSTM makes a significant 
step towards overcoming this difficulty. To demonstrate, we 
have used DSTM to implement a non-blocking red-black tree 
using a straightforward translation from sequential code [6]. 
To reduce contention, our red-black tree implementation ini- 
tially opens nodes in READ mode, upgrading to WRITE mode 
as needed. To keep it simple, we do not release any nodes 
until  the transaction commits (or is aborted). We tested 
our red-black tree implementation with the Aggressive and 
P o l i t e  contention managers (RBTree/Aggressive and RB- 
Tree/Polite in Figure 6). 

As can be seen from Figure 6, our red-black tree signifi- 
cantly outperforms the other non-blocking implementations 
at low levels of contention (fewer than ten threads). We ex- 
pected this improvement because the red-black tree's time 
complexity is logarithmic in the size of the set, in contrast 
to the linear time complexity of the list. This effect would 
be even more pronounced if we chose values to insert from 
a larger range, resulting in larger sets in the steady state. 

Even with this limited value range, the red-black tree us- 
ing the Aggressive contention manager significantly outper- 
forms M1 other configurations at most levels of contention, 
Mthough there is a marked degradation in its performance 
as the number of threads increases. With the P o l i t e  con- 
tention manager, the red-black tree does not perform quite 
as well, but  it remains competitive with all of the other 
configurations shown while we have at most one thread per 
processor, and is significantly better than most of them. 

These observations suggest several lessons. First, unsur- 
prisingly, sophisticated data structures, such as red-black 
trees, can significantly outperform simpler data structures, 
such as linked lists. Our DSTM makes it relatively straight- 
forward to transform sequential algorithms into non-blocking 
ones, and thus, allows us to leverage decades of work on 
efficient sequential data structures in our development of 
non-blocking data structures. Second, the difference in per- 
fbrmance between configurations with different contention 
managers reinforces the importance of contention manage- 
ment for designing efficient non-blocking data structures. 
Finally, the performance degradation of the red-black tree 
with both contention managers suggests that there is room 
for considerable improvement with more sophisticated con- 
tention managers that  impose very low overhead when con- 
tention is not a problem, but  manage contention better when 
it is. 

One shortcoming of our current DSTM implementation 
with respect to the range of possible contention managers 
is that  there is no way for one transaction to detect that 
another transaction has opened an object in READ mode. 
By opening that  object in WRITE mode, the first transaction 
will cause the other transaction to abort. Clearly there is 
a tradeoff between the amount of synchronization needed 
to open an object for reading in a "visible" way in order to 
enable competing transactions to "be polite" and the benefit 
derived from doing so. We axe currently working on some 
ideas in this direction. 

6. CONCLUDING REMARKS 
We have proposed a new form of dynamic software trans- 

actional memory (DSTM), which supports relatively 

straightforward programming of a wide variety of dynamic- 
sized data structures. For example, we have used it to imple- 
ment a non-blocking red-black tree, by far the most sophisti- 
cated non-blocking data structure achieved to date. We have 
implemented an obstruction-free prototype of our DTSM in 
the Java programming language. Obstruction-freedom is a 
new non-blocking progress condition we proposed recently; 
it is weaker than previous such conditions, and as a result, 
admits substantially simpler implementations. 

An attractive feature of our implementation is the ability 
for a transaction to detect that  it will cause another to abort 
before it does so, and therefore decide whether to proceed or 
to give the other transaction a chance to complete first. Such 
policy decisions are made by modular contention managers 
that  can be "plugged in" without affecting the transaction 
code or its correctness. Preliminary performance experi- 
ments show that nontrivial contention management schemes 
are necessary in order to avoid livelock, and that  even simple 
schemes can be effective. 

We have only begun to explore the range of possible con- 
tention manager designs. We believe that  designing, test- 
ing, and reasoning about modular contention managers will 
be a rich source of research problems. It is interesting to 
note that it is possible to design contention managers that  
make provable progress guarantees in the presence of cer- 
tain weak but reasonable assumptions about the underlying 
system (and the transaction code). Whether such managers 
are practical is a matter for future research. 

Another interesting and novel feature of our DSTM is 
the ability to "release" objects from a transaction before 
it commits. This feature puts significantly more burden 
on the transaction programmer in reasoning about correct- 
ness, but  can also provide considerable perfbrmance im- 
provements when used with care. 

Some interesting issues also remain regarding interface 
and semantics. In many cases, there are tradeoffs between 
efficiency of implementation and usability and simplicity of 
interface; we have yet to explore these tradeoffs in detail. 
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