
Software Transactional Memory for Dynamic-Sized Data
Structures

Maurice Herlihy
Department of Computer Science

Brown University
Providence, RI 02912, USA

mph@cs.brown.edu

Mark Moir
Sun Microsystems Laboratories

1 Network Drive
Burlington, MA 01803, USA

mark.moir@sun.com

Victor Luchangco
Sun Microsystems Laboratories

1 Network Drive
Burlington, MA 01803, USA

victor.luchangco@sun.com

William N. Scherer III
Department of Computer Science

University of Rochester
Rochester, NY 14620, USA

scherer@cs.rochester.edu

ABSTRACT
We propose a new form of software transactional memory
(STM) designed to support dynamic-sized data structures,
and we describe a novel non-blocking implementation. The
non-blocking property we consider is obstruction-~eedom.
Obstruction-freedom is weaker than lock-freedom; as a re-
sult, it admits substantially simpler and more efficient im-
plementations. A novel feature of our obstruction-free STM
implementation is its use of modular contention managers to
ensure progress in practice. We illustrate the utility of our
dynamic STM with a straightforward implementation of an
obstruction-free red-black tree, thereby demonstrating a so-
phisticated non-blocking dynamic data structure that would
be difficult to implement by other means. We also present
the results of simple preliminary performance experiments
that demonstrate that an "early release" feature of our STM
is useful for reducing contention, and that our STM lends
itself to the effective use of modular contention managers.

1. INTRODUCTION
Using locks in programs for shared-memory multiproces-

sors introduces well-known software engineering problems.
Coarse-grained locks, which protect relatively large amounts
of data, generally do not scale: threads block one another
even when they do not really interfere, and the lock be-
comes a source of contention. Fine-grained locks can miti-
gate these scalability problems, but they introduce software
engineering problems as the locking conventions for guarart-
teeing correctness and avoiding deadlock become complex
and error-prone. Locks also cause vulnerability to thread

Copyright is held by Sun Micros~tems, Inc.
PODC'03, July 13-16, 2003, Boston, Massachusetts, USA.
ACM 1-58113-708-7/03/0007.

failures and delays. For example, a thread preempted while
holding a lock will obstruct other threads.

Dynamic Software Transactional Memory (DSTM) is a
low-level application programming interface (API) for syn-
chronizing shared data without using locks. A transaction
is a sequence of steps executed by a single thread. Transac-
tions are atomic: each transaction either commits (it takes
effect) or aborts (its effects are discarded). Transactions
are linearizable [9]: they appear to take effect in a one-at-
a-time order. Transactional memory supports a computa-
tional model in which each thread announces the start of
a transaction, executes a sequence of operations on shared
objects, and then tries to commit the transaction. If the
commit succeeds, the transaction's operations take effect;
otherwise, they are discarded. Although transactional mem-
ory was originally proposed as a hardware architecture [8],
there have been several proposals for non-blocking 1 software
transactional memory (STM) and similar constructs [3, 4,
10, 13, 14, 15].

We present the first dynaraic STM. Prior STM designs
required both the memory usage and the transactions to be
defined statically in advance. In contrast, our new DSTM
allows transactions and transactional objects to be created
dynamically, and transactions may determine the sequence
of objects to access based on the values observed in objects
accessed earlier in the same transaction. As a result, DSTM
is well suited to the implementation of dynamic-sized data
structures such as lists and trees.

We have developed prototype implementations of DSTM
in the C + + and Java T M programming languages. In this
paper, we focus on the Java version, which is considerably
simpler because there is no need for explicit memory man-
agement. Our Java implementation uses an experimental
prototype of Doug Lea's j ava. u t i l . concur ren t package [1]
to call native compare-and-swap (CAS) operations.

1We use "non-blocking" broadly to include all progress con-
ditions requiring that the failure or indefinite delay of a
thread cannot prevent other threads from making progress,
rather than as a synonym for "lock-free", as some authors
prefer.

92

Much of the simplicity of our implementation is due to
our choice of non-blocking progress condition. A synchro-
nization mechanism is obstruction-free [7] if any thread that
runs by itself for long enough nmkes progress (which implies
that a thread makes progress if it runs for long enough with-
out encountering a synchronization conflict from a concur-
rent thread). Like stronger non-blocking progress conditions
such as lock-freedom and wait-freedom, obstruction-freedom
ensures that a halted thread cannot prevent other threads
from making progress.

Unlike lock-freedom, obstruction-freedom does not rule
out livelock; interfering concurrent threads may repeatedly
prevent one another from making progress. Livelock is, of
course, unacceptable. Nonetheless, we believe that there is
great benefit in treating the mechanisms that ensure progress
as a matter of policy, evaluated by their empirical effective-
ness tbr a given application and execution environment. As
demonstrated here and elsewhere [7, 11], compared to lock-
freedom, obstruction-freedom admits substantially simpler
implementations that are more efficient in the absence of
synchronization conflicts among concurrent threads.

Obstruction-freedom also allows simple schemes for pri-
oritizing transactions because it allows any transaction to
abort any other t ransaction at. any time. In particular, a
high-priority transaction may always abort a low-priority
transaction. In a lock-based approach, the high-priority
transaction would be blocked if the low-priority transac-
lion held a lock that the high-priority transaction required,
resulting in priority inversion and intricate schemes to cir-
cumvent this inversion. On the other hand, in a lock-free
implementation, the high-priority transaction may have to
help the low-priority transaction complete in order to ensure
that some transaction will complete.

Our obstruction-free DSTM implementation provides a
simple open-ended mechanism ~ r guaranteeing progress and
prioritizing transactions. Specifically, one transaction can
detect that it is about abort another before it does so. In
this case, it consults a contention manager to determine
whether it should abort the other transaction immediately
or wait for some time to allow the other transaction a chance
to complete. Contention managers in our implementation
axe modular: various contention management schemes can
be implemented and "plugged in" without affecting the cor-
rectness of the transaction code. Thus we can design, imple-
ment and verify an obstruction-free data structure once, and
then vary the contention managers to provide the desired
progress guarantees and transaction prioritization. These
contention managers can exploit information about time,
operating systems services, scheduling, hardware environ-
ments, and other details about; the system and execution
environment, as well as programmer-supplied information.
These practical sources of information have been largely ne-
glected in the literature on lock-free synchronization. We
believe that this approach will yield simpler and more effi-
cleat concurrent data structures, which will help accelerate
their widespread acceptance and deployment.

Section 2 illustrates the use of DSTM through a series of
simple examples. To evaluate the utility of DSTM for im-
plementing complex data structures, we have also used it
to implement an obstruction-free red-black tree. As far as
we are aware, this red-black tree is the most complex non-
blocking data structure achieved to date. Although our ira-
plementation is a reasonably straightforward transformation

of a sequential implementation [6], it would be very difficult
to construct such a non-blocking implementation from first
principles. Indeed, it would be difficult to implement even
a lock-based red-black tree that allows operations accessing
different parts of the tree to proceed in parallel.

Section 3 describes how our STM detects synchronization
conflicts and how transactions commit and abort, with an
emphasis on how the obstruction-free property simplifies the
underlying algorithm. In Section 4, we describe how our im-
plementation interfaces with contention managers, which are
responsible for ensuring progress. Section 5 describes some
simple experiments conducted with our prototype DSTM
implementation. Concluding remarks appear in Section 6.
Code for our DSTM implementation, contention managers,
and related experiments is publicly available [2].

2. OVERVIEW AND EXAMPLES
In this section, we illustrate the use of DSTM through

a series of simple examples. DSTM manages a collection
of transactional objects, which are accessed by transactions.
A transaction is a short-lived, single-threaded computation
that either commits or aborts. A transactional object is a
container for a regular Java object. A transaction can access
the contained object by opening the transactional object,
and then reading or modifying the regular object. Changes
to objects opened by a transaction are not seen outside the
transaction until the transaction commits. If the transaction
commits, then these changes take effect; otherwise, they are
discarded.

Transactional objects can be created dynamically at any
time. The creation and initialization of a transactional ob-
ject is not performed as part of any transaction.

Concretely, the basic unit of parallel computation is the
TMThread class, which extends regular Java threads. Like a
regular Java thread, it provides a run() method that does
all the work. In addition, the TMThread class provides addi-
tional methods for starting, committing or aborting trans-
actions, and for checking on the status of a transaction.
Threads can be created and destroyed dynamically.

Transactional objects are implemented by the TM0bject
class. To implement an atomic counter, one would create
a new instance of a Counter class (not shown), and then
create a TM0bject to hold it:

Counter counter = new Counter(0);

TM0bject tm0bject = new TM0bject(counter) ;

Any class whose objects may be encapsulated within a
transactional object must implement the TMCloneable in-
terface. This interface requires the object to export a public
clone O method that returns a new, logically disjoint copy
of the object. DSTM uses this method when opening trans-
actional objects, as described below. (DSTM guarantees
that the object being cloned does not change during the
cloning, so no synchronization is necessary in the clone()
method.)

A thread calls beginTransaction () to start a transaction.
Once it is started, a transaction is active until it is either
committed or aborted.

While it is active, a transaction can access the encapsu-
lated counter by calling open():

Counter counter = (Counter)tm0bject.open(WRITE) ;
counter.inc(); // increment the counter

93

The argument to open() is a constant indicating that the
caller may modify the object. The open() method returns a
copy of the encapsulated regular Java object 2 created using
that object's c lone() method; we call this copy the trans-
action's version.

The thread can manipulate its version of an object by
calling its methods in the usual way. DSTM guarantees
that no other thread can access this version, so there is no
need for further synchronization.

Note that a transaction's version is meaningful only dur-
ing the lifetime of the transaction. References to versions
should not be stored in other objects; only references to
transactional objects are meaningful across transactions.

A thread at tempts to commit its transaction by invoking
commitTransact ion() , which returns t~te if and only if the
commit is successful. A thread may also abort its transac-
tion by invoking a b o r t T r a n s a c t i o n () .

We guarantee that successfully committed transactions
are linearizable: they appear to execute in a one-at-a-time
order. But what kind of consistency guarantee should we
make for a transaction that eventually aborts? One might
argue that it does not matter, as the transaction's changes to
transactional objects are discarded anyway. However, syn-
chronization conflicts could cause a transaction to observe
inconsistencies among the objects it opens before it aborts.
For example, while a transaction T is executing, another
transaction might modify objects that T has already ac-
cessed as well as objects that T will subsequently access. In
this case, T will see only partial effects of that transaction.
Because transactions should appear to execute in isolation,
observing such inconsistencies may cause a transaction to
have unexpected side-effects, such as dereferencing a null
pointer, array bounds violations, and so on.

DSTM addresses this problem by validating a transac-
tion whenever it opens a transactional object. Validation
consists of checking for synchronization conflicts, that is,
whether any object opened by the transaction has since
been opened in a conflicting mode by another transaction.
If a synchronization conflict has occurred, open() throws a
Denied exception instead of returning a value, indicating to
the transaction that it cannot successfully commit in the
fllture. The set of transactional objects opened before the
first such exception is guaranteed to be consistent: open()
returns the actual states of the objects at some recent in-
stant. (Throwing an exception also allows the thread to
avoid wasting effort by continuing the transaction.)

Ultimately, we would like DSTM to support nested trans-
actions, so that a class whose methods use transactions can
invoke from within a transaction methods of other classes
that also use transactions. However, we have not acquired
sufficient experience programming with DSTM to decide on
the appropriate nesting semantics, so we do not specify this
behavior for now. 3

2.1 Extended Example
Consider a linked list whose values are stored in increasing

order. We will use this list to implement an integer set (class

2The open() method actually returns an object of class
j a v a . l a n g . 0 b j e c t , which we must explicitly cast back to
class Counter.
3Our implementation does support a rudimentary form of
nested transactions, but we do not use it in any of the ex-
amples discussed in this paper.

public class IntSet {
private TM0bject first;

class List implements TMCloneable {
int value;
TM0bject next;

List(int v) {
this.value = v;

}

public Object clone() {
List newList = new List(this.value);
newList.next = this.next;
return newList;

}

public IntSet() {
List firstList = new List(Integer.MIN_VALUE);
this.first = new TM0bject(firstList);
firstList.next =
new TM0bject(new List(Integer.MAX_VALUE));

}

public boolean insert(int v) {
List newList = new List(v);
TM0bject newNode = new TM0bject(newList);
TMThread thread =

(TMThread)Thread.currentThread();
while (true) {

thread.beginTransaction();
boolean result = true;
try {

List prevList =
(List)this.first.open(WRITE);

List currList =
(List)prevList.next.open(WRITE);

while (eurrList.value < v) {
prevList = currList;
currList =

(List)currList.next.open(WRITE);
}
if (currList.value == v) {

result = false;
} else {

result = true;
newList.next = prevList.next;
prevList.next = newNode;

}
} catch (Denied d){}
if (thread.commitTransaction())

return result;
}

F i g u r e 1: I n t e g e r Set E x a m p l e

In tSe t) that provides i n s e r t () , d e l e t e () , and member()
methods. Relevant code excerpts are shown in Figure 1.

The In tSe t class uses two types of objects: nodes and list
elements; nodes are transactional objects (class TMObject)
that contain list elements (class Lis t) , which are regular
Java objects. The L i s t class has the following fields: va lue
is the integer value, and next is the TM0bject containing the
next list element. We emphasize that next is a TM0bject,
not a list element, because this field must be meaningful
across transactions. Because list elements are encapsulated
within transactional objects, the L i s t class implements the

94

TMCloneable interface, providing a public c lone() method.
The I n t S e t constructor allocates two sentinel nodes, con-

taining list elements holding the. minimum and maximum in-
teger values (which we assume are never inserted or deleted).
For brevity, we focus on i n s e r t () . This method takes an
integer value; it returns true if the insertion takes place, and
false if the value was already in the set. It first creates a
new list element to hold the integer argument, and a new
node to hold that list element. It then repeatedly retries
the following transaction until :it succeeds. The transaction
traverses the list, maintaining a "current" node and a "pre-
vious" node. At the end of the traversal, the current node
contains the smallest value in the list that is greater than or
equal to the value being inserted. Depending on the value of
the current node, the transaction either detects a duplicate
or inserts the new node between the previous and current
nodes, and then tries to commit. If the commit succeeds,
the method returns; otherwise, it resumes the loop to retry
the transaction.

An attractive feature of DSTM is that we can reason
about this code almost as if it were sequential. The principal
differences are the need to catch Denied exceptions and to
retry transactions that fail to commit, and the need to dis-
tinguish between transactional :nodes and non-transactional
list elements. Note that after catching a Denied exception,
we must still call commitTransact ion() to terminate the
transaction, even though it is guaranteed to fail.

2.2 Conflict Reduction
A transaction A will typically fail to commit if a con-

cnrrent transaction B opens an object already opened by
A. Ultimately, it is the responsibility of the contention
manager (discussed in Section 4) to ensure that conflict-
ing transactions eventually do not overlap. Even so, the
I n t S e t implementation just described introduces a number
of unnecessary conflicts. For example, consider a transac-
tion that calls member O to test whether a particular value is
in the set, running concurrently with a transaction that calls
i n s e r t () to insert a larger value. One transaction will cause
the other to abort, since they will conflict on opening the
first node of the list. Such a conflict is unnecessary, however,
because the transaction inserting the value does not modify
any of the nodes traversed by the other transaction. Design-
ing the operations to avoid such conflicts reduces the need
for contention management, and thereby generally improves
performance and scalability.

DSTM provides several mechanisms for eliminating un-
needed conflicts. One conventional mechanism is to allow
transactions to open nodes in read-only mode, indicating
that the transaction will not modify the object.

List list = (List)node.open(READ);

Concurrent transactions that open the same transactional
object for reading do not conflict. Because it is often diffi-
cult, especially in the face of aliasing, for a transaction to
keep track of the objects it has opened, and in what mode
each was opened, we allow a transaction to open an object
several times, and in different modes.

The revised i n s e r t () (not shown) method walks down
the list in read-only mode until it identifies which nodes to
modify. It then "upgrades" its access from read-only to reg-
ular access by reopening that transactional object in WRITE
mode. Read-only access is particularly useful for navigating

public boolean delete(int v) {
TMThread thread =

(TMThread) Thread. currentThread O ;
while (true) {

thread.beginTransaction();
boolean result = true;
try {

TM0bject lastNode = null;
TM0bject prevNede = this.first;
List prevList = (List)prevNede.open(READ);
List currList =

(List)prevList.next.epen(RFEAD);
while (currList.value < v) {

if (lastNode != null)
lastNede.release();

lastNode = prevNode;
prevNode = prevList.next;
prevList = currList;
currList = (List)currList.next.open(READ);

}
if (currList.value != v) {

result = false;
} else {

result = true;
prevList = (List)prevNode.open(WRITE);
prevList.next.open(WRITE);
prevList.next = currList.next;

}
} catch (Denied d){}
if (thread.commitTransaction())

return result;

F i g u r e 2 : D e l e t e m e t h o d w i t h e a r l y release

through tree-like data structures where all transactions pass
through a common root, but most do not modify the root.

DSTM also provides a novel and more powerful (and more
dangerous!) way to reduce conflicts. Before it commits, a
transaction may release an object that it has opened in
READ mode by invoking the r e l e a s e () method. Once an
object has been released, other transactions accessing that
object do not conflict with the releasing transaction over the
released object. The programmer must ensure that subse-
quent changes by other transactions to released objects will
not violate the linearizability of the releasing transaction.
The danger here is similar to the problem mentioned earlier
to motivate validation; releasing objects from a transaction
causes future validations of that transaction to ignore the
released objects. Therefore, as before, a transaction can
observe inconsistent state. The effects in this case are po-
tentially even worse because that transaction can actually
commit, even though it is not linearizable.

In our I n t S e t exarnple, releasing nodes is useful for nav-
igating through the list with a minimum of conflicts, as
shown in Figure 2. As a transaction traverses the list, open-
ing each node in READ mode, it releases every node before its
prey node. 4 A transaction that adds an element to the list
"upgrades" its access to the node to be modified by reopen-
ing that node in WRITE mode. A transaction that removes
an element from the list opens in WRITE mode both the node
to be modified and the node to be removed. It is easy to
check that these steps preserve linearizability.

Because a transaction may open the same object several
times, the DSTM matches, for each object, invocations of

4This is analogous to the technique of lock coupling (see [5],
e.g.), but of course does not use any locks.

95

aborted

T.Ob e)

1
F i g u r e 3: T r a n s a c t i o n a l o b j e c t s t r u c t u r e

r e l e a s e () with invocations of open(READ); an object is not
actually released until r e l e a s e () has been invoked as many
times as open(KEAD) for that object. "Objects opened in
WRITE mode by a transaction cannot be released before the
transaction commits; if a transaction opens an object in
READ mode and then "upgrades" to WRITE mode, subsequent
requests to release the object are silently ignored.

Clearly, the release facility must be used with care; care-
less use may violate transaction linearizability. Nevertheless,
we have found it useful for designing shared pointer-based
data structures such as lists and trees, in which a transaction
reads its way through a complex structure.

3. IMPLEMENTATION
We now describe our DSTM implementation. A transac-

tion object (class Transac t ion) has a s t a t u s field that is
initialized to be ACTIVE, and is later set to either COMMITTED
or AB01:tTED using a CAS instruction. 5 (CAS functionality is
provided by the AtemicRe:f class in the experimental proto-
type of Doug Lea's j a v a . u t i l , concur ren t package [1].)

3.1 Opening a Transactional Object
Recall that a transactional object (class TM0bject) is a

container for a regular Java object, which we call a version.
Logically, each transactional object has three fields:

• t r a n s a c t i o n points to the transaction that most re-
cently opened the transactional object in WRITE mode;

• o l d 0 b j e c t points to an old object version; and

• new0bject points to a new object version.

The current (i.e., most recently committed) version of a
transactional object is determined by the status of the trans-
action that most recently opened the object in WRITE mode.
If that transaction is committed, then the new object is the
current version and the old object is meaningless. If the
transaction is aborted, then the old object is the current
version and the new object is meaningless. If the transac-
tion is active, then the old object is the current version, and
the new object is the active transaction's tentative version.
This version will become current if the transaction com-
mits successfully; otherwise, it will be discarded. Observe
that, if several transactional objects have most recently been
opened in WRITE mode by the same active transaction, then
changing the s t a t u s field of that transaction from ACTIVE

5A CAS (a, e ,n) instruction takes three parameters: an ad-
dress a, an expected value e, and a new value n. If the value
currently stored at address a matches the expected value e,
then CAS stores the new value n at address a and returns
true; we say that the CAS succeeds in this case. Otherwise,
CAS returns false and does not modify the memory; we say
that the CAS fails in this case.

F i g u r e 4: O p e n i n g transactional object after recent
commit

T

Figure 5: Opening transactional object after recent
abort

to COMMITTED atomically changes the current version of each
respective object from its old version to its new version; 6
this is the essence of how atomic transactions are achieved
in our implementation.

The interesting part of our implementation is how a trans-
action can safely open a transactional object without chang-
ing its current version (which should occur only when the
transaction successfully commits). To achieve this, we need
to atomically access the three fields mentioned above. How-
ever, current architectures do not generally provide hard-
ware support for such atomic updates. Therefore, we in-
troduce a level of indirection, whereby each TMObject has a
single reference field s t a r t that points to a Loca tor object
(Figure 3). The Locator object contains the three fields
mentioned above: t r a n s a c t i o n points to the transaction
that created the Locator , and o l d 0 b j e c t and new0bject
point to the old and new object versions. This indirection
allows us to change the three fields atomically by calling
CAS to swing the s t a r t pointer from one Loca tor object to
another.

We now explain in more detail how transaction A opens
a TM0bject in WRITE mode. Let B be the transaction that
most recently opened the object in WRITE mode. A prepares
a new Locator object with t r a n s a c t i o n set to A. Suppose
B is committed. A sets the new locator's o l d 0 b j e c t field

6Because objects opened for reading by a transaction that
successfully commits can change after the transaction suc-
cessfully validates them but before it executes the CAS that
changes its status, the transaction is linearized to the invoca-
tion of the commit, not to the point that the CAS succeeds.
This point is subtle and we defer a complete discussion and
the proof of linearizability to the full version of this paper.

96

to the current new0bject, and the new new0bject field to a
copy of the the current new0bject (Figure 4). (ReCall that
every class that can be encapsulated by a transactional ob-
ject must export a public c loneO method.) A then calls
CAS to change the object 's s t a r t field from B's old locator
to A's new locator7 If the CAS succeeds, the open() method
returns the new version, which :is now the transaction's ten-
tative version of this object. A can update that version
without further synchronization. If the CAS fails, the trans-
action rereads the object's s t a r t field and retries. Suppose,
instead, that B is aborted. A :follows the same procedure,
except that it sets the new locator's old0bj eet field to the
current o ld0b jec t (Figure 5).

Finally, suppose B is still active. Because B may com-
mit or abort before A changes the object's s t a r t field, A
cannot determine which version is current at the moment
its CAS succeeds. Thus, A cannot safely choose a version to
store in the o ld0b jec t field of its Locator. The beauty of
obstruction-freedom is that A does not need to guarantee
progress to B, and can therefore resolve this dilemma by
attempting to abort B (by using CAS to change B's s t a t u s
field from ACTIVE to ABORTED) and ensuring that B's s t a t u s
field is either ABORTED or COMMrrTED before proceeding (the
change may have been effected by the action of some other
transaction). This resolution also highlights an important
property of our algorithm with :respect to the integration of
contention managers: Because A can determine in advance
that it will interfere with B, it can decide, based on the
policy implemented by its contention manager (discussed in
the next section), whether to abort B or to give B a chance
to finish.

Read-only access is implemented in a slightly different
way. When A opens a transactional object o for reading, it
identifies the last committed version v (possibly by aborting
an active transaction) exactly as for write access. However,
instead of installing a new Locator object, A adds the pair
(o, v) to a thread-local read-only table.

To match invocations of open(READ) and r e l e a s e () , the
transaction also maintains a counter for each pair in its read-
only table. If an object is opened in READ mode when it
already has an entry in the table, the transaction increments
the corresponding counter instead of inserting a new pair.
This counter is decremented by the r e l e a s e () method, and
the pair is removed when the counter is reduced to zero.

3.2 Validating and Committing a Transaction
After open() has determined which version of an object

to return, and before it actually returns that version, the
DSTM must validate the calling transaction in order to en-
sure that the user transaction code can never observe an
inconsistent state. Validation requires two steps:

1. For each pair (o, v) in the calling thread's read-only

7Readers familiar with the use of CAS may be concerned
about the ABA problem [12], in which a CAS operation fails
to notice that the location it accesses has changed to a new
value and then back to the original value, causing the CAS
to succeed when it should have failed. This problem does
not arise in our Java implementation, because garbage col-
lection (GC) ensures that a Locater object does not get
recycled until no thread has a pointer to it. While GC elim-
inates the ABA problem in this case, we caution the reader
against assuming that the ABA problem can never occur in
environments that support GC.

table, verify that v is still the most recently committed
version of o.

2. Check that the s t a t u s field of the T r a n s a c t i o n object
remains ACTIVE.

Committing a transaction requires two steps: validating
the entries in the read-only table as described above, and
calling CAS to at tempt to change the s t a t u s field of the
Transaction object from ACTIVE to COMMITTED. 8

3.3 Costs
In the absence of synchronization conflicts, a transaction

that opens W objects for writing requires W + 1 CAS op-
erations: one for each open() call, and one to commit the
transaction. Synchronization conflicts may require more CAS
operations to abort other transactions. These are the only
strong synchronization operations needed by our DSTM im-
plementation: once open() returns an object version, there
is no need for further synchronization to access that version.
A transaction also incurs the cost of cloning objects opened
for writing; cloning is achieved using simple load and store
instructions because the DSTM ensures objects being cloned
do not change during the cloning.

Validating a transaction that has opened W objects for
writing and R objects for reading (that have not been re-
leased) requires O(R) work. Because validation must be
performed whenever an object is opened and when the trans-
action commits, the total overhead due to the DSTM imple-
mentation for a transaction that opens R for reading and W
objects for writing is O((R + W)R) plus the cost of copy-
ing each of the W objects opened for writing once. Note
that, in addition to reducing the potential for conflict, re-
leasing objects opened for reading also reduces the overhead
due to validation: released objects do not need to be vali-
dated. Thus, if at most K objects are open for reading at
any time, then the total overhead for a transaction is only
O((R + W)K) plus the cost of cloning the W objects.

4. CONTENTION MANAGEMENT
Despite our advocacy of obstruction-free synchronization,

we do not expect progress to take care of itsel£ On the con-
trary, we have found that explicit measures are often neces-
sary to avoid starvation. Obstruction-free synchronization
encourages a clean distinction between the obstruction-free
mechanisms that ensure correctness (such as conflict detec-
tion and recovery) and additional mechanisms that ensure
progress (such as adaptive backoff or queuing).

In our transactional memory implementation, progress is
the responsibility of the contention manager. Each thread
has its own contention manager instance, which it consults
to decide whether to force a conflicting thread to abort. In
addition, contention managers of different threads may con-
sult one another to compare priorities and other attributes.

The correctness requirement for contention managers is
simple and quite weak. Informally, any active transaction
that asks sufficiently many times must eventually get per-
mission to abort a conflicting transaction. More precisely,

SA further optional step can reduce space overhead by stor-
ing null to whichever of the object pointers in a locator
becomes obsolete after its transaction either commits or
aborts, thereby allowing the garbage collector to claim it.
(Straightforward changes would be required in order to avoid
dereferencing these null pointers.)

97

every call to a contention manager method eventually re-
turns (unless the invoking thread stops taking steps for some
reason), and every transaction that repeatedly requests to
abort another transaction is eventually granted permission
to do so. This requirement is needed to preserve obstruction-
freedom: A transaction T that is forever denied permission
to abort a conflicting transaction will never commit even if
it runs by itself. 9 If the conflicting transaction is also con-
tinually requesting permission to abort T, and incorrectly
being denied this permission, the situation is akin to dead-
lock. Conversely, if T is eventually allowed to abort any
conflicting transaction, then T will eventually commit if it
runs by itself for long enough.

The correctness requirement for contention managers does
not guaxazltee progress in the presence of conflicts. Whether
a particular contention manager should provide such a
guarantee--and under what assumptions and system mod-
els it should do so--is a policy decision that may depend
on applications, environments, and other factors. The prob-
lem of avoiding livelock is thus delegated to the contention
manager.

Rather than mandate a specific contention-management
policy, we define a ContentionManager interface that every
contention manager must implement. This interface speci-
fies two kinds of methods, notification methods and feedback
methods, which are invoked by our DSTM implementation.

Notification methods inform a contention manager of rele-
vant events in the DSTM; they do not return any value. For
example, the commitTransactionSucceeded() method is in-
voked whenever a transaction commits successfully, and the
commitTransac t ionFai led() method is invoked whenever
an at tempt to commit a transaction fails. Some notification
methods correspond to events internal to our DSTM imple-
mentation. For example, the openReadAttempt O method
is called to notify a contention manager before any at tempt
to open in READ mode an object that is not already open;
similarly, the openWriteAttempt () method is called before
any at tempt to open an object in WRITE mode.

Feedback methods axe called by the DSTM to determine
what action should be taken in various circumstances. One
important feedback method is shouldAbort() , which is in-
voked whenever the DSTM detects a conflicting transaction
during an at tempt to open art object. The shonldAbort O
method is passed the object being opened and the manager
of the conflicting transaction, and it returns a boolean indi-
cating whether to try to abort the conflicting transaction.

In addition to their explicit purposes, the contention man-
ager's methods may implement other measures, such as back-
off and queuing, to manage contention. We have done only
preliminary work using these methods to implement some
simple contention management strategies, and we expect the
Contention.Manager interface to evolve as we gain experi-
ence with what methods--especially notification methods--
are useful for implementing more sophisticated strategies.

4.1 Examples
As a baseline for the experimental results reported in

Section 5, we implemented a trivial Aggressive contention
manager that always and immediately grants permission to
abort any conflicting transaction. We also intplemented a

9Here and elsewhere "runs by itself" means that no concur-
rent transaction takes a step, not that no concurrent trans-
action exists.

simple Polite contention manager, that adaptively backs
off a few times when it encounters a conflict. Specifically,
when a transaction first invokes shouldAbort() for an ob-
ject, the method sleeps for a random duration before re-
turning false, refusing permission to abort the other thread.
Each subsequent call to shouldAbort () for the same object
doubles the expected sleep time, until a threshold is reached.
Beyond that threshold, shouldAbort () returns immediately
and returns true, granting the caller permission to abort the
conflicting transaction.

One can imagine many variations on this strategy, as well
as different strategies based on queuing rather than backoff
combined with spinning. Discovering which strategies work
best remains an open area of research.

5. RESULTS
In this section, we briefly present the results of some sim-

ple performance experiments we conducted on a Sun Fire T M

15K server with 72 1050MHz SPARC® processors.
In each experiment, we implemented an integer set and

measured how many operations completed on the integer set
in 20 seconds, varying the number of participating threads
between 1 and 576 (a multiprogramming level of 8). For each
operation, we randomly choose a value between 0 and 255
and randomly choose whether to insert or delete the value.
The restricted range ensures significant contention among
concurrent threads, and thus exercises the contention man-
agers. In each experiment, each thread executes operations
repeatedly with no delay between them in order to examine
how the implementations scale with increased contention.

The results of our experiments are presented in Figure 6.
The graphs show results as throughput in operations per
millisecond. Each point represents the average of at least
ten runs of the relevant experiment. The upper graph shows
the results for the various experiments, running from 1 to
576 threads. The lower graph presents a more detailed look
at the experiments in which the number of threads does not
exceed the number of processors (72). Of course, many more
experiments should be conducted to test various implemen-
tation approaches at the transaction, contention manager,
and STM levels. The simple experiments presented here are
intended only to illustrate some broad principles.

We first implemented a simple linked list synchronized
with a single lock (see "Simple Locking" in Figure 6). Due to
its simplicity, this implementation yields a higher through-
put than any other configuration in the single-threaded case
(768 operations per millisecond). However, as the number
of threads increases, the throughput of this implementation
quickly falls off; in particular, when there are more threads
than processors, this implementation performs very badly
due to preemption while holding the lock. 1°

Next, we used DSTM to implement the simple trans-
actional integer set shown in Figure 1. When composed

l°There are specialized optimistic locking algorithms that ex-
ploit the simple semantics of linked lists to substantially
improve performance. However, these algorithms involve
unsynchronized reads of shared data, and thus require care-
ful reasoning about concurrency to ensure correctness and
avoid deadlock. Furthermore, these algorithms do not gen-
eralize straightforwardly to more complex data structures.
Because our purpose here is to illustrate the implications of
different implementation approaches, not to construct the
best implementation of integer sets, we do not consider such
algorithms in this paper.

98

c
O
(.3

(D
. ~

E
O9

0

0

5 0

4 5

4 0

3 5

3 0

2 5

2 0

1 5

1 0

5

0

1 0 0

= 8 0
0
o

(~

6 0 ° ~

o 4 0

~ 2 0
0

0

ll i ' ' ' S i m p l e L o c k i n g ' ,
I n t S e t S i m p l e / A g g r e s s i v e ~

~, I n t S e t S i m p l e / P o l i t e ~
~,.~ I n t S e t R e l e a s e / A g g r e s s i v e ~

'*" '~ I n t S e t R e l e a s e / P o l i t e -
~ . ~ R B T r e e / A g g r e s s i v e ~

~'(~ ' , , R B T r e e / P o l i t e *
~' ~ ' , ' " . . .

- -
l '~,. I . "i = s "e

i % " % . % ~ ~ :::::::=~'~ : : : : : : : : : : : : : : :

.~! , . . . ~ . , - ~ ~ ~ ~ ~ -

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

N u m b e r of t h r e a d s (7 2 - p r o c e s s o r m a c h i n e)

[

~ ' - -G

i i i I i I

S i m p l e L o c k i n g ,
I n t S e t S i m p l e / A g g r e s s i v e x

I n t S e t S i m p l e / P o l i t e ~

I n t S e t R e l e a s e / A g g r e s s i v e ~

_ "4 "o. I n t S e t R e l e a s e / P o l i t e •
" ~ - . . R B T r e e / A g g r e s s i v e ~

~,.... ~ - . . R B T r e e / P o l i t e •
• " "O~

. % '@ "G '~ - - G G ._ , ,O ,_ ._E r . - ' "

, "" ..-:.:.~....~: ~.~.:.:B

r :.,it;::-" - ~ = ~ - ~ - ~ : 4 ~ ; ~ - - : : : - ~ r .----~--.-~---~.~ ::.::.~ ::..,4-----.---,
$"~" ~ ~'-T-~.~L.:.-tr:::~::--:~:::~.-.- ! = _ _ =

, . • - ~ ~..:.q.::::_q, : . . :

10 2 0 3 0 4 0 5 0 6 0 7 0

N u m b e r of t h r e a d s (7 2 - p r o c e s s o r m a c h i n e)

F i g u r e 6: E x p e r i m e n t a l r e su l t s on 72-processor S u n F i r e 15K server . T h e b o t t o m f igure shows a d e t a i l e d
view of t h e t o p one for u p to 72 t h r eads .

with the trivial Aggressive contention manager (IntSetSim-
pie/Aggressive in Figure 6), this implementation immedi-
ately livelocks as soon as there is more than one thread.
However, when we compose the same implementation with
the slightly more sophisticated P o l i t e contention manager,
it performs much better. In fact, it outperforms the simple
lock-based implementation when there are more than about
10 threads. These results demonstrate the necessity and
effectiveness of contention management.

As discussed in Section 2, it is often preferable to avoid
contention rather than merely manage it. We therefore aJso
tested the linked list implementation with early release, as
shown in Figure 2. This implementation greatly reduces
contention because a transaction has many fewer objects
open at any time• As seen in Figure 6, this implementa-
tion does not livelock even when used with the Aggressive
contention manager (IntSetRelease/Aggressive in Figure 6),

demonstrating that this programming technique is effective
at reducing contention. Because this implementation gives
rise to less contention, the effect of contention management
is less pronounced. Interestingly, however, the early release
implementation performs better with the Aggressive con-
tention manager than with the P o l i t e one, especially when
the number of threads exceeds the number of processors.
One possible explanation for this difference is that we have
not tuned the P o l i t e manager for the case in which there
is no contention• Also, when there are more threads than
processors, a transaction might conflict with another trans-
action whose thread is preempted, in which case, it may
be best to abort that other transaction immediately. We
have yet to conduct more detailed experiments to test these
conjectures and fully understand the cause of this effect•

In the context of sequential algorithms, it is standard
practice to design more complex algorithms that outperform

99

simpler ones (for example, by implementing a balanced tree
instead of a list). For non-blocking algorithms, however,
implementing more complex data structures has been pro-
hibitively difficult. Our work on DSTM makes a significant
step towards overcoming this difficulty. To demonstrate, we
have used DSTM to implement a non-blocking red-black tree
using a straightforward translation from sequential code [6].
To reduce contention, our red-black tree implementation ini-
tially opens nodes in READ mode, upgrading to WRITE mode
as needed. To keep it simple, we do not release any nodes
until the transaction commits (or is aborted). We tested
our red-black tree implementation with the Aggressive and
P o l i t e contention managers (RBTree/Aggressive and RB-
Tree/Polite in Figure 6).

As can be seen from Figure 6, our red-black tree signifi-
cantly outperforms the other non-blocking implementations
at low levels of contention (fewer than ten threads). We ex-
pected this improvement because the red-black tree's time
complexity is logarithmic in the size of the set, in contrast
to the linear time complexity of the list. This effect would
be even more pronounced if we chose values to insert from
a larger range, resulting in larger sets in the steady state.

Even with this limited value range, the red-black tree us-
ing the Aggressive contention manager significantly outper-
forms M1 other configurations at most levels of contention,
Mthough there is a marked degradation in its performance
as the number of threads increases. With the P o l i t e con-
tention manager, the red-black tree does not perform quite
as well, but it remains competitive with all of the other
configurations shown while we have at most one thread per
processor, and is significantly better than most of them.

These observations suggest several lessons. First, unsur-
prisingly, sophisticated data structures, such as red-black
trees, can significantly outperform simpler data structures,
such as linked lists. Our DSTM makes it relatively straight-
forward to transform sequential algorithms into non-blocking
ones, and thus, allows us to leverage decades of work on
efficient sequential data structures in our development of
non-blocking data structures. Second, the difference in per-
fbrmance between configurations with different contention
managers reinforces the importance of contention manage-
ment for designing efficient non-blocking data structures.
Finally, the performance degradation of the red-black tree
with both contention managers suggests that there is room
for considerable improvement with more sophisticated con-
tention managers that impose very low overhead when con-
tention is not a problem, but manage contention better when
it is.

One shortcoming of our current DSTM implementation
with respect to the range of possible contention managers
is that there is no way for one transaction to detect that
another transaction has opened an object in READ mode.
By opening that object in WRITE mode, the first transaction
will cause the other transaction to abort. Clearly there is
a tradeoff between the amount of synchronization needed
to open an object for reading in a "visible" way in order to
enable competing transactions to "be polite" and the benefit
derived from doing so. We axe currently working on some
ideas in this direction.

6. CONCLUDING REMARKS
We have proposed a new form of dynamic software trans-

actional memory (DSTM), which supports relatively

straightforward programming of a wide variety of dynamic-
sized data structures. For example, we have used it to imple-
ment a non-blocking red-black tree, by far the most sophisti-
cated non-blocking data structure achieved to date. We have
implemented an obstruction-free prototype of our DTSM in
the Java programming language. Obstruction-freedom is a
new non-blocking progress condition we proposed recently;
it is weaker than previous such conditions, and as a result,
admits substantially simpler implementations.

An attractive feature of our implementation is the ability
for a transaction to detect that it will cause another to abort
before it does so, and therefore decide whether to proceed or
to give the other transaction a chance to complete first. Such
policy decisions are made by modular contention managers
that can be "plugged in" without affecting the transaction
code or its correctness. Preliminary performance experi-
ments show that nontrivial contention management schemes
are necessary in order to avoid livelock, and that even simple
schemes can be effective.

We have only begun to explore the range of possible con-
tention manager designs. We believe that designing, test-
ing, and reasoning about modular contention managers will
be a rich source of research problems. It is interesting to
note that it is possible to design contention managers that
make provable progress guarantees in the presence of cer-
tain weak but reasonable assumptions about the underlying
system (and the transaction code). Whether such managers
are practical is a matter for future research.

Another interesting and novel feature of our DSTM is
the ability to "release" objects from a transaction before
it commits. This feature puts significantly more burden
on the transaction programmer in reasoning about correct-
ness, but can also provide considerable perfbrmance im-
provements when used with care.

Some interesting issues also remain regarding interface
and semantics. In many cases, there are tradeoffs between
efficiency of implementation and usability and simplicity of
interface; we have yet to explore these tradeoffs in detail.

A c k n o w l e d g m e n t s : Thanks to Ron Larson for getting us
access to the Sun Fire 15K computer, to Doug Lea for his ex-
perimentM j a v a . u t i l . c o n c u r r e n t package, to Steve Green
for his help with the experiments, and to Steve Heller for use-
ful discussions. Thanks also to Guy Steele and Jan-Willem
Maessen for useful feedback, especially about the DSTM in-
terface. (Jan Mso suggested nulling out the extra pointer of
locators whose transactions are aborted or committed to al-
low garbage collection of the obsolete version.) We are also
grateful to Yossi Lev for feedback and useful suggestions for
future improvements, and to Mike Kistler for his comments
on a recent draft of this paper.

7. REFERENCES
[1] Java Specification Request for Concurrent Utilities

(JSR166). h t t p : / / j c p , org.
[2] Sun Microsystems Laboratories Scalable

Synchronization Research Group publications page.
http ://research. sun. com/scalable/pubs.

[3] Y. Afek, D. Dauber, and D. Touitou. Wait-free made
fast. In Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, pages 538-547,
1995.

100

[4] G. Barnes. A method for implementing lock-free
shared data structures. In Proceedings of the Fifth
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 261-270, 1993.

[5] R. Bayer and M. Schkolnick. Concurrency of
operations on B-trees. Aeta Informatica, 9:1-21, 1977.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. McGraw-Hill, 1990.

[7] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd
International Conference on Distributed Computing
Systems, 2003.

[8] M. Herlihy and J. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th International Symposium in
Computer Architecture, pages 289-300, 1993.

[9] M. Herlihy and J. Wing. Linearizability: A correctness
condition for concurrent objects. A CM Trunsactions
on Programming Languages and Systems,
12(3):463-492, 1990.

[10] A. Israeli and L. Rappoport. Disjoint-access-parallel
implementations of strong shared memory primitives.
In Proceedings of the 13th Annual ACM Symposium
on Principles of Distributed Computing, pages
151-160, 1994.

[11] V. Luchangco, M. Moir, and N. Shavit. Nonblocking
k-compare-single-swap. In .Proceedings of the 15th
Annual ACM Sympoium on Parallel Architecures and
Algorithms, 2003.

[12] M. Michael and M. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared
memory multiprocessors. Journal of Parallel and
Distributed Computing, 51(1):1-26, 1998.

[13] M. Moir. Transparent support for wait-free
transactions. In Proceedings of the 11th International
Workshop on Distributed Algorithms, pages 305-319,
1997.

[14] N. Shavit and D. Touitou. Software transactional
memory. Distributed Computing, Special
Issue(10):99-116, 1997.

[15] J. Turek, D. Shasha, and S. Prakash. Locking without
blocking: making lock based concurrent data structure
algorithms nonblocking. In Proceedings of the eleventh
ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 212-222, 1992.

101

