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Abstract
A simple yet remarkably powerful tool of selfish and

malicious participants in a distributed system is “equiv-
ocation”: making conflicting statements to others. We
present TrInc, a small, trusted component that combats
equivocation in large, distributed systems. Consisting
fundamentally of only a non-decreasing counter and a
key, TrInc provides a new primitive: unique, once-in-a-
lifetime attestations.

We show that TrInc is practical, versatile, and easily
applicable to a wide range of distributed systems. Its
deployment is viable because it is simple and because
its fundamental components—a trusted counter and a
key—are already deployed in many new personal com-
puters today. We demonstrate TrInc’s versatility with
three detailed case studies: attested append-only mem-
ory (A2M), PeerReview, and BitTorrent.

We have implemented TrInc and our three case stud-
ies using real, currently available trusted hardware.
Our evaluation shows that TrInc eliminates most of
the trusted storage needed to implement A2M, signifi-
cantly reduces communication overhead in PeerReview,
and solves an open incentives issue in BitTorrent. Mi-
crobenchmarks of our TrInc implementation indicate di-
rections for the design of future trusted hardware.

1 Introduction
As wide-area systems grow in scale, so do their ex-

posure to threats. Much of the interesting distributed-
systems research of the past decade has focused on the
issues of security and adversarial incentive that are inher-
ent to large-scale systems. This research has addressed a
wide range of applications, including storage [2, 16, 19,
22, 28], communication [4, 45, 30], databases [40], con-
tent distribution [15, 24, 32, 36], grid computation [12],
and games [3, 10], in addition to generic infrastruc-
ture [1, 5, 9, 18, 23, 43]. Virtually all of this work shares
a common supposition, namely that the individual com-
ponents in the system are completely untrusted.

Recently, the necessity of this supposition has been
called into question. The Attested Append-only Mem-
ory (A2M) system by Chun et al. [7] showed that a small
trusted module in each distributed component can signif-
icantly improve system security. In addition to found-
ing this important new research direction, A2M made
two key contributions: First, they proposed a particu-
lar abstraction for such a module, namely a trusted log.

Second, they showed specifically that their proposed ab-
straction could improve the degree of fault tolerance
to Byzantine faults in the server components of client-
server systems.

Despite our appreciation for this work, we are con-
cerned that distributed-protocol designers may be reluc-
tant to start assuming the availability of such trusted
modules. We have two reasons for this concern: First,
the abstraction of a trusted log may require more stor-
age space and complexity than researchers are comfort-
able assuming, particularly for an embedded module in-
side a potentially hostile component. Second, designers
may have difficulty appreciating how broadly applicable
a trusted module can be to distributed protocols.

In this paper, we continue the research direction begun
by A2M, with an eye toward addressing these two issues.
First, we have developed a significantly smaller abstrac-
tion: Instead of a trusted log, we propose a trusted in-
crementer (TrInc), which is little more than a monotonic
counter and a key. Second, we demonstrate a more inclu-
sive set of architectures, running a broader range of pro-
tocols, yielding a wider set of benefits: Our architectures
include not only client-server systems but also peer-to-
peer systems. Our protocols include not only Byzantine-
fault-tolerant protocols but also PeerReview [13] and Bit-
Torrent [8]. Our demonstrated benefits include not only
improving fault tolerance but also reducing communica-
tion overhead and solving an open incentive problem.

We show that TrInc has several benefits over A2M.
First, its smaller size and simpler semantics make it
easier to deploy, as we demonstrate by implementing
it on real, currently available trusted hardware. Sec-
ond, we observe that TrInc’s core functional elements
are included in the Trusted Platform Module (TPM) [38]
found on many modern PCs, lending credence to the
idea that such a component could become widespread.
Third, TrInc makes use of a shared symmetric session
key among all participants in a protocol instance, which
significantly decreases the cryptographic overhead.

The rest of this paper is structured as follows. §2 pro-
vides background on the underlying problem addressed
by TrInc (and by A2M), as well as a primer on trusted
hardware. §3 then presents the design of TrInc, and §4
analyzes its security. §§5, 6, and 7 respectively describe
several protocols we modified to use TrInc, our trusted
hardware implementation, and our evaluation thereof.



Accountability layer Trusted module
Property PeerReview [13] Nysiad [14] A2M [7] TrInc
No centralized trust X∗ X∗

Easy to deploy X X X
Easy to apply to existing protocols X X† X‡

Immediate consistency X X X
No assumptions about protocol’s determinism X† X X
No additional online assumptions X X
Additional communication overhead per protocol
message, with witness sets of size W

O(W 2) O(W 2) O(1) O(1)

Table 1: Summary of the properties of various equivocation-fighting systems. ∗While PeerReview and Nysiad do not
require centralized trust, they do make use of a PKI. †Nysiad deals with nondeterminism by treating nondeterministic
events as inputs; this requires protocol changes for nondeterministic state machines. ‡We found that, although TrInc
requires a protocol redesign, the modifications are often localized, and vastly simplify security procedures.

2 Background and Related Work
2.1 Equivocation in distributed systems

Since 1982, it has been known that tolerating f Byzan-
tine faults requires at least 3f + 1 participants [20]. This
stands in marked contrast to the case for f stopping
faults, which more intuitively requires 2f + 1 partici-
pants. A key insight behind A2M [7] was the observation
that a single property of Byzantine faults is responsible
for the difference between these two bounds. That prop-
erty is equivocation, meaning the ability to make con-
flicting statements to different participants. A2M pro-
vides a mechanism that prevents participants from equiv-
ocating, thereby improving the fault tolerance of Byzan-
tine protocols to f out of 2f + 1.

We make the further observation that equivocation is a
necessary property for many forms of cheating and fraud,
not merely for classical Byzantine faults. For instance,
in BitTorrent, recent work [21] has shown an exploit in
which a peer can obtain an unfairly high download rate
by lying about which chunks of a file it has received.
This is equivocation, insofar as the peer acknowledges
receiving a chunk from the peer that provided it, but then
tells another peer that it does not have the chunk.

The following are three more brief examples:

• In a simultaneous-turn game, one can cheat by ob-
serving an opponent’s move before making one’s
own move; this is equivocating about whether one
has yet moved.

• In a distributed electronic currency system, one can
counterfeit money by equivocating to different pay-
ees about whether one has spent a particular bill.

• In an election, the tallier can disrupt the vote by
equivocating to a voter and an official about whether
the voter’s vote was recorded.

In §5.5, we will consider many other cases of mali-
cious behavior that can be interpreted as equivocation.

2.2 Prior solutions to equivocation
Several recent efforts have addressed the problem of

Byzantine faults in distributed systems. Although their
approaches to the problem are very different, they have
all effectively focused on the issue of equivocation. Ta-
ble 1 summarizes our analysis of their properties.

PeerReview [13] is a system that employs witnesses to
collect a tamper-evident record of all messages in a dis-
tributed system for subsequent checking against a refer-
ence implementation. Unlike the remaining approaches
we will discuss, PeerReview does not provide fault toler-
ance. Instead, it provides eventual fault detection and
localization, which the system’s designers argue leads
to fault deterrence. The tamper-evident record is a dis-
tributed collection of logs that are authenticated using
hash chains. The purpose of the tamper-evidence is to
detect equivocation about the messages recorded in a
log. As shown in Table 1, the communication required
to collectively manage the tamper-evident message log
is quadratic in the size of the witness set.

Nysiad [14] is a mechanism that transforms crash-
tolerant distributed systems into Byzantine-fault-tolerant
ones. It does this by assigning a set of guards (compara-
ble to witnesses) to each host in the system. The guards
validate the messages sent by their associated hosts, us-
ing replicas of the hosts’ execution engines. The po-
tential for equivocation in Nysiad is that the host might
send different messages to different guards or order its
messages differently for different guards. To deal with
this equivocation, the guards gossip among each other to
agree on the order and content of messages sent by the
host. As shown in Table 1, this gossip requires a count
of messages that is quadratic in the number of guards.
Relative to PeerReview, Nysiad has the benefit of imme-
diate consistency, rather than eventual detection. Nysiad
is also able to handle nondeterministic state machines,
but doing so requires protocol changes to treat nondeter-
ministic events as inputs.

Attested Append-only Memory, or A2M [7], is a



trusted module that is embedded in an untrusted ma-
chine, for the purpose of improving the fault tolerance of
a distributed protocol. The A2M module provides the ab-
straction of a trusted log, which the machine can append
to but not otherwise modify. This limitation prevents the
machine from equivocating about whether it performed
a particular action at a particular step, because once the
action is recorded in the log, it cannot be overwritten.
A2M uses cryptography to enforce its properties and to
attest the log’s contents to other machines. Relative to
Nysiad and PeerReview, A2M does not require any addi-
tional online communication between machines beyond
what is required in the base protocol. Consequently, the
communication overhead is merely a constant factor due
to the cryptographic attestations that accompany the pro-
tocol’s messages.

As we will show in §3, TrInc is significantly smaller
than A2M, making it easier to deploy. TrInc also has
another advantage, namely that its use is less tightly
coupled to the distributed protocol than use of A2M is.
Specifically, because A2M’s trusted log has finite stor-
age, it provides a log-truncation operation, but opportu-
nities to truncate the log may be limited by the protocol.
Conversely, message sequencing in the protocol may be
constrained by the available space in A2M’s log. Perhaps
in part to address this concern, A2M considered various
implementations in addition to hardware, some of which
would likely have plentiful storage for the log. These in-
clude a remote service, a software-isolated process, and
a memory-isolated virtual machine. By contrast, the pro-
tocol modifications required to use TrInc tend to be quite
localized. Furthermore, TrInc’s use of a shared session
key often simplifies the protocol.

2.3 Trusted hardware
There have been many trusted hardware designs that

predate both TrInc and A2M. Perhaps most similar
to TrInc is the abstraction of virtual monotonic coun-
ters [34]. These are similar to the four increment-
only counters included in the current specification of
the TPM [38]. Van Dijk et al. propose an algorithm
by which to emulate multiple counters with a single
trusted counter [39]. We believe a similar approach
could ease TrInc’s deployment by requiring fewer physi-
cal counters. Further, other systems have been proposed
that make use of trusted hardware, such as for securing
database systems [26] and auctions [31]. To the best of
our knowledge, TrInc is the first trusted component de-
signed to be used in large-scale, distributed systems.

3 TrInc Design
3.1 Design Goals

The fundamental security goal of TrInc is to remove
participants’ ability to equivocate. Consider the situation
in which Mallory wishes to send conflicting messages
to Alice and Bob. Common approaches to combating

such equivocation require Alice and Bob to communi-
cate with one another [13, 14, 20] or with a third party,
so they can learn of the distinct messages sent to each.
Unfortunately, this additional communication overhead
can become a bottleneck for the overlying system, and
constitutes the super-linear number of messages in Peer-
Review [13].

One goal of TrInc is to therefore minimize both com-
munication overhead and the number of non-faulty par-
ticipants required. With trusted hardware, it is possible to
remove Mallory’s ability to equivocate without any com-
munication between Alice and Bob [7].

The other broad goal of TrInc is to be practical for dis-
tributed systems today. To be practical, a trusted com-
ponent must be small so that it is feasible to manufacture
and deploy. Arbitrary computation and a large amount of
storage are difficult and costly to make tamper-resistant.
Further, to be a practical primitive in distributed systems,
the trusted component must have an API with which it is
easy to build distributed systems.

3.2 Overview
To gain the benefits of TrInc, a user must attach a

trusted piece of hardware we call a trinket to his com-
puter. Unlike a typical TPM, which must attest to states
of the associated computer, the trinket’s API depends
only on its internal state, so the trinket does not need
access to the state of the computer. All it needs is an un-
trusted channel over which it can receive input and pro-
duce output, so even USB is quite sufficient.

When Mallory wishes to send a message m to Al-
ice, she must include an attestation from her trinket that
(1) binds m to a certain value of a counter, and (2) en-
sures Alice that no other message will ever be bound to
that value of that counter, even messages sent to other
users. A trinket enables such attestation by using a
counter that monotonically increases with each new at-
testation. In this way, once Mallory has bound a message
m to a certain counter value c, she will never be able to
bind a different message m′ to that value.

As we show in our case studies in §5, some protocols
benefit from using multiple counters. In theory, any-
thing done with multiple counters can be done with a
single counter, but multiple counters allow certain per-
formance optimizations and simplifications, such as as-
signing semantic meaning to a particular counter value.
Furthermore, the user of a trinket may participate in mul-
tiple protocols, each requiring its own counter or coun-
ters. Therefore, a trinket provides the ability to allo-
cate new counters. However, we must identify each of
them uniquely so that a malicious user cannot create a
new counter with the same identity as an old counter
and thereby attest to a different message with the same
counter identity and value.

As a performance optimization, TrInc allows its attes-
tations to be signed with shared symmetric keys, which



vastly improves its performance over using asymmetric
cryptography or even secure hashes. To ensure that par-
ticipants cannot generate arbitrary attestations, the sym-
metric key is stored in trusted memory, so that users can-
not read it directly. Symmetric keys are shared among
trinkets using a mechanism that ensures they will not be
exposed to untrusted parties.

3.3 Notation
We use the notation 〈x〉K to mean an attestation of x

that could only be produced by an entity knowing K. If
K is a symmetric key, then this attestation can be verified
only by entities that know K; if K is a private key, then
this attestation can be verified by anyone, or more accu-
rately anyone who knows the corresponding public key.
We use the notation {x}K to mean the value x encrypted
with public key K, so that it can only be decrypted by
entities knowing the corresponding private key.

3.4 TrInc state
Figure 1 describes the full internal state of a trinket,

which we describe in more detail here. Each trinket is
endowed by its manufacturer with a unique identity I and
a public/private key pair (Kpub,Kpriv). Typically, I will
be the hash of Kpub. The manufacturer also includes in
the trinket an attestation A that proves the values I and
Kpub belong to a valid trusted trinket, and therefore that
the corresponding private key is unknown to untrusted
parties.

We leave open the question of what form A will take.
This attestation is meant to be evaluated by users, not by
trinkets, and so can be of various forms. For instance,
it might be a certificate chain leading to a well-known
authority trusted to oversee trinket production and ensure
their secrets are well kept.

Another element of the trinket’s state is the meta-
counter M . Whenever the trinket creates a new counter,
it increments M and gives the new counter identity M .
This allows users to create new counters at will, with-
out sacrificing the non-monotonicity of any particular
counter. Because M only goes up, once a counter has
been created it can never be recreated by a malicious user
attempting to reset it.

Yet another element is Q, a limited-size FIFO queue
containing the most recent few counter attestations gen-
erated by the trinket. It is useful for allowing users to
recover from power failures, as we will describe later.

The final part of a trinket’s state is an array of counters,
not all of which have to be in use at a time. For each in-
use counter, the state includes the counter’s identity i, its
current value c, and its associated key K. The identity
i is, as described before, the value of the meta-counter
when the counter was created. The value c is initialized
to 0 at creation time and cannot go down. The key K
contains a symmetric key to use for attestations of this
counter; if K = 0, attestations will use the private key
Kpriv instead.

Global state:
Notation Meaning
Kpriv Unique private key of this trinket
Kpub Public key corresponding to Kpriv

I ID of this trinket, the hash of Kpub

A Attestation of this trinket’s validity
M Meta-counter: the number of counters

this trinket has created so far
Q Limited-size FIFO queue containing the

most recent few counter attestations gen-
erated by this trinket

Per-counter state:
Notation Meaning
i Identity of this counter, i.e., the value of

M when it was created
c Current value of the counter (starts at 0,

monotonically non-decreasing)
K Key to use for attestations, or 0 if Kpriv

should be used instead

Figure 1: State of a trinket

3.5 TrInc API
Figure 2 shows the full API of a trinket, described in

more detail in this subsection.
3.5.1 Generating attestations

The core of TrInc’s API is Attest. Attest takes
three parameters: i, c′, and h. Here, i is the identity of
a counter to use, c′ is the requested new value for that
counter, and h is a hash of the message m to which the
user wishes to bind the counter value. Attest works as
follows:

Algorithm 1 Attest(i, c′, h, n)
1. Assert that i is the identity of a valid counter.
2. Let c be the value of that counter, and K be the key.
3. Assert no roll-over: c ≤ c′.
4. If K 6= 0, then let a ← 〈I, i, c, c′, h〉K ; otherwise

let a← 〈I, i, c, c′, h〉Kpriv .
5. Insert a into Q, kicking out oldest value.
6. Update c← c′.
7. Return a.

Note that Attest allows calls with c′ = c. This is
crucial to allowing peers to attest to what their current
counter value is without incrementing it. To allow for
this while still keeping peers from equivocating, TrInc
includes both the prior counter value and the new one.
One can easily differentiate attestations intended to learn
a trinket’s current counter value (c = c′) from attesta-
tions that bind new messages (c < c′).
3.5.2 Verifying attestations

Suppose a user Alice with trinket A wants to send a
message to user Bob with trinket B. She first invokes



Function Operation
Attest(i, c′, h) Verifies that i is a valid counter with some value c and key K. Verifies

that c ≤ c′. Creates an attestation a = 〈COUNTER, I, i, c, c′, h〉K ; if
K = 0, uses Kpriv instead of K. Adds a to Q. Sets c = c′. Returns a.

GetCertificate() Returns a certificate of this trinket’s validity: (I, Kpub,A).
CheckAttestation(a, i) Returns a boolean indicating whether a is the output of invoking

Attest on a trinket using the same symmetric key as the one associated
with counter i.

CreateCounter() Increments M . Creates a new counter with i = M , c = 0, and K = 0.
Returns i.

FreeCounter(i) If i is the identity of a valid counter, deletes that counter.
ImportSymmetricKey(S, i) Verifies that S is an encrypted symmetric key decryptable with Kpriv.

Decrypts it and installs the included key as K for counter i.
GetRecentAttestations() Returns Q.

Figure 2: API of a trinket

Attest on her trinket using the message’s hash, and
thereby obtains an attestation a. Next, she sends the mes-
sage to Bob along with this attestation. However, for Bob
to accept this message, he needs to be convinced that the
attestation was created by a valid trinket. There are two
cases to consider: first, that the attestation used A’s pri-
vate key KA

priv, and second, that the attestation used a
shared symmetric key K.

In the first case, the API call GetCertificate will
be useful. This call returns a certificate C of the form
(I,Kpub,A), where I is the trinket’s identity, Kpub is
its public key, and A is an attestation that I and Kpub

belong to a valid trinket. Alice can call this API routine
and send the resulting certificate CA to Bob. Bob can
then (a) learn Alice’s public key KA

pub, and (b) verify
that this is a valid trinket’s public key. After this, he can
verify the attestation Alice attached to her message, and
any future attestations she attaches to messages.

In the second case, the API call
CheckAttestation is useful. When
CheckAttestation(a, i) is invoked on a trin-
ket, the trinket checks whether a is the output of
invoking Attest on a trinket using the same symmetric
key as the one associated with the local counter i. It
returns a boolean indicating whether this is so. So, if
Alice sends Bob an attestation signed with a shared
symmetric key, Bob can invoke CheckAttestation
on his trinket to learn whether the attestation is valid.
3.5.3 Allocating counters

Since a trinket may contain many counters, another
important component of TrInc’s API is the creation of
these counters. TrInc creates new logical counters, and
allows counters to be deleted, but never resets an ex-
isting counter. Logical counters are identified by a
unique ID, generated using a non-deletable, monotonic
meta-counter M . Every trinket has precisely one meta-
counter, and when it expires, the trinket can no longer be
used; we compensate for this by making M 64 bits, only
incrementing M , and assigning no semantic meaning to

M ’s value. TrInc exports a CreateCounter function
that increments M ; allocates a new counter with identity
i = M , initial value 0, and initial key K = 0; and re-
turns this new identity i. When the user no longer needs
the counter, she may call FreeCounter to free it and
thereby provide space in the trinket for a new counter.
3.5.4 Using symmetric keys

TrInc allows its attestations to be signed with shared
symmetric keys, which vastly improves its performance
over using asymmetric cryptography or even secure
hashes. When a set of users are willing to use a single
symmetric key for a certain purpose, we call this a ses-
sion. Creating a session requires a session administrator,
a user trusted by all participants to create a session key
and keep it safe, i.e., to not reveal it to any untrusted par-
ties.

To create a session, the session administrator simply
generates a random, fresh symmetric key as the session
key K. To allow a certain user to join the session, he
asks that user for his trinket’s certificate C. If the session
administrator is satisfied that the certificate represents a
valid trinket, he encrypts the key in a way that ensures
it can only be decrypted by that trinket. Specifically, he
creates {KEY,K}Kpub , where Kpub is the public key in
C. He then sends this encrypted session key to the user
who wants to join the session.

Upon receipt of an encrypted session key, the user can
join one of his counters to the session by using the API
call ImportSymmetricKey(S, i). This call checks
that S is a valid encrypted symmetric key, meant to be
decrypted by the local private key. If so, it decrypts the
session key and installs it as K for local counter i. From
this point forward, attestations for this counter will use
the symmetric key. Also, the user will be able to verify
any trinket’s attestation a using this symmetric key by
invoking CheckAttestation(a, i).
3.5.5 Handling power failures

One practical concern is that of power failure. Unlike
A2M, TrInc users need not query the trusted hardware to



obtain attestations. Instead, TrInc relies on the applica-
tion (or a TrInc driver) to store attestations in untrusted,
persistent storage. If there is a power failure between the
time that the trinket advances its counter and the appli-
cation writes it to disk, then the attestation is lost. This
can be problematic for many protocols, which rely on
the user being able to attest to a message with a particu-
lar counter value. For instance, if Charlie cannot produce
an attestation for counter value v, Alice may suspect this
is because Charlie has already told Bob about some mes-
sage m associated with that counter value. Not wanting
to be fooled about the absence of such a message, Alice
may lose all willingness to trust Charlie.

To alleviate this, a trinket includes a queue Q contain-
ing the most recent attestations it has created. To limit
the storage requirements, this queue only holds a certain
fixed number k of entries, perhaps 10. In the event of
a power failure, after recovery the user can invoke the
API call GetRecentAttestations to retrieve the
contents of Q. Thus, all a user must do to protect against
power failure is make sure she writes a needed attestation
to disk before she makes her kth next attestation request.
As long as k is at least 1, the user can safely use the trin-
ket for any application. Higher values of k are useful as
a performance optimization, allowing greater pipelining
between writing to disk and submitting attestations.

So far we have only discussed a power failure affect-
ing the user, but a power failure can also affect the trin-
ket. The Attest algorithm ensures that the attestation
is inserted into the queue before the counter is updated,
so the trinket cannot enter a situation where the counter
has been updated but the attestation is unavailable. It
can, however, enter the dangerous situation in which the
attestation is in Q, and thus available to the user, but the
counter has not been incremented. This window of vul-
nerability could potentially be exploited by a user to gen-
erate multiple attestations for the same counter value, if
he could arrange to shut off power at precisely this inter-
vening time. However, we guard against this case by hav-
ing the trinket check Q whenever it starts up. At startup,
before handling any requests, it checks all attestations in
Q and removes any that refer to counter values beyond
the current one.
3.5.6 A TrInc by any other name

The computational demands of a trinket are small. It
must be able to do simple operations such as comparison,
as well as cryptographic operations including hashing
and both symmetric and asymmetric encryption and de-
cryption. Such cryptographic operations are standard in
trusted components such as the TPM [38]. However, we
recognize that hardware manufacturers and users are of-
ten highly cost-conscious and may be willing to do with-
out performance optimization to save hardware costs.

Therefore, we propose three versions of TrInc that
make different trade-offs between cost and performance,

Persistent Asym. Symm. Fast
Memory Crypto Crypto Memory

Bronze TrInc X X
Silver TrInc X X X
Gold TrInc X X X X

Table 2: Versions of TrInc with different performance.

summarized in Table 2. The bronze version simply of-
fers correctness with no performance optimizations, by
leaving out the ability to use symmetric keys. The silver
version is as we have described it. The gold version adds
one additional optimization: the use of fast persistent
memory such as battery-backed RAM. This optimization
makes attestations especially fast since they need not in-
cur the cost of writing to the slow flash memory often
found in modern TPMs.

3.6 Local adversaries
Mutually distrusting principals on a single computer

will share access to a single trinket, creating the potential
for conflict between them. Although they cannot equiv-
ocate to remote parties, they can hurt each other. They
can impersonate each other by using the same counter,
and they can deny service to each other by exhausting
shared resources within the trinket. Resource exhaustion
attacks include allocating all available counters, submit-
ting requests at a high rate, and rapidly filling the queue
Q to prevent the pipelining performance optimization.

The operating system can solve this problem by me-
diating access to the trinket, just as it mediates access to
other devices. In this way, the OS can prevent a princi-
pal from using counters allocated to other principals, and
can use rate limiting and quotas to prevent resource ex-
haustion. Developing a detailed API and policy for such
mediation is beyond the scope of this paper, and is left for
future work. However, note that a remote party need not
care about how or whether such local mediation is done.
Equivocation to remote parties is impossible, even if an
adversary has root access to the machine, since cryptog-
raphy allows the trinket to communicate securely even
over an untrusted channel.

4 Analysis of TrInc
We now present a brief discussion of why TrInc is suf-

ficient for a broad class of distributed protocols and why
it is nearly minimal in size.

4.1 Equivocation
When a trinket creates an attestation with distinct old

and new counter values of c and c′, we say that attes-
tation covers the half-open interval (c, c′]. TrInc pre-
vents equivocation by ensuring that no two attestations
will cover overlapping intervals. This property could be
violated only if:

• the counter is decremented,
• the cryptosystem is broken,



• more than one counter has the same identity, or
• more than one trinket has the same identifier.

By construction, it is not possible to decrement the
counter nor to assign the same identity to multiple coun-
ters. By hypothesis, cryptographic primitives are effec-
tively unbreakable. Finally, no two trinkets will be cre-
ated with the same identifier, at least not by a trusted
manufacturer; recall that users can verify whether the
trinket comes from a trusted manufacturer by observing
the certificate chain in A.

4.2 Timeliness
When a trinket creates an attestation with the same old

and new counter values, there is no change to the trin-
ket’s state; however, the attestation demonstrates the cur-
rent value of the counter. Thus, if a machine attests to a
value of a remotely supplied nonce, the remote machine
can be certain that the attestation was generated after the
nonce was supplied. Since this attestation carries the cur-
rent counter value, the remote machine can thus also be
sure that the local machine’s counter is no lower than this
value.

Therefore, when the local machine provides attesta-
tions of counter values up to the nonce-attested value,
the remote machine can be certain that these attestations
are timely.

4.3 Minimality
Suppose, during the execution of a protocol, a partic-

ipant sends n messages requiring attestation, but her at-
testing module has fewer than log2(n) bits of storage.
The attesting module must be willing to provide all n
attestations, or else it will cause the protocol to halt pre-
maturely. However, since the module can be in fewer
than n distinct states, by the pigeonhole principle it must
be willing to attest to two different messages while in the
same state. Since this state is as it was before the first
message, it cannot reflect the trinket’s having attested to
the first message. This means a malicious user could take
advantage of the trinket’s inability to remember its first
attestation when requesting the second attestation, and
thereby obtain an attestation inconsistent with the ear-
lier one. This is clearly inconsistent with the goals of a
trusted module, so we come to a contradiction, and con-
clude that such a module requires at least log2(n) bits
of storage. In other words, it needs sufficient storage to
accommodate a message counter.

Furthermore, an attesting module needs for its attesta-
tions to be unforgeable. Otherwise, the user could gen-
erate attestations without using the module, and thereby
attest to both sides of an equivocation. TrInc achieves
this unforgeability with simple cryptographic primitives.

In summary, the core components of TrInc, a counter
and cryptography, seem to be essential for equivocation
prevention.

5 Designing Systems with TrInc
5.1 Overview

When designing a protocol that incorporates TrInc, we
find it important to address the following questions:
5.1.1 What does TrInc’s counter represent?

In the applications we have considered, TrInc’s
counter represents a natural “progression” of the sys-
tem. In BitTorrent, for instance, the counter represents
the number of blocks a given peer has received, a value
which is naturally monotonically increasing. In Byzan-
tine Fault Tolerance (BFT), the counter represents which
view a replica is in. Ultimately, the choice of what the
counter represents is dependent on what data peers will
need to attest to.
5.1.2 To what data do peers attest?

There are two broad types of attestations that TrInc of-
fers. Advance attestations increase the trinket’s counter,
thus binding a message to a counter. Status attestations
attest to the current counter without advancing it.
Advance attestations Advance attestations are largely
protocol-dependent, including such elements as the set of
pieces received in BitTorrent, or the root of a Merkle tree
of file hashes in a file server. The specific data to which
to attest often requires a careful analysis of the selfish
or malicious ways in which peers could equivocate. It
is important to ensure that the impossibility of equivo-
cating about what was assigned to a particular counter
value translates into the impossibility of equivocating at
the higher desired semantic level.

For instance, suppose an attestation consists solely of
a number n of pieces received in BitTorrent and a list of
n peers. In this case, a participant Mallory can cheat in
the following way. After receiving the first piece a from
Alice, she replies with an attestation that her one-piece
set contains only a. Next, after receiving her next two
pieces b from Bob and c from Charlie, she sends them
both an identical attestation that her two-piece set is b
and c. In this way, Mallory gets away with hiding the
fact that she has received piece a, despite not being able
to get different attestations for the same value of n = 2.
As we will see later, in §5.4, we prevent this by having
an attestation include the last piece received.
Status attestations Most distributed systems do not
have an implicit system-wide “counter.” Rather, peers
progress at varying rates: BitTorrent peers download at
rates largely dependent on their own upload rates, DHT
peers store varying amounts of data, and so on. Sta-
tus attestations enable peers to determine others’ current
counter values. The data in a status attestation is gen-
erally a nonce, to ensure freshness in peers’ reports of
their counters. Coupled with a counter that has semantic
meaning, status attestations can provide peers with up-
to-date information about their neighbors. In BitTorrent,
for instance, knowing how much of a file a neighbor has
downloaded can help determine whether to bootstrap him



Algorithm 2 Implementation of A2M with TrInc
Init()

1. Create low and high counters:
Lq ← CreateCounter(); Hq ← CreateCounter()

2. Return {Lq,Hq}
Append(queue q, value x)

1. Bind h(x) to a unique counter (the current “high counter”):
a← Attest(Hq.id, Hq.ctr + 1, h(x))

2. Store the attestation in untrusted memory:
q.append(a, x)

Lookup(queue q, sequence number n, nonce z)

1. If n < Lq , the entry was truncated. Attest to this by returning an
attestation of the supplied nonce using the low-counter:

Attest(Lq.id, Lq.ctr, h(FORGOTTEN||z))

2. If n > Hq , the query is too early. Attest to this by returning an
attestation of the supplied nonce using the high-counter:

Attest(Hq.id, Hq.ctr, h(TOOEARLY||z))

3. Otherwise, return the entry in q that spans n, i.e., the one such that
a.c < n ≤ a.c′. Note that if n < a.c′, this means n was skipped
by an Advance.

End(queue q, sequence number n, nonce z)

1. Retrieve the latest entry from the given log:
{a, x} ← q.end()

2. Attest that this is the latest entry with a high-
counter attestation of the supplied nonce:

a′ ← Attest(Hq.id, Hq.ctr, z)

3. Return {a′, {a, x}}
Truncate(queue q, sequence number n)

1. Remove the entries from untrusted memory:
q.truncate(n)

2. Move up the low counter:
a← Attest(Lq.id, n, FORGOTTEN)

Advance(queue q, sequence number n, value x)

1. Append a new item with sequence number n:
a← Attest(Hq.id, n, h(x))

2. Store the attestation in untrusted memory:
q.append(a, x)

with free pieces (because he is new to the swarm) or to
initiate a trade with him (because he has many interesting
pieces of the file).

5.2 Case study 1: A2M
Attested Append-only Memory (A2M) [7] is another

proposed trusted hardware design with the intent of com-
bating equivocation. A2M offers trusted logs, to which
users can only append. The fundamental difference be-
tween the designs of A2M and TrInc are in the amount
of state and computation required from the trusted hard-
ware. To demonstrate that TrInc’s decreased complex-
ity is enough, we present, as our first case study, how to
build A2M using TrInc.
5.2.1 A2M overview

A2M’s state consists of a set of logs, each contain-
ing entries with monotonically increasing sequence num-
bers. A2M supports operations to add (append and
advance), retrieve (lookup and end), and delete
(truncate) items from its logs. The basis of A2M’s re-
silience to equivocation is append, which binds a mes-
sage to a unique sequence number. For each log q, A2M
stores the lowest sequence number, Lq, and the highest
sequence number, Hq, stored in q. A2M appends an en-
try to log q by incrementing the sequence number Hq

and setting the new entry’s sequence number to be this
incremented value. The low and high sequence numbers
allow A2M to attest to failed lookups; for instance, if a
user requests an item with sequence number s > Hq,
A2M returns an attestation ofHq.

5.2.2 Trusted logs with TrInc
In our TrInc-based design of A2M, we store logs in

untrusted memory, as opposed to within a trinket. As in
A2M, we make use of two counters per log, representing
the highest (Hq) and lowest (Lq) sequence number in the
respective log q.

We present the detailed protocol in Algorithm 2, and
summarize some of its characteristics here. Note the
power of TrInc’s simple API; our design is built predom-
inately on calls to a trinket’s Attest function. Our pro-
tocol uses advance attestations for moving the high se-
quence number when appending to the log, and for mov-
ing the low sequence number when deleting from the log.
We perform status attestations of the low counter value to
attest to failed lookups, and of the high counter to attest
to the end of the log. No additional attestations are nec-
essary for a successful lookup, even if the lookup is
to a skipped entry. Conversely, A2M requires calls to the
trusted hardware even for successful lookups.
5.2.3 Properties of a TrInc-based A2M

Chun et al. [7] demonstrate how to apply A2M to
BFT [20], SUNDR [22], and Q/U [1]. Our implemen-
tation of A2M in TrInc demonstrates that TrInc, too, can
be applied to these systems.

Implementing trusted logs using TrInc has several
benefits over a completely in-hardware design like A2M.
Because TrInc stores the logs in untrusted storage, we
decouple the usage demand of the trusted log from the
amount of available trusted storage. Conversely, lim-
ited by the amount of trusted storage, A2M must make



more frequent calls to truncate to keep the logs small.
Some systems, such as PeerReview [13], benefit from
large logs, making TrInc a more suitable addition, which
we consider next.

5.3 Case study 2: PeerReview
Accountability systems, such as PeerReview [13] and

Nysiad [14], strive to augment existing protocols to make
them tolerant to Byzantine faults. This is a powerful ap-
proach, as it allows system designers to focus on the sys-
tem at hand, rather than consider Byzantine faults at all
layers of the system. The general approach is to have par-
ticipants in the system communicate with and audit one
another, resulting in what is sometimes, unfortunately, a
massive amount of additional communication overhead.

Our main observation in this case study is that the
means by which these systems combat equivocation con-
stitutes the bulk of their communication overhead. By
applying TrInc to PeerReview, we are able to vastly re-
duce PeerReview’s communication overhead.
5.3.1 PeerReview review

PeerReview [13] is a system that enables accountabil-
ity in general distributed protocols. Unlike BFT, which
ensures that bad behavior never has an effect, PeerRe-
view allows bad behavior to affect the system but ensures
that the improper act will eventually be detected. This al-
lows a system to correct for bad behavior after the fact,
and also deters bad behavior to begin with.

PeerReview works on any protocol in which each par-
ticipant acts according to a deterministic state machine.
PeerReview assigns each participant a set of witnesses,
machines whose job it is to detect bad behavior by that
participant. The participant is required to log all of the
messages it sends and receives, and report these to the
witnesses. The witnesses then run the participant’s state
machine to ensure the participant’s outgoing messages
were consistent with proper operation.

A participant might try to cheat by sending different
messages to the witnesses than it sends to other partic-
ipants. For this reason, when a participant receives a
message from another, it forwards this message to the
sender’s witnesses, so they can ensure this message actu-
ally appears in the sender’s log.

As a practical matter, full messages do not have to be
transmitted to witnesses thanks to the use of a tamper-
evident log. Each log entry is associated with a sequence
number, and the log itself is represented by a recursive
hash reflecting all log entries. When a participant sends
a message, it includes a signed statement that this mes-
sage has a particular sequence number and that the log
had a particular recursive hash when this message was
logged. In this way, the receiver only needs to report this
authenticator to the witness.

PeerReview’s tamper-evident log has another impor-
tant use. When a participant or witness discovers bad
behavior in a participant, the authenticators signed by

the malefactor stand as clear proof of the misbehavior.
Thus, a faulty witness cannot improperly accuse a par-
ticipant, and an incompletely trusted witness can be be-
lieved when it presents evidence of a participant’s mis-
behavior.
5.3.2 Simplifying PeerReview with TrInc

By augmenting PeerReview with TrInc, we are able to
simplify much of PeerReview’s protocol. We detail here
the modifications we make to PeerReview in augmenting
it with TrInc.
Trusted logs As demonstrated with A2M, TrInc can
easily supply a trusted log without the assistance of a
witness set. Our first modification is to include such a
trusted log. Whenever a participant sends or receives a
message, it logs that message with an attestation from
its trinket. A participant should only process a received
message if it is accompanied by an attestation that the
message has been logged by the sender’s trinket.
Audits Each witness w for a participant p keeps track of
n, a log sequence number, and s, the state that p should
have been in after sending or receiving the message in
log entry n. It initializes n to 0 and s to the initial state
of participant p.

Whenever w wants to audit p, it sends it n and a nonce.
The participant returns an attestation of its current log en-
try number n′ using the nonce, and also returns a log en-
try and attestation for every index i such that n < i ≤ n′.
Note that witnesses need only obtain these entries di-
rectly from p, and not from other peers with whom p has
communicated. The witness then runs the reference im-
plementation, starting at state s, and progressing through
the log entries between n and n′. If the reference imple-
mentation sends the same messages that are in the log,
then the witness simply updates n to n′ and updates s
to the state of the reference implementation at that point.
If not, then the witness has proof it can present of the
participant’s failure to act properly.
5.3.3 Properties of a TrInc-enabled PeerReview

The benefits from applying TrInc to PeerReview are
evident when considering what the protocol no longer
has to do.
Challenge/response Enabled with TrInc, PeerRe-
view’s challenge/response protocol is no longer needed
for a participant to verify a hash chain of log entries. The
fact that TrInc signs the messages is sufficient. The only
time a participant i has to challenge another participant j
is when it sends participant j a message and receives no
acknowledgment of it. In this case, the challenge works
as in regular PeerReview.
Consistency TrInc further removes the need for
witness-to-witness communication. In PeerReview, if p
receives an authenticator from q, then p’s witnesses must
forward it to q’s witnesses. This is not necessary in a
TrInc-augmented PeerReview because there would be no
way for those other participants to avoid sending the au-



thenticators themselves to their witnesses. Another way
to look at it is that it is not necessary for a participant
to pass on authenticators it receives to witnesses, so it is
not necessary for a witness to do this on behalf of partic-
ipants.

To summarize, we find that by applying TrInc to Peer-
Review, we are able to vastly decrease the amount of
communication overhead. We demonstrate this empiri-
cally in Section 7.

5.4 Case study 3: BitTorrent
The previous two systems demonstrate that TrInc is a

minimal counterpart to a related trusted component, and
that it can reduce the overhead of achieving accountabil-
ity in a distributed setting. Our third case study demon-
strates TrInc’s versatility. We show how TrInc can be
applied to solving an open incentive problem [21] in the
immensely popular BitTorrent system [8].
5.4.1 A brief overview of BitTorrent

BitTorrent [8] is a decentralized file swarming system
whose goal is to disseminate large files to a large num-
ber of downloaders. Rather than rely on a highly pro-
visioned server, BitTorrent peers trade small pieces of a
file with one another, thereby contributing to the system
while gaining from it. Bitfields represent which pieces of
a file a peer has. Peers trade bitfields in order to gain one
another’s interest; a peer is interested in peers who have
pieces that it does not. Since peers only upload to peers
in whom they are interested, peers have incentive to be
as interesting to as many others as possible.
5.4.2 Piece under-reporting

BitTorrent peers can sometimes have incentive to
under-report what pieces they have to their neighbors,
since by doing so they can limit the degree to which their
neighbors find interest in one another [21]. For instance,
suppose peer i has neighbors j and k, both of whom want
pieces p and q from i. If i were to tell them both about
both pieces, one might demand p and the other might de-
mand q. After obtaining them, they might gain interest
in one another and exchange p and q among themselves,
thus decoupling from i. Thus, i may prefer to under-
report by sending to j and k a bitfield that contains p but
not q. As a result, both neighbors request and obtain p,
gaining no interest in one another; only then does i reveal
that he also has piece q, forcing j and k to download it
from i.

Such under-reporting leads to a tragedy of the com-
mons, since although strategic under-reporters’ down-
load times improve, the system as a whole suffers [21].
Since its recent discovery, strategic under-reporting has
yet to be solved; we demonstrate how to solve it with
TrInc.
5.4.3 Solving under-reporting with TrInc

We observe that under-reporting in file swarming sys-
tems is an act of equivocation. Using the above example,
when peer i received piece q from peer `, i must have

Algorithm 3 Fighting equivocation in BitTorrent
Upon receipt of piece p:

1. Add p to bitfield B
2. acurr ← Attest(i, |B|, h(p, B))

Upon sending piece p to neighbor j:
1. Request an attestation from j with a random nonce.
2. Do not send any piece other than p to j until j ad-

mits to having p.

Periodically, for each neighbor j:
1. Request an attestation of j’s current bitfield with a

random nonce.

Upon receiving an attestation request with nonce z:
1. atmp ← Attest(i, |B|, z).
2. Reply with (acurr, atmp).

sent an acknowledgment, stating to ` that he received the
piece. However, by under-reporting q to peers j and k,
i is effectively contradicting a statement he made earlier
to `.

Our goal is therefore to remove BitTorrent peers’ abil-
ity to undetectably equivocate. We present in Algo-
rithm 3 a TrInc-based protocol for fighting equivocation
in BitTorrent. In this protocol, a peer attests to his bit-
field, incrementing a trinket counter for each piece he
receives. Also, peers periodically request up-to-date at-
testations from their neighbors, to maintain fresh state.

Because they join the swarm at different times and
download at different rates, peers’ counters are not syn-
chronized. In Algorithm 3, the TrInc counter does not
correspond to some system-wide “round” the protocol is
in, as it would in, say, BFT machine replication. Instead,
peer i’s counter represents how many pieces i has down-
loaded. This is a natural fit for the counter, because it is a
monotonically increasing number, and because the type
of malicious behavior we want to prevent corresponds to
pretending it is not monotonic.

Algorithm 3 demonstrates the importance of choosing
the correct data to which to attest. Suppose, for instance,
peers were to attest only to their bitfields. Clearly, when
s sends an attested bitfield to neighbor n, s must include
the piece n sent him, pn, in the bitfield, otherwise n will
observe an under-report. Were s to attest only to the bit-
field, then s could under-report as follows, where Bold

represents the bitfield before receiving pieces pa, pb, and
pc, and ⊕ denotes adding a piece to the bitfield:

• To a: Bold ⊕ pa

• To b and c: Bold ⊕ pb ⊕ pc

The problem arises because the data to which s is attest-
ing does not enforce monotonicity at the semantic level
we desire. Specifically, though the counter cannot de-
crease, it does not have to correspond to the number of



distinct pieces acknowledged, allowing a malicious par-
ticipant to misstate the number of distinct pieces he has
acknowledged.

In our solution, a peer attests not only to the hash of
his bitfield B, but also to the most recent piece he has
received, p. Neighbor n therefore expects an advance at-
testation including both pn and a bitfield containing pn.
As a result, every piece must have a unique advance at-
testation, ensuring that s’s counter must be as large as the
number of pieces he has acknowledged receiving.
5.4.4 Properties of a TrInc-augmented BitTorrent

Our TrInc-based solution to equivocation in BitTorrent
solves two difficult incentives-related problems. First,
peers have incentive to truthfully reveal the pieces they
have whenever they are asked to. TrInc removes the abil-
ity to equivocate, and step-omission failures (remaining
silent) result in getting no further pieces from a neighbor.
Peers can therefore obtain long-lived trades with others
only by truthfully reporting their pieces.

Second, our solution adds additional security to Bit-
Torrent’s bootstrapping mechanism. In BitTorrent, peers
optimistically unchoke new participants, sending them
pieces without requiring anything in return, to introduce
them into the system. BitThief [24] exploits this by pre-
tending not to be able to make progress [35]. However,
such artifice is not possible with TrInc since with it a peer
cannot hide the rate at which he is downloading pieces.

Note, however, that what we propose is not a com-
plete solution to problems with bootstrapping. Even with
TrInc-enabled BitTorrent, a peer can steal a single piece
from each other peer. Our goal of applying TrInc here is
to ensure truthfulness in long-lived peerings, which (sur-
prisingly) does not arise automatically.

5.5 Other applications
We see many other potential applications for TrInc.

We briefly described three such apps in Section 2.1:
simultaneous-turn games, electronic currency, and elec-
tions. Here, we detail several others:

Secure DNS is intended to protect the integrity of the
Internet domain name system. One identified threat [6]
is that a resolving name server could be compromised
and forge incorrect responses. The official solution to
this threat is data origin identification in the DNS Secu-
rity Extensions (DNSSEC), which uses public-key sig-
natures to authenticate name updates. However, this so-
lution does not address a threat in which the compro-
mised name server replies to a query with out-of-date
data, which would still bear a valid signature. Modify-
ing DNSSEC with TrInc could address this problem by
preventing the resolving name server from equivocating
about whether it has received an update. Once it ac-
knowledges receipt to the authoritative name server, it
can no longer pretend it has not received the update.

Secure Origin BGP (soBGP) [44] is intended to
protect the integrity of Internet routing updates. Like

DNSSEC, soBGP uses public-key signatures to authen-
ticate updates. Also like DNSSEC, soBGP is vulnerable
to a threat in which a compromised router advertises out-
of-date routes, which would still bear valid signatures.
TrInc could address this problem by preventing a router
from equivocating about whether it has received a rout-
ing update.

Distributed hash tables (DHTs), such as Chord [37],
Bamboo [33], and Kademlia [27], are vulnerable to mis-
behaving nodes. In particular, a node can lie about which
region of the keyspace it is responsible for. As nodes
join and leave the DHT, these regions of responsibil-
ity change (sometimes quite rapidly [33]) in response
to reconfiguration messages. A node can equivocate
about whether it has received a particular message, which
may allow it to claim responsibility for a region of the
keyspace it does not own. TrInc could be used to prevent
this equivocation.

Version control systems, such as CVS [41] and Sub-
version [29] are often run on remote servers. Thus, they
are vulnerable to a threat model in which the server
presents different views of the repository to different
clients. Although this threat could be addressed at the
block-store level [22], it might be more efficient to ad-
dress it at the application level, in which case TrInc could
prevent this equivocation.

Distributed auctions [42] are vulnerable to cheating
participants. A bidder can try to manipulate others’ bids
by equivocating about the value of his current bid. An
auctioneer can try to manipulate the bidding by equiv-
ocating about her reserve price for a particular auction.
TrInc could protect against both of these classes of cheat-
ing, by preventing both bidders and auctioneers from
equivocating.

Leader election protocols [25] rely on a quorum of
participants to agree on a choice of leader. For a quo-
rum of size q, it can legitimately happen that two groups
of size q − 1 will nominate different leaders. In this
case, one participant can equivocate about which leader
to nominate, causing the protocol to select two leaders
concurrently. TrInc could be used to prevent this equivo-
cation.

Digital signatures are used in many cryptographic
protocols, but commonly use slow asymmetric key oper-
ations [17]. However, TrInc allows faster symmetric key
operations to be used instead. To do so, a signer merely
has to have his trinket attest to the hash of the message to
be signed using a shared symmetric key. Since this attes-
tation can only be generated by a party with access to the
symmetric key, and since the hardware includes the ID in
any attestation, no other party (except the trusted session
administrator) can have generated the attestation. Thus,
it functions effectively as a digital signature, verifiable
by anyone whose trinket has the same symmetric key in-
stalled.



Operation Time (msec)
Noop 6.14 ± 0.15

(asymmetric, advance > 0) 230.24 ± 0.28
(asymmetric, advance = 0) 198.21 ± 0.10Attest
(symmetric, advance > 0) 128.95 ± 0.08
(symmetric, advance = 0) 105.90 ± 0.08

Verify Symmetric Attestation 85.81 ± 0.11

Table 3: TrInc microbenchmarks on a Gemalto .NET
Smartcard, with 95% confidence intervals.

6 TrInc Implementation
The application case studies demonstrate the strong

theoretical properties of TrIncs. In this section, we study
the performance of TrIncs today. To this end, we have
implemented TrInc on Gemalto .NET SmartCards [11],
and present microbenchmarks that measure TrInc’s per-
formance on these widely available pieces of trusted
hardware.

6.1 Microbenchmarks
Our experimental setup consists of an Intel Core 2

Duo 1.6GHz machine with 3GB of RAM, and a smart-
card connected via a USB card reader. We present our
microbenchmarks in Table 3, with results averaged over
1,000 runs. In addition to TrInc’s API, we include a noop
to essentially measure the round-trip time between PC
and smartcard.

Compare the Attest results on the card to those
on the untrusted PC, where 3-DES took 0.017 ± 0.008
msec, and RSA took 8.6 ± 0.67 msec. It is no surprise
that a smartcard does not perform as well, but the dif-
ference in relative performance between symmetric and
asymmetric encryption is striking. On the PC, they dif-
fer by a factor of over 500, while on the card they differ
by less than a factor of 2. While using symmetric instead
of asymmetric operations improves TrInc’s performance,
we were surprised to see it was by this small a factor.

6.2 Why so slow?
The conclusion is clear: today’s trusted hardware is

slow! Indeed, it is much slower than would be allowed
by most components of a distributed system. But why is
it slow, and why do current applications that use trusted
hardware not suffer as a result?

We believe this is attributable to the fact that TrInc uses
trusted hardware in a fundamentally different way than
that for which the hardware is currently designed. To-
day’s trusted hardware is designed to bootstrap software,
generally performing few operations during a machine’s
boot cycle. Conversely, TrInc makes use of trusted hard-
ware during operation, in some cases multiple times for
each message sent.

We proposed several versions in §3.5.6 that we believe
would be viable directions for future designs of trusted
hardware to take. In the interim, a logical solution is

Time (msec)
Operation TrInc A2M
Noop 6.99 ± 0.01
Append 187.60 ± 0.15 551.93 ± 154
Lookup (Successful) 0.0122 ± 0.02 304.14 ± 6.87
Lookup (TooEarly) 162.24 ± 0.08 289.68 ± 2.23
Lookup (Forgotten) 162.35 ± 0.10 350.51 ± 1.43
End 162.31 ± 0.11 294.16 ± 2.04
Truncate 187.94 ± 0.10 28.99 ± 0.02
Advance 187.81 ± 0.12 288.20 ± 11.4

Table 4: TrInc-A2M microbenchmarks, with 95% confi-
dence intervals.

to design protocols that limit the number of necessary
attestations, but such approaches are beyond the scope
of this paper. Nevertheless, our empirical results in the
following section indicate that making trusted hardware
more suitable for use in distributed systems today is a
valuable area of future work.

7 Application Evaluation
We now turn to macrobenchmarks, evaluating TrInc

as it applies to our three case studies: A2M, PeerReview,
and BitTorrent.

7.1 TrInc-A2M
In Section 5.2, we proposed a way to build A2M

using TrInc. While demonstrating TrInc’s ease of use
and versatility, it also allows us to compare the two
trusted-component designs. To this end, we have im-
plemented A2M in the Gemalto .NET SmartCard, and
a TrInc library—run on an untrusted machine—that ac-
cesses TrInc as prescribed in Algorithm 2.

We present microbenchmark comparisons in Table 4.
As expected, TrInc performs Appends much more
quickly, as it does not require as many writes to trusted
storage. Where TrInc offers vast speed improvements
over A2M is in successful Lookups; since these do not
have to be either stored in trusted hardware or attested,
they are merely local operations. Interestingly, A2M im-
proves with Truncate, since A2M simply increases the
log’s low counter and postpones the attestation of the op-
eration until a lookup that needs to return FORGOTTEN.
TrInc amortizes this cost, in the expectation that there
will be more FORGOTTEN lookups than truncations.

These results demonstrate that TrInc performs better
on today’s trusted hardware. As trusted components im-
prove, particularly in terms of memory writes and cryp-
tographic operations, it is likely that A2M and TrInc will
perform comparably well. However, the slowness of to-
day’s trusted hardware brings to light the difference in
complexity between A2M and TrInc. We believe TrInc’s
relative simplicity makes it a more suitable candidate
even with future designs of trusted hardware.
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Figure 3: Reduction in PeerReview’s message overhead
due to TrInc.

7.2 TrInc-PeerReview
In Section 5.3, we demonstrated how including TrInc

into the design of an accountability system such as Peer-
Review can decrease the amount of communication re-
quired between participants. This represents one of the
fundamental strengths of including a small, trusted com-
ponent into an otherwise untrusted system.

Applying TrInc to PeerReview removes the require-
ment for a peer p to communicate with the witness set
of any other peer q, unless, of course, p happens in q’s
witness set. Using data from the original PeerReview
study [13], we demonstrate in Figure 3 the extent to
which TrInc reduces PeerReview’s communication over-
head. TrInc effectively removes the O(W 2) witness-set-
to-witness-set communication, for reasons described in
Section 5.3. As a result, the amount of additional com-
munication overhead scales linearly rather than quadrat-
ically with the size of the witness sets.

7.3 TrInc-BitTorrent
To evaluate our TrInc-based solution for BitTorrent,

we simulated using a “gold-standard” trinket in the
Azureus BitTorrent client. To do so, we modified Bit-
Torrent’s Have messages to include attestations to coun-
ters. We observed that Have messages, originally in-
tended simply to inform others when a peer receives a
piece, come frequently enough in practice to also satisfy
peers’ continual need for fresh attestations.

We modified the BitTorrent code to recognize these
new messages, and to cut off peers thereby discovered to
be under-reporting. However, we never have the seeder
punish a peer in this way. It seems reasonable to have
such a forgiving seeder since otherwise peers who suf-
fer failures—for example, from a corrupted disk—could
never request blocks after they have attested to them.

We ran our experiments on a local cluster consisting
of 23 leechers, each with upload bandwidth capped at
50Kbps, and one seeder, with upload bandwidth capped

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160  180

C
um

ul
at

iv
e 

nu
m

be
r 

of
 b

lo
ck

s 
ob

ta
in

ed

Time into the download (sec)

Representative peer
Under-reporter: from all

Under-reporter: from seed

Figure 4: Rate of progress for various BitTorrent clients
when TrInc is used.

at 80Kbps. We chose one host to act as a strategic piece
revealer using an algorithm from a prior study [21]. We
chose this host arbitrarily since, on the local cluster, we
found them to be virtually indistinguishable in terms of
performance.

Our experiments demonstrated a clear loss in perfor-
mance from under-reporting. In a representative run, the
under-reporting peer took 27% longer to download the
file than the other peers did on average, and 33% longer
than the median.

The under-reporter’s download times would have been
much worse if not for the forgiving seeder. We show in
Figure 4 the total number of blocks the under-reporter re-
ceived over time, compared to the number of blocks he
received from the seeder. We plot a representative, truth-
ful peer from the swarm as a point of comparison. Be-
cause other peers refused to send to the under-reporter
until he revealed all the pieces in his possession, the
seeder became the under-reporter’s only remaining op-
tion. Indeed, the under-reporting peer obtained more
pieces (73%) from the seeder than any other peer in the
swarm (11% on average, 6% median).

These results indicate the power of applying a small
amount of trust, and small attestations piggybacked on
existing protocol messages, to a large-scale decentralized
system.

8 Conclusions
In this paper, we presented TrInc, a simple yet power-

ful abstraction for improving security in distributed sys-
tems. TrInc is a trusted hardware module that holds a
non-decreasing counter and a hidden cryptographic key.
This combination, along with the computational machin-
ery to support it, yields an abstraction that significantly
improves various aspects of security in distributed sys-
tems.

TrInc was inspired by the seminal work of A2M,
which introduced the idea of a trusted log for improv-



ing system security. Relative to A2M, TrInc has a sig-
nificantly simpler abstraction: a counter instead of a log.
We have also demonstrated a wider range of applications
for, and benefits from, a trusted module than previously
shown.

We have implemented TrInc on real, currently avail-
able trusted hardware. We have performed three detailed
case studies of TrInc as applied to different distributed
protocols. Our results show that this abstraction is easy
to deploy, powerful, and versatile.
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