
The Complexity of Computing a Nash Equilibrium

Constantinos Daskalakis
∗

University of California, Berkeley

costis@cs.berkeley.edu

Paul W. Goldberg
†

University of Warwick, U.K.

pwg@dcs.warwick.ac.uk

Christos H. Papadimitriou
‡

University of California, Berkeley

christos@cs.berkeley.edu

ABSTRACT
We resolve the question of the complexity of Nash equilib-
rium by showing that the problem of computing a Nash
equilibrium in a game with 4 or more players is complete for
the complexity class PPAD. Our proof uses ideas from the
recently-established equivalence between polynomial time
solvability of normal form games and graphical games, es-
tablishing that these kinds of games can simulate a PPAD-
complete class of Brouwer functions.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]:General

General Terms
Theory, Algorithms, Economics

Keywords
Complexity, Nash Equilibrium, PPAD-Completeness, Game
Theory

1. INTRODUCTION
In 1951 Nash showed that every game has a Nash equilib-

rium [20]. The computational problem of finding such equi-
libria in polynomial time has remained open, and has come
under increased scrutiny during the past two decades, see
Section 2.2 for some references. The 2-player case seems a
little easier, since linear programming-like techniques come
into play and the solutions are guaranteed to be rational
numbers — Nash showed in his original paper that there are
3-player games with only irrational equilibria. The problem

∗Research supported by NSF ITR grant CCR-0121555 and
a grant from Microsoft Research.
†Research supported by the EPSRC grant GR/T07343/01
“Algorithmics of Network-sharing Games”. This work was
begun while the author was visiting U. C. Berkeley.
‡Research supported by NSF ITR grant CCR-0121555 and
a grant from Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06, May 21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

was known to belong to the class PPAD [23] of search prob-
lems with solutions guaranteed to exist by dint of a directed
graph-theoretic argument but, unlike the problem of finding
a Brouwer fixed point, it was not known to be complete for
that class.

In this paper we show that the problem of computing Nash
equilibria in games with 4 players is indeed PPAD-complete.
Thus, a polynomial-time algorithm would imply a similar
algorithm, e.g., for computing Brouwer fixed points, a prob-
lem for which quite strong lower bounds for large classes of
algorithms are known [13]. Also, such an algorithm would
have to fail to relativize with respect to the oracles in [1],
for which PPAD has no polynomial-time algorithms.

Nash showed his result by reducing the existence of Nash
equilibria to the existence of Brouwer fixed points. Given
any game, he constructs a Brouwer function whose fixed
points are precisely the equilibria of the game. In Nash’s re-
duction, as well as in subsequent ones [10], the constructed
Brouwer function is quite specialized, and this has led to
speculation on whether the fixed points of such functions
(and thus Nash equilibria) are easier to find than for general
Brouwer functions. We answer this question in the negative
by presenting a reduction in the opposite direction: Any
(computationally presented) Brouwer function can be simu-
lated by a game, so that Nash equilibria correspond to fixed
points.

In a recent precursor of this paper [12], we describe cer-
tain reductions between equilibrium problems; in particular,
finding a Nash equilibrium in an r-player game can be re-
duced to the same problem with 4 players, and to that in a
graphical game (see Section 2.1 for the definition of a graph-
ical game) with two strategies per player and maximum de-
gree three. Thus, all these problems and their generaliza-
tions are PPAD-complete. Our present proof relies crucially
on certain “arithmetical gadgets” invented in [12]: games
that have the effect of adding, multiplying, and comparing
real numbers.

The idea in our proof is this: Given a Brouwer function
on the 3-dimensional cube (appropriately stylized and pre-
sented as a circuit), we simulate the coordinates by three
players; each player has two strategies, so that the three
mixed strategies are essentially a point in the cube. We
construct a game in which the best responses of these three
players implement the Brouwer function. This is done by
decoding the coordinates into a bit vector, using the circuit
to compute the value of the function, and then inducing
the three players to add the appropriate increments to their
mixed strategy. All this is done by a graphical game, ulti-

71



mately relying on the reduction in [12] to get to a 4-player
normal form game.

There are many difficulties, of course. One has to do with
brittle comparators. Our comparator gadget sets a number z
to 0 if x < y, to 1 if x > y, and to anything if x = y (it is not
hard to see that no “robust” comparator gadget is possible).
This means that decoding is flaky at the boundaries, and at
these points the best response can be essentially arbitrary.
We solve this by defining the best response to be an aver-
age over a “microlattice” around the point of interest, thus
smoothing out any effects from boundaries of measure zero.
Another problem is that the Brouwer problem, as defined
in [23], would be very cumbersome to use in this reduction;
thus, a side-product of our proof is a much cleaner canon-
ical version of the computational problem associated with
Brouwer’s Fixed Point Theorem (actually, one that is, in a
sense, half-way between that and Sperner’s Lemma).

2. BACKGROUND

2.1 Games
A game in normal form has r ≥ 2 players (indexed by p)

and for each player p a finite set Sp of pure strategies. The
set S of pure strategy profiles is the Cartesian product of the
Sp’s. We denote the set of all strategy profiles of players
other than p by S−p. Finally, for each p ≤ r and s ∈ S we
have a payoff or utility up

s — also occasionally denoted up
js

for j ∈ Sp and s ∈ S−p.
A mixed strategy for player p is a distribution on Sp, that

is, real numbers xj ≥ 0 for each strategy j ∈ Sp such thatP
j∈Sp

xj = 1. A set of r mixed strategies {xp
j}j∈Sp , p =

1, . . . , r, is called a (mixed) Nash equilibrium if, for each
p,

P
s∈S up

sxs is maximized over all mixed strategies of p
(where for a strategy profile s = (s1, . . . , sr) ∈ S, we denote
by xs the product x1

s1 · x2
s2 · · ·x

r
sr

). That is, a Nash equi-
librium is a set of mixed strategies from which no player
has a unilateral incentive to deviate. It is well-known (see,
e.g., [22]) that the following is an equivalent condition for a
set of mixed strategies to be a Nash equilibrium:

X

s∈S−p

up
jsxs >

X

s∈S−p

up
j′sxs =⇒ xp

j′ = 0.

More generally, a set of mixed strategies is an ε-Nash equi-
librium for some ε > 0 if the following holds:

X

s∈S−p

up
jsxs >

X

s∈S−p

up
j′sxs + ε =⇒ xp

j′ = 0.

A game in normal form requires r|S| numbers for its de-
scription — an exponential in the number of players amount
of information. A graphical game [15] is defined in terms
of an undirected graph G = (V, E) together with a set of
strategies Sv for each v ∈ V . We denote by N (v) the set
consisting of v and v’s neighbors in G, and by SN (v) the
set of all |N (v)|-tuples of strategies, one from each vertex in
N (v). In a graphical game, the utility of a vertex v ∈ V only
depends on the strategies of the vertices in N (v) so it can
be represented by just |SN (v)| numbers. In other words, a
graphical game is a succinct representation of a multiplayer
game, applicable when it so happens that the utility of each
player only depends on a few other players.

2.2 Previous Work
Despite much interest, there have been very few com-

plexity results (positive or negative) for the Nash equilib-
rium problem. Lipton and Markakis [17] study the alge-
braic properties of Nash equilibria, and point out that stan-
dard quantifier elimination algorithms can be used to solve
them, but these are not polynomial-time in general. Pa-
padimitriou and Roughgarden [24] show that, in the case of
symmetric games, quantifier elimination results in polyno-
mial algorithms for a broad range of parameters. Lipton,
Markakis and Mehta [18] show that, if we only require an
equilibrium that is best response within some accuracy ε,
then a subexponential algorithm is possible. The two-player
case, 2-Nash, can be solved by the simplex-like algorithm by
Lemke and Howson [16]; this algorithm was recently shown
to have exponential worst case running time [26]. If specific
Nash equilibria are required, for example the Nash equi-
librium with best social cost, the problem is typically NP-
complete [11, 6].

In addition to [12], the papers [5, 27] have recently started
to explore the computational complexity of games, via re-
ductions between alternative types of games.

3. PPAD

3.1 Total Search Problems
We now review several definitions and results from the

complexity theory of total functions, see [23] for a very
similar, but not identical, formalism. A search problem S is
a set of inputs IS ⊆ Σ∗ such that for each x ∈ IS there is

an associated set of solutions Sx ⊆ Σ|x|k for some integer

k, such that for each x ∈ IS and y ∈ Σ|x|k whether y ∈ Sx

is decidable in polynomial time (notice that this is precisely
NP with an added emphasis on finding a witness).

For example, r-Nash is the search problem S in which
each x ∈ IS is an r-player game in normal form together
with a binary integer A (the accuracy specification), and
Sx is the set of 1

A
-Nash equilibria of the game. Similarly,

d-graphical Nash is the search problem with inputs the
set of all graphical games with degree at most d, plus an
accuracy specification, and solutions the corresponding ap-
proximate Nash equilibria.

A search problem is total if Sx �= ∅ for all x ∈ IS . For
example, Nash’s 1951 theorem [20] implies that r-Nash is
total. Obviously, the same is true for d-graphical Nash.
The set of all total search problems is denoted TFNP.

Since TFNP is a “semantic” class (i.e., it has no generic
complete problem), we explore its complexity via its impor-
tant subclasses: PLS [14], PPP, PPA and PPAD [23]. In
particular, PPAD is the class of all total search problems
reducible to the following:

end of the line: Given two circuits S and P , each with
n input bits and n output bits, such that P (0n) = 0n �=
S(0n), find an input x ∈ {0, 1}n such that P (S(x)) �= x or
S(P (x)) �= x �= 0n.

Intuitively, end of the line creates a directed graph with
vertex set {0, 1}n and an edge from x to y whenever both
y = S(x) and x = P (y) (S and P stand for “successor
candidate” and “predecessor candidate”). All nodes in this
graph have indegree and outdegree at most one, and there is
at least one source, namely 0n, so there must be a sink. We
seek either a sink, or a source other than 0n. Thus, PPAD

72



(the initials stand for polynomial parity argument, directed
version) is the class of all total functions whose totality is
proven via the following simple combinatorial argument: “If
a finite directed graph has an unbalanced node, then it must
have another.”

The following is shown in [23] by a reduction to end of

the line via Brouwer’s Theorem and Sperner’s Lemma:

Proposition 1. r-Nash is in PPAD.

A polynomially computable function f is a polynomial-
time reduction from total search problem S to total search
problem T if, for every input x of S , f(x) is an input of
T , and furthermore there is another polynomial time com-
putable function g such that for every y ∈ Tf(x), g(y) ∈ Sx.
In [12] the following is shown:

Theorem 1. There are polynomial-time reductions from
r-Nash and d-graphical Nash, for any r, d ≥ 2, to both
4-Nash and 3-graphical Nash.

A search problem S in PPAD is called PPAD-complete
if all problems in PPAD reduce to it. Obviously, end of

the line is PPAD-complete; our main result in this paper
(Theorem 3) states that so are 4-Nash and 3-graphical

Nash.

3.2 An Interesting PPAD-Complete Problem
In the proof of our main result we use a problem we call 3-

dimensional Brouwer, which is a very simplified version
of a problem shown PPAD-complete in [23]. We are given a
stylized Brouwer function φ on the 3-dimensional unit cube,
defined in terms of its values at the centers of 23n cubelets
with side 2−n. At the center cijk of the cubelet Kijk defined
as

Kijk = {(x, y, z) : i · 2−n ≤ x ≤ (i + 1) · 2−n,

j · 2−n ≤ y ≤ (j + 1) · 2−n,

k · 2−n ≤ z ≤ (k + 1) · 2−n},

where i, j, k are integers in [2n], the value of φ is φ(cijk) =
cijk + δijk, where δijk is one of the following four vectors
(also referred to as colors):

• δ1 = (α, 0, 0)

• δ2 = (0, α, 0)

• δ3 = (0, 0, α)

• δ0 = (−α,−α,−α)

Here α > 0 is much smaller than the cubelet side, say 2−2n.
In the actual continuous Brouwer function (which does

not concern us in this problem as defined) the value of φ
near the boundaries of the cubelets would be determined by
interpolation — there are many simple ways to do this, and
the precise method is of no importance to our discussion.

Thus, to compute φ at the centers of the cubelet Kijk we
only need to know which of the four displacements to add.
This is computed by a circuit C (which is the only input to
the problem) with 3n input bits and 2 output bits; C(i, j, k)
is the index r such that, if c is the center of cubelet Kijk,
φ(c) = c + δr. C is such that C(0, j, k) = 1, C(i, 0, k) = 2,
C(i, j, 0) = 3 (with conflicts resolved arbitrarily) and C(2n−
1, j, k) = C(i, 2n − 1, k) = C(i, j, 2n − 1) = 0, so that the

function φ maps the boundary to the interior of the cube.
A vertex of a cubelet is called panchromatic if among the
eight cubelets adjacent to it there are four that have all four
increments δ0, δ1, δ2, δ3.

3-dimensional Brouwer is thus the following problem:
Given a circuit C as described above, find a panchromatic
vertex. The relationship with Brouwer fixpoints (as promised
by Brouwer’s theorem) is that any natural interpolation rule
ensures that fixpoints only ever occur in the vicinity of a
panchromatic vertex; elsewhere the displacements cannot
cancel each other out. In fact, we can show the following.

Theorem 2. 3-dimensional Brouwer is PPAD-complete.

Proof. The reduction is from end of the line. Given
circuits S and P with n inputs and outputs, as prescribed
in this problem, we shall construct an equivalent instance of
3-dimensional Brouwer, that is, another circuit C with
3m = 3(n + 3) inputs and two outputs that computes the
color of each cubelet of side 2−m, that is to say, the index i
such that δi is the correct increment of the Brouwer function
at the center of the cubelet encoded into the 3m bits of
the input. We shall first describe the Brouwer function φ
explicitly, and then argue that it can be computed by a
circuit.

Our description of φ proceeds as follows: We shall first
describe a 1-dimensional subset L of the 3-dimensional unit
cube, intuitively an embedding of the path-like directed graph
GS,P implicitly given by S and P . Then we shall describe
the 4-coloring of the 23m cubelets based on the description
of L. Finally, we shall argue that colors are easy to compute
locally, and that fixed points correspond to endpoints other
than 0n of the line.

We assume that the graph GS,P is such that for each edge
(u, v), one of the vertices is even (ends in 0) and the other is
odd; this is easy to guarantee (we could add a dummy input
and output bit to S and P that is always flipped.)

L will be orthonormal, that is, each of its segments will
be parallel to one of the axes. Let u ∈ {0, 1}n be a ver-
tex of GS,P . By [u] we denote the integer between 0 and
2n − 1 whose binary representation is u; all coordinates of
endpoints of segments are integer multiples of 2−m, a fac-
tor that we omit. Associated with u there are two line
segments of length 4 of L. The first, called the princi-
pal segment of u, has endpoints u1 = (8[u] + 2, 3, 3) and
u′

1 = (8[u] + 6, 3, 3). The other auxiliary segment has end-
points u2 = (3, 8[u]+2, 2m−3) and u′

2 = (3, 8[u]+6, 2m−3).
Informally, these segments form two dashed lines (each seg-
ment being a dash) that run along two edges of the cube
and slightly in its interior (see Figure 1).

Now, for every vertex u of GS,P , we connect u′
1 to u2

by a line with three straight segments, with joints u3 =
(8[u] + 6, 8[u] + 2, 3) and u4 = (8[u] + 6, 8[u] + 2, 2m − 3).
Finally, if there is an edge (u, v) in GS,P , we connect u′

2 to
v1 by a broken line with breakpoints u5 = (8[v] + 2, 8[u] +
6, 2m −3) and u6 = (8[v]+2, 8[u]+6, 3). This completes the
description of the line L if we do the following perturbation:
exceptionally, the principal segment of u = 0 has endpoints
01 = (2, 2, 2) and 0′

1 = (6, 2, 2) and the corresponding joint
is 03 = (6, 2, 2).

It is easy to see that L traverses the interior of the cube
without ever “nearly crossing itself”; that is, two points p, p′

of L are closer than 4·2−m in Euclidean distance only if they

73



v1

u1

u1'

u3

u4

u2 u5

u6

u
2
'

v1'

x

y
z

Figure 1: The orthonormal path connecting nodes
(u,v); the arrows indicate the orientation of colors
surrounding the path.

are connected by a part of L that has length 8 · 2−m or less.
(This is important in order for the coloring described be-
low of the cubelets surrounding L to be well-defined.) To
check this, just notice that segments of different types (e.g.,
[u3, u4] and [v′

2, v5]) come close only if they share an end-
point; segments on the z = 3 plane are parallel and at least
4 apart; and segments parallel to the z axis differ by at least
4 in either their x or y coordinates.

We now describe the coloring of the 23m cubelets by four
colors corresponding to the four increments. As required for
a 3-dimensional Brouwer circuit, the color of any cubelet
Kijk where any one of i, j, k is 2m − 1, is 0. Given that, any
other cubelet with i = 0 gets color 1; with this fixed, any
other cubelet with j = 0 gets color 2, while the remain-
ing cubelets with k = 0 get color 3. Having colored the
boundaries, we now have to color the interior cubelets. An
interior cubelet is always colored 0 unless one of its vertices
is a point of the interior of line L, in which case it is colored
by one of the three other colors in a manner to be explained
shortly. Intuitively, at each point of the line L, starting from
(2, 2, 2) (the beginning of the principle segment of the string
u = 0n) the line L is “protected” from color 0 from all 4
sides. As a result, the only place where the four colors can
meet is vertex u′

2 or u1, u �= 0n, where u is an end of the
line. . .

In particular, near the beginning of L at (2, 2, 2) the 27
cubelets Kijk with i, j, k ≤ 2 are colored as shown in Fig-
ure 2. From then on, for any length-1 segment of L of the
form [(x, y, z), (x′, y′, z′)] consider the four cubelets contain-

ing this edge. Two of these cubelets are colored 3, and the
other two are colored 1 and 2, in this order clockwise (from
the point of view of an observer at (x, y, z)) as L proceeds
from (2, 2, 2) on. The remaining cubelets touching L are the
ones at the joints where L turns. Each of these cubelets,
a total of two per turn, takes the color of the two other
cubelets adjacent to L with which it shares a face.

z y

x

Z=2

Z=1

Z=0

1 1 1

2
2

1

2
2

1

1
1

1

2
3

3

2
3

3

1
1

1

2
3

3

2
3

3

Beginning of L

Figure 2: The 27 cubelets around the beginning of
line L.

Now it only remains to describe, for each line segment
[a, b] of L, the direction d in which the two cubelets that are
colored 3 lie. The rules are these (in Figure 1 the directions
d are shown as arrows):

• If [a, b] = [u1, u
′
1] then d = (0, 0,−1) if u is even and

d = (0, 0, 1) if u is odd.

• If [a, b] = [u′
1, u3] then d = (0, 0,−1) if u is even and

d = (0, 0, 1) if u is odd.

• If [a, b] = [u3, u4] then d = (0, 1, 0) if u is even and
d = (0,−1, 0) if u is odd.

• If [a, b] = [u4, u2] then d = (0, 1, 0) if u is even and
d = (0,−1, 0) if u is odd.

• If [a, b] = [u2, u
′
2] then d = (1, 0, 0) if u is even and

d = (−1, 0, 0) if u is odd.

• If [a, b] = [u′
2, u5] then d = (0,−1, 0) if u is even and

d = (0, 1, 0) if u is odd.

• If [a, b] = [u5, u6] then d = (0,−1, 0) if u is even and
d = (0, 1, 0) if u is odd.

74



• If [a, b] = [u6, v1] then d = (0, 0, 1) if u is even and
d = (0, 0,−1) if u is odd.

This completes the description of the construction. Notice
that, for this to work, we need our assumption that edges
in GS,P go between odd and even nodes. Regarding the
alternating orientation of colored cubelets around L, note
that we could not simply introduce “twists” to make them
always point in (say) direction d = (0, 0,−1) for all (u1, u

′
1).

That would create a panchromatic vertex at the location of
a twist.

The result now follows from the following two claims:

1. A point in the cube is panchromatic in the described
coloring if and only if it is

(a) an endpoint u′
2 of a sink vertex, or

(b) u1 of a source vertex u �= 0n of GS,P

2. A circuit C can be constructed in time polynomial in
|S| + |P |, which computes, for each triple of binary
integers i, j, k < 2m, the color of cubelet Kijk.

Regarding the first claim, the endpoint u′
2 of a sink vertex,

or the endpoint u1 of a source vertex other than 0n, will be
a point where L meets color 0, hence a panchromatic vertex.
There is no alternative way that L can meet color 0.

Regarding the second claim, circuit C is doing the follow-
ing. C(0, j, k) = 1, C(i, 0, k) = 2 for i > 0, C(i, j, 0) = 3 for
i, j > 0. Then by default, C(i, j, k) = 0. However the follow-
ing tests yield alternative values for C(i, j, k), for cubelets
adjacent to L. LSB(x) denotes the least significant bit of
x, equal to 1 if x is odd, 0 if x is even and undefined if x is
not an integer.

For example, a (u′
1, u3), u �= 0 segment is given by:

1. If k = 2 and i = 8x + 5 and LSB(x) = 1 and j ∈
{3, . . . , 8x + 2} then C(i, j, k) = 2.

2. If k = 2 and i = 8x + 6 and LSB(x) = 1 and j ∈
{2, . . . , 8x + 2} then C(i, j, k) = 1.

3. If k = 3 and (i = 8x+5 or i = 8x+6) and LSB(x) = 1
and j ∈ {2, . . . , 8x + 1} then C(i, j, k) = 3.

4. If k = 2 and (i = 8x+5 or i = 8x+6) and LSB(x) = 0
and j ∈ {2, . . . , 8x + 2} then C(i, j, k) = 3.

5. If k = 3 and i = 8x + 5 and LSB(x) = 0 and j ∈
{3, . . . , 8x + 1} then C(i, j, k) = 1.

6. If k = 3 and i = 8x + 6 and LSB(x) = 0 and j ∈
{2, . . . , 8x + 1} then C(i, j, k) = 2.

A (u′
2, u5) segment uses the circuits P and S, and in the

case LSB(x) = 1 (where x is derived from j) is given by:

1. If (k = 2m − 3 or k = 2m − 4) and j = 8x + 6 and
S(x) = x′ and P (x′) = x and i ∈ {2, . . . , 8x′ + 2} then
C(i, j, k) = 3.

2. If k = 2m − 3 and and j = 8x + 5 and S(x) = x′ and
P (x′) = x and i ∈ {3, . . . , 8x′ + 2} then C(i, j, k) = 1.

3. If k = 2m − 4 and j = 8x + 5 and S(x) = x′ and
P (x′) = x and i ∈ {2, . . . , 8x′ + 1} then C(i, j, k) = 2.

The other segments are done in a similar way, and so the
second claim follows.

4. THE MAIN REDUCTION
We now prove our main result:

Theorem 3. 4-Nash is PPAD-complete.

Proof. The reduction is from 3-dimensional Brouwer.
Given a circuit C with 3n input bits describing a Brouwer
function as in the definition of 3-dimensional Brouwer,
we shall construct a graphical game G, with maximum de-
gree three, that simulates it. Since we know (Theorem 1)
that graphical games reduce to 4-Nash, this completes the
proof.

The graphical game G is binary in that each vertex v in it
has two strategies, and thus, at equilibrium, it represents a
real number in [0, 1] denoted p[v]. (Letting 0 and 1 denote
the strategies, p[v] is the probability that v plays 1.) There
are three distinguished nodes vx, vy , and vz representing the
coordinates of the Brouwer problem. We next define certain
useful gadgets which allow us to make arithmetic operations,
variants of the ones described in [12].

Notation: By x = y ± ε we mean y − ε ≤ x ≤ y + ε.

Lemma 1. There are binary graphical games Gζ , where ζ
is any rational in [0, 1], G=,G+, G−,G∗,G< with four players
a, b, c, d such that in all games, the payoffs of a and b do not
depend on the choices of the other vertices c, d, and

1. at any ε-Nash equilibrium in Gζ we have p[d] = ζ ± ε;

2. at any ε-Nash equilibrium in G= we have p[d] = p[a]±
ε;

3. at any ε-Nash equilibrium in G+ we have p[d] = min{1, p[a]+
p[b]} ± ε;

4. at any ε-Nash equilibrium in G− in which p[a] ≥ p[b],
we have p[d] = p[a] − p[b] ± ε;

5. at any ε-Nash equilibrium in G∗ we have p[d] = p[a] ·
p[b] ± ε;

6. at any ε-Nash equilibrium in G< we have p[d] = 1 if
p[a] < p[b] − ε and p[d] = 0 if p[a] > p[b] + ε.

Proof. This is a simple extension of Propositions 1-3
of [12]. Player c is needed for G=, G+, G− and G∗; its role is
to mediate between a, b and d.

The constructions are straightforward, for example for
Item 2, the payoffs in G= are

Payoffs to d :
c plays 0 c plays 1

d plays 0 0 1
d plays 1 1 0

Payoffs to c:

c plays 0
d plays 0 d plays 1

a plays 0 0 0
a plays 1 1 1

c plays 1
d plays 0 d plays 1

a plays 0 0 1
a plays 1 0 1

If c plays 1, then the expected payoff to c is p[d], and if c
plays 0 then the expected payoff to c is p[a]. Therefore, in
a ε-Nash equilibrium of G=, if p[d] > p[a] + ε then p[c] = 1.

75



However, note also that if p[c] = 1 then p[d] = 0. (Payoffs
to d make it prefer to disagree with c.) Consequently, p[d]
cannot be strictly larger than p[a] + ε.

Similarly, if p[d] < p[a] − ε then p[c] = 0, which implies
that p[d] = 1 (again since d has the biggest payoff by dis-
agreeing with c). Hence p[d] cannot be less than p[a] − ε.

For Item 3, the payoffs in G+ are

Payoffs to d :
c plays 0 c plays 1

d plays 0 0 1
d plays 1 1 0

Payoffs to c:

c plays 0
b plays 0 b plays 1

a plays 0 0 1
a plays 1 1 2

c plays 1 d plays 0 0
d plays 1 1

If c plays 1, then the expected payoff to c is p[d], and if c
plays 0 then the expected payoff to c is p[a]+p[b]. Therefore,
in a ε-Nash equilibrium of G+, if p[d] > p[a] + p[b] + ε then
p[c] = 1.

However, note from the payoffs to d that if p[c] = 1 then
p[d] = 0. Consequently, p[d] cannot be strictly larger than
p[a] + p[b] + ε.

Similarly, if p[d] < p[a] + p[b]− ε then due to the payoffs
to c we have p[c] = 0. This in turn implies that p[d] = 1
(since d has the biggest payoff by disagreeing with c). Hence
p[d] cannot be less than min(1,p[a] + p[b] − ε).

G< is as follows: player d receives a payoff of 1 if d plays
0 and a plays 1, and d receives a payoff of 1 if d plays 1 and
b plays 1, otherwise d received a payoff of 0.

Equivalently, d receives an expected payoff of p[a] if d
plays 0, and receives p[b] of d plays 1. It can be verified
that this implements G<.

Notice that, in G<, p[d] is arbitrary if p[a] is close to p[b],
hence we call it the brittle comparator. As an aside, it is
not hard to see that a robust comparator, one in which d
is guaranteed at an exact Nash equilibrium to be, say, 0 if
p[a] = p[b], cannot exist, since it could be used to produce
a simple graphical game with no Nash equilibrium, contra-
dicting Nash’s theorem.

To continue the reduction, the graphical game G will con-
tain the following vertices.

• the three coordinate vertices vx, vy , vz,

• for i ∈ {1, 2, . . . , n}, vertices vbi(x), vbi(y) and vbi(z),
whose p-values represent the i-th most significant bit
of p[vx], p[vy ], p[vz ],

• for i ∈ {1, 2, . . . , n}, vertices vxi , vyi and vzi , whose p-
values represent the fractional number resulting from
subtracting from p[vx], p[vy ], p[vz ] the fractional num-
bers corresponding to the i− 1 most significant bits of
p[vx], p[vy ], p[vz] respectively.

We can extract these values by computing the binary rep-
resentation of 
p[vx]2n� and similarly for vy and vz — that
is, the binary representations of the integers i, j, k such that
(x, y, z) = (p[vx],p[vy ],p[vz ]) lies in the cubelet Kijk. This

is done by a graphical game that simulates, using the arith-
metical gadgets of Lemma 1, the following algorithm (by
< (a, b) we mean the brittle comparator of a and b):

x1 = x (short for p[vx1 ] = p[vx]);
for i = 1, . . . , n do:
{bi(x) :=< (2−i, xi); xi+1 := xi − bi(x) · 2−i}
Similarly for y and z.

This is accomplished in G by connecting these nodes as
prescribed by Lemma 1, so that p[vxi ],p[vbi(x)], etc. ap-
proximate the value of xi, bi(x) etc. as computed by the
above algorithm. The following lemma (when applied with
m = n) shows that this device properly decodes the first n
bits of the binary expansion of x = p[vx], as long as x is
not too close to a multiple of 2−n (suppose ε << 2−n to be
fixed later).

Lemma 2. For m ≤ n, if
Pm

i=1 bi2
−i + 2mε < x <Pm

i=1 bi2
−i+2−m−2mε for some b1, . . . , bm ∈ {0, 1}, then at

any ε-Nash equilibrium of G, p[vbm(x)] = bm, and p[vxm+1 ] =

x −
Pm

i=1 bi2
−i ± 2mε.

Proof. Induction on m. It is trivial for m = 1, so sup-
pose it holds up to m. Then we know that p[vxm+1 ] is not

within ε of a multiple of 2−m, and therefore p[vbm+1(x)] will
hold the correct value of the next bit. Finally, the multipli-
cation and subtraction needed to compute xm+2 will each
introduce an additional error of ε, concluding the induc-
tion.

The above is repeated for y and z to obtain i, j, k, that is,
3n vertices of the graph of G whose p values correspond to
the bits of i, j, k (assuming that x, y, z are all at least 2nε
away from any multiple of 2−n). Once we have the binary
representations of i, j, k, we can feed them into another part
of G that simulates the circuit C. We could simulate the
circuit by having nodes that represent gates, using addition
(with ceiling 1) to simulate or, multiplication for and, and
1−x for negation. However, there is a simpler way, one that
avoids the complications related to accuracy, to simulate
Boolean functions under the assumption that the inputs are
0 or 1:

Lemma 3. There are binary graphical games G∨,G∧,G¬
with two input players a, b (one input player a for G¬) and
an output player c such that the payoffs of a and b do not
depend on the choices of c, and, at any ε-Nash equilibrium
with ε < 1/4 in which p[a], p[b] ∈ {0, 1}, p[c] is also in
{0, 1}, and is in fact the result of applying the corresponding
Boolean function to the inputs.

Proof. These games are in the same spirit as G<. In
G∨, for example, the payoff to c is 1/2 if it plays 0; if c plays
1 its payoff is 1 if at least one of a, b plays 1, and it is 0 if
they both play 0. Similarly for G∧ and G¬

Thus in addition to the part of G that computes the bits
p[vbi(x)] etc. of i, j, k we have a part that simulates C, con-
taining one vertex for each gate of C, and such that, in
any ε-approximate equilibrium in which all the p[vbi(x)]’s
are 0 − 1, the vertices corresponding to the outputs of C
also play pure strategies, and furthermore these strategies
correspond correctly to the outputs of C.

In fact, it is convenient to assume that the output of C
is a little more explicit: C computes six bits Δx+,Δx−,

76



Δy+,Δy−, Δz+,Δz− such that at most one of Δx+, Δx− is
1, and at most one of Δy+, Δy− is 1, and similarly for z,
and the increment of the Brouwer function at the center of
Kijk is α · (Δx+ − Δx−, Δy+ − Δy−, Δz+ − Δz−), one of
δ0, δ1, δ2, δ3 as defined above. It would seem that all we have
to do now is close the loop by incentivizing (using the G+

device of Lemma 1) the vx, vy and vz vertices to increment
their p values by the appropriate amounts.

But, as we mentioned above, there is a problem: Because
of the brittle comparators, at the boundaries of the cubelets
the vertices that should represent the values of the bits of
i, j, k hold in fact arbitrary reals, and therefore so do the
output vertices of C, the Δx+ etc, and this noise in the
calculation can create spurious Nash equilibria. Suppose
for example that (x, y, z) lies on the boundary between two
cubelets that have color 1. Then there ought not to be a
Nash equilibrium with p[vx] = x, p[vy ] = y, p[vz] = z.
We want that if p[vx] = x, p[vy ] = y, p[vz] = z, then
p[vx],p[vy ],p[vz ] should have the incentive to move in di-
rection δ1, so that vx prefers to increase p[vx]. However, on
a boundary between two cubelets, some of the “bit values”
that get loaded into vbi(x), could be other than 0 and 1, and
then there is nothing we can say about the output of the
circuit that processes these values.

To overcome this difficulty, we resort to the following av-
eraging maneuver: We repeat the above computation not
just for the point (x, y, z), but for all M = (2m + 1)3 points
of the form (x+p ·α, y+q ·α, z+s ·α) for −m ≤ p, q, s ≤ m,
where m is a large enough constant to be fixed later (we
show below that m = 20 is sufficient). This is done by M
copies of the device described above, yielding 6M output
bits Δx+

1 , . . . , Δz−
M . A final part of G calculates the vector

(δx, δy, δz) =
α

M

MX

t=1

(Δx+
t − Δx−

t , Δy+
t − Δy−

t , Δz+
t − Δz−

t )

(1)

the average increment of all M points (this is done using the
arithmetic gadgets of Lemma 1).

We can now close the loop by inserting addition gadgets
that force, at equilibrium, p[vx] to be x+ δx, where by x we
mean the value of a vertex that is a copy of vx, and similarly
for vy and vz. This concludes the reduction; it is clear that
it can be carried out in polynomial time.

Our proof is concluded by the following claim. For the fol-
lowing lemma we choose ε = α2. Recall from our definition
of 3-dimensional Brouwer that we chose α = 2−2n.

Lemma 4. In any ε-Nash equilibrium of the game G, one
of the vertices of the cubelets that contain (p[vx],p[vy ],p[vz ])
is panchromatic.

Proof. We start by pointing out a simple property of
the increments δ0, . . . , δ3:

Lemma 5. Suppose that for nonnegative integers k0, . . . , k3

all three coordinates of
P3

i=0 kiδi are smaller in absolute

value than αK
5

where K =
P3

i=0 ki. Then all four ki are
positive.

Proof. For the sake of contradiction, suppose that k1 =
0. It follows that k0 < K/5 (otherwise the negative x coor-
dinate would be too large), and thus one of k2, k3 is larger
than 2K/5, which makes the corresponding coordinate too

large, a contradiction. Similarly if k2 = 0 or k3 = 0. Fi-
nally, if k0 = 0 then one of k1, k2, k3, and the associated
component, is at least K/3, again a contradiction.

The small value of ε relative to α first implies that, for
direction x, at most one of the values x + p · α can be 2nε-
close to a multiple of 2−n, and similarly for y and z. Hence,
from among the M = (2m+1)3 evaluations, all but at most
3(2m + 1)2, or at least K = (2m − 2)(2m + 1)2, compute
legitimate Δx+ etc. values. The corresponding K terms of
summation (1) add up to 1

M

P3
i=0 kiδi for some nonnegative

integers k0, . . . , k3 adding up to K (recall that from Lemma
3 these K evaluations of the circuit will produce binary out-
puts). The remaining terms can add up to a vector with
each coordinate bounded from above in absolute value by
α
M

6(2m + 1)2. Thus, for G to be in a ε-Nash equilibrium,P3
i=0 kiδi must add up to a vector with each coordinate

bounded in absolute value by α6(2m + 1)2 + 4M2ε (taking
into account the error introduced when computing the av-
erage of equation (1)). By choosing m = 20, the bound
becomes less than αK/5, and so Lemma 5 applies. It fol-
lows that among the results of the K computations of the
increments, all four δ0, . . . , δ3 appeared. This implies that
among the corners of the cubelets containing (x, y, z) there
must be one panchromatic corner, completing the proof of
Lemma 4.

To conclude the proof of Theorem 3, if we find any ε-Nash
equilibrium of G, Lemma 4 has shown that by reading off
the first n binary digits of p[vx], p[vy ] and p[vz ] we obtain
a solution to the corresponding instance of 3-dimensional

Brouwer.

5. OPEN PROBLEMS
The work presented in this paper leaves open the com-

plexity of computing a Nash equilibrium in 2 and 3 player
games. Since the paper first appeared considerable work has
been done in these directions. Specifically, Chen and Deng
[2] and, independently, Daskalakis and Papadimitriou [8],
prove that the problem of computing a Nash equilibrium in
3-player games is also PPAD-complete. The proofs are very
different: Daskalakis and Papadimitriou [8] use a new graph-
ical game for addition and multiplication whose graph is 3-
colorable in the sense that the reduction of [12] specifies and,
therefore, can be embedded in a 3-player normal form game.
The proof of Chen and Deng [2] exploits a discontinuity in
the payoff matrices of the addition game of Lemma 1, which
allows its embedding into a 3-player normal form game us-
ing the technique of [12]. In fact, this discontinuity is ex-
ploited even further in [3], yielding the PPAD-completeness
of computing a Nash equilibrium in 2-player games as well.
Specifically, the proof of [3] is essentially the same as the
one presented in the proof of Theorem 3 but with the fol-
lowing twist: instead of using the generic reduction of [12]
to embed the resulting graphical game into a normal form
game, a direct embedding is defined that, although mimics
the embedding of [12], it exploits the structure of the pay-
off matrices of the arithmetical graphical games defined in
Lemma 1 to reduce the number of players of the resulting
normal form game.

A most important problem left open by our work is that
of computing approximate Nash equilibria with less than ex-
ponential accuracy. Chen, Deng and Teng recently proved

77



that there exists an inverse polynomial ε for which comput-
ing a Nash equilibrium in a 2-player game remains PPAD-
complete [4]. What happens for larger ε’s is an intriguing
and open question.

Besides normal-form games, our work settles the complex-
ity of Nash equilibria in graphical games. Another impor-
tant problem is the complexity of the same problem in other
classes of succinctly representable games with many players;
for example, are these problems even in PPAD? (It is typi-
cally easy to see that they cannot be easier than the normal-
form problem.) In [7] we give a general sufficient condition,
satisfied by all known succinct representations of games, for
membership of the Nash equilibrium problem in the class
PPAD.

6. REFERENCES

[1] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo,
T. Pitassi. “The Relative Complexity of NP Search
Problems,” J. Comput. Syst. Sci. 57, 1, pp. 13–19,
1998.

[2] X. Chen and X. Deng. “3-NASH is PPAD-Complete,”
Electronic Colloquium in Computational Complexity
TR05-134, 2005.

[3] X. Chen and X. Deng. “Settling the Complexity of
2-Player Nash-Equilibrium,” Electronic Colloquium in
Computational Complexity TR05-140, 2005.

[4] X. Chen, X. Deng and S. Teng. “Computing Nash
Equilibria: Approximation and Smoothed
Complexity,” arXiv report, 2006.

[5] B. Codenotti, A. Saberi, K. Varadarajan and Y. Ye.
“Leontief Economies Encode Nonzero Sum
Two-Player Games,” Proceedings of SODA, 2006.

[6] V. Conitzer and T. Sandholm. “Complexity Results
about Nash Equilibria,” Proceedings of IJCAI, 2003.

[7] C. Daskalakis, A. Fabrikant and C. H. Papadimitriou.
“The Game World is Flat: The Complexity of Nash
Equilibria in Succinct Games,” To appear, 2006.

[8] C. Daskalakis and C. H. Papadimitriou. “Three-Player
Games Are Hard,” Electronic Colloquium in
Computational Complexity TR05-139, 2005.

[9] A. Fabrikant, C.H. Papadimitriou and K. Talwar.
“The Complexity of Pure Nash Equilibria,”
Proceedings of STOC, 2004.

[10] J. Geanakoplos. “Nash and Walras Equilibrium via
Brouwer,” Economic Theory, 21, 2003.

[11] I. Gilboa and E. Zemel. “Nash and correlated
equilibria: Some complexity considerations,” Games
and Economic Behavior, 1989.

[12] P. W. Goldberg and C. H. Papadimitriou.
“Reducibility Among Equilibrium Problems,”
Proceedings of STOC, 2006.

[13] M. Hirsch, C. H. Papadimitriou and S. Vavasis.
“Exponential Lower Bounds for Finding Brouwer
Fixpoints,” J. Complexity 5, pp. 379–416, 1989.

[14] D. S. Johnson, C. H. Papadimitriou and
M. Yannakakis, “How Easy is Local Search?,” J.
Comput. Syst. Sci. 37, 1, pp. 79–100,1988.

[15] M. Kearns, M. Littman and S. Singh. “Graphical
Models for Game Theory,” Proceedings of UAI, 2001.

[16] C. E. Lemke and J. T. Howson, Jr. “Equilibrium
points of bimatrix games”, SIAM J. Appl. Math. 12,
pp. 413–423, 1964.

[17] R. Lipton and E. Markakis. “Nash Equilibria via
Polynomial Equations,” Proceedings of LATIN, 2004.

[18] R. Lipton, E. Markakis and A. Mehta. “Playing large
games using simple strategies,” Proceedings of the
ACM Conference on Electronic Commerce, 2003.

[19] M. Littman, M. Kearns and S. Singh. “An Efficient
Exact Algorithm for Single Connected Graphical
Games,” Proceedings of NIPS, 2002.

[20] J. Nash. “Noncooperative Games,” Annals of
Mathematics, 54, 289-295, 1951.

[21] J. von Neumann and O. Morgenstern. Theory of
Games and Economic Behavior, Princeton University
Press, 1944.

[22] M.J. Osborne and A. Rubinstein. A Course in Game
Theory, MIT Press (1994).

[23] C. H. Papadimitriou. “On the Complexity of the
Parity Argument and Other Inefficient Proofs of
Existence,” J. Comput. Syst. Sci. 48, 3, pp. 498–532,
1994.

[24] C. H. Papadimitriou and T. Roughgarden.
“Computing equilibria in multi-player games,”
Proceedings of SODA, 2005.

[25] C. H. Papadimitriou. “Computing Correlated
Equilibria in Multiplayer Games,” Proceedings of
STOC, 2005.

[26] R. Savani and B. von Stengel. “Exponentially many
steps for finding a Nash equilibrium in a Bimatrix
Game,” Proceedings of FOCS, 2004.

[27] G. Schoenebeck and S. Vadhan. “The Computational
Complexity of Nash Equilibria in Concisely
Represented Games,” To appear in ACM EC, 2006.

78


