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ABSTRACT
Peer-to-peer systems rely on scalable overlay networks that enable
efficient routing between its members. Hypercubic topologies fa-
cilitate such operations while each node only needs to connect to
a small number of other nodes. In contrast to static communication
networks, peer-to-peer networks allow nodes to adapt their neighbor
set over time in order to react to join and leave events and failures.
This paper shows how to maintain such networks in a robust manner.
Concretely, we present a distributed and self-stabilizing algorithm
that constructs a (variant of the) skip graph in polylogarithmic time
from any initial state in which the overlay network is still weakly
connected. This is an exponential improvement compared to pre-
viously known self-stabilizing algorithms for overlay networks. In
addition, individual joins and leaves are handled locally and require
little work.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

1. INTRODUCTION
Peer-to-peer computing is one of the most intriguing network-

ing paradigms of the last decade. Numerous Internet applications
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make use of peer-to-peer technology, including file sharing, stream-
ing and gaming tools. A distinguishing feature of these networks
is that they typically have an open clientele, allowing machines to
join and leave at any time and concurrently. If no countermeasures
are taken, the dynamic membership changes can degenerate the net-
work, rendering central operations such as routing inefficient. In
an effort to gain deeper insights into (and deal with) these dynam-
ics, researchers have studied different approaches. In theory, the
dominating approach has been to make sure that an overlay network
never leaves a certain set of legal states so that at any time, infor-
mation can be efficiently exchanged between its members. This is
mostly achieved through redundancy in the overlay network topol-
ogy, which can significantly increase its maintenance overhead, so
the rate of changes such networks can sustain might be rather lim-
ited. However, a high change rate can happen due to heavy churn
or join-leave attacks. Also, partitions of the underlying physical
network or DoS attacks may push the overlay network into some
illegal state. In this case, the overlay network may get into a state
in which it is highly vulnerable to further changes, so proper re-
covery mechanisms are needed to get it back into a legal state as
quickly as possible. Some results are known in this direction, but
most of the proposed protocols only manage to recover the network
from a restricted class of illegal states (e.g., [2, 5, 34]). Those few
results known for truly self-stabilizing networks either just show
eventual self-stabilization (e.g., [12]) or do not provide sublinear
bounds on the convergence time (e.g., [19, 31]). Our work is the
first that demonstrates that sublinear, in fact, polylogarithmic recov-
ery time is possible. More precisely, we present a self-stabilizing
algorithm for a proper extension of the skip graph [3] (as the origi-
nal skip graph is not locally checkable). Skip graphs are very useful
for scalable overlay networks. They have logarithmic diameter and
degree and constant expansion w.h.p. [4]. Also, like in hypercubic
networks, no extra routing tables have to be maintained for fast, low
congestion routing. Before we delve into the details of our solution,
we discuss related work and present our model.

1.1 Related Work
There is a large body of literature on how to maintain peer-to-

peer networks efficiently, e.g., [3, 8, 10, 18, 22, 28, 30, 32, 34].
Recently, the first structured overlay networks have also found their
way into the practical world; for instance, the Kademlia [29] over-



lay is used in the popular Kad network which can be accessed with
eMule clients. An interesting and flexible overlay structure are skip
graphs [3, 7, 20, 21, 22]. These networks are based on the clas-
sical skip list data structure and allow for efficient, low-congestion
routing while requiring a small node degree only. Due to the typi-
cally very dynamic nature of peer-to-peer systems, there is a need to
maintain the overlay topology or—in case of catastrophic events—
recover it from arbitrary connected states. While many results are
already known on how to keep an overlay network in a legal state,
not much is known about self-stabilizing overlay networks.

In the field of self-stabilization, researchers are interested in al-
gorithms that are guaranteed to eventually converge to a desir-
able system state from any initial configuration. The idea of self-
stabilization in distributed computing first appeared in a classical
paper by E.W. Dijkstra in 1974 [15] in which he looked at the prob-
lem of self-stabilization in a token ring. Since Dijkstra’s paper, self-
stabilization has been studied in many contexts, including commu-
nication protocols, graph theory problems, termination detection,
clock synchronization, and fault containment. For a survey see, e.g.,
[11, 16, 24].

Also general techniques for self-stabilization have been consid-
ered. Awerbuch and Varghese [9] showed that every local algorithm
can be made self-stabilizing if all nodes keep a log of the state tran-
sitions until the current state. Since then several other methods have
emerged including various local and global checking and correc-
tion techniques [6, 13, 25, 35, 36]. Also so-called time-adaptive
techniques [23, 26, 27] as well as local stabilizers [1] have been
presented which can recover any distributed algorithm inO(f) time
depending only on the number f of faults. This, however, does not
hold any more if faults include changes in the topology. In this case,
a single fault may require the involvement of all nodes in the sys-
tem and is therefore quite expensive to fix. Thus, people have also
looked at so-called superstabilizing protocols, which are protocols
that can handle a single topology change as well as arbitrary state
faults with low overhead (e.g., [17]).

Interestingly, though much attention has been given to self-
stabilizing distributed computing, even in the context of dynamic
networks, the problem of designing self-stabilizing networks has
only been given very little attention. The general techniques men-
tioned above are not applicable here as they have not been designed
to actively perform local topology changes (network changes are
only considered as faults or dynamics not under the control of the
algorithm). Even though logging techniques such as [9] to convert
non-self-stabilizing algorithms into self-stabilizing algorithms can
also be applied to self-stabilizing networks, they usually need some
non-local knowledge of the network (such as its size) to bound the
state space which can make self-stabilization very expensive. Our
goal instead was to find dedicated, much more light-weight algo-
rithms for self-stabilizing networks.

Some preliminary work in this direction has already been done.
In the technical report of the Chord network [34], protocols are de-
scribed which allow the topology to recover from certain degenerate
states. Similarly, it is also known how to repair skip graphs from cer-
tain degenerate states [3] but the problem of recovering them from
an arbitrary connected state has remained open. This is not sur-
prising as the neighborhood information alone is not sufficient for
the Chord network as well as skip graphs to locally verify the cor-
rectness of the topology. Hence, additional information would be
needed, which significantly complicates the self-stabilization pro-
cess.

In order to recover scalable overlays from any initial graph, re-
searchers have started with simple non-scalable line and ring net-
works. The Iterative Successor Pointer Rewiring Protocol [14] and
the Ring Network [33] organize the nodes in a sorted ring. How-
ever, the runtime of both protocols is rather large. Aspnes et al. [2]
describe an asynchronous protocol which turns an initially weakly

connected graph into a sorted list. Unfortunately, their algorithm is
not self-stabilizing. In a follow-up paper [5], a self-stabilizing al-
gorithm is given for the case that nodes initially have out-degree 1.
In [31], Onus et al. present a local-control strategy called lineariza-
tion for converting an arbitrary connected graph into a sorted list.
However, the algorithm is only studied in a synchronous environ-
ment, and the strategy may need a linear number of communication
rounds. Clouser et al. [12] formulated a variant of the lineariza-
tion technique for asynchronous systems in order to design a self-
stabilizing skip list. Gall et al. [19] combined the ideas from [12,
31] and introduced a model that captures the parallel time complex-
ity of a distributed execution that avoids bottlenecks and contention.
Two algorithms are presented together with an analysis of their dis-
tributed runtime in different settings. No sublinear time bounds are
shown there either.

To the best of our knowledge, this is the first paper to describe
a self-stabilizing algorithm for a scalable overlay network (in our
case, skip graphs) in sublinear time. In fact, the skip graph con-
struction terminates in a polylogarithmic number of communication
rounds. In addition to being able to recover quickly from an arbi-
trary connected state, we also show that when the network forms the
desired topology, our algorithm efficiently supports join and leave
events, which incur only a polylogarithmic amount of work to fix.
This means (in contrast to considering a completely new starting
situation and recovering the structure in polylogarithmic time) that
only a small part of the nodes are involved in repairing the overlay
topology.

1.2 Model
We represent an overlay network as a directed graphG = (V,E),

where |V | = n. Each node is assumed to have a unique identifier
(or short: ID) v.id ∈ U that is immutable, where U is the (or-
dered) universe of all identifiers. At any time, each node can in-
spect its own state and the state of its current neighbors. Beyond
that, a node does not know anything, including the current size n
of the overlay network. Only local topology changes are allowed,
i.e., a node may decide to cut a link to a neighbor or ask two of its
neighbors to establish a link. The view and the influence of a node
are essentially local. The decisions to cut or establish links are con-
trolled through actions (which we will also call rules). An action has
the form label : guard → commands where guard is a Boolean
predicate over the state of the executing node and its neighbors and
commands is a sequence of commands that may affect the state of
the executing node or request a new edge between two neighbors.
This is done via an insert(v, w) request by which a node asks its
neighbor v to establish an edge to neighbor w. An action is called
enabled if and only if its guard is true.

For simplicity, we assume that time proceeds in rounds, and all
requests generated in round i are delivered simultaneously at the
beginning of round i + 1. In other words, we assume the standard
synchronous message-passing model with the restriction that a node
can only communicate with nodes that it has currently links to. In
each round, all actions that are enabled are executed by the nodes.
If two actions executed by the same node are in conflict with each
other, any one of them may win and the other is discarded. Our goal
is to minimize the number of rounds needed in the worst case (over
all initial states in which the network is weakly connected) until the
overlay network has reached its desired structure. We make this a
bit more precise by defining what we mean by self-stabilization.

When using the synchronous message-passing model, the global
state of the system at the beginning of each round is well-defined.
A computation is a sequence of states such that for each state si at
the beginning of round i, the next state si+1 is obtained after exe-
cuting all actions that were fired in round i. In our context, we call
a distributed algorithm self-stabilizing if from any initial state (from
which a legal state is still reachable) it eventually reaches a legal



state in which no more actions are enabled, i.e., once the overlay
network reaches its desired topology, it does not change anymore.
Our goal will be to find a self-stabilizing algorithm that needs as few
rounds as possible for this.

1.3 Our Contributions
We present a variant of the skip graph, called SKIP+, that can be

locally checked for the correct structure. For this graph, we present
a distributed self-stabilizing algorithm that arrives at SKIP+ for any
initial state in which the nodes are weakly connected in O(log2 n)
rounds. This is an exponential improvement over all previous results
on the number of communication rounds needed to arrive at a scal-
able overlay network. We also show that a single join event (i.e., a
new node connects to an arbitrary node in the system) or leave event
(i.e., a node just leaves without prior notice) can be handled by our
algorithm with polylogarithmic work, demonstrating that our algo-
rithm is not just useful for the worst case but also for the case where
the overlay network is already forming the desired topology (which
is the standard case in the literature).

1.4 Paper Organization
In the rest of this paper we present and analyze our self-stabilizing

algorithm for SKIP+ graphs. The paper ends with a conclusion.

2. ALGORITHM
We first introduce the skip graph SKIP+ we want to construct and

then present our algorithm ALG+.

2.1 The SKIP+ Graph
We start with the definition of the skip graph. In skip graphs, the

identity of a node v consists of two components: v.id , a unique but
otherwise arbitrarily chosen identifier, and v.rs , a (pseudo-)random
bit string of sufficient length that was uniformly chosen at random
when the node entered the system. Both parts are assumed to be
immutable.

For a node v and a subsetW ⊆ V of nodes define the predecessor
of v in W pred(v,W ) to be the node u ∈ W such that u.id =
max{w.id | w ∈W and w.id < v.id}. By the assumption that no
two nodes share the same id , this is well defined. If such a u does
not exist, set pred(v,W ) := ⊥ and define ⊥.id = −∞. Similarly
define the successor of v in W succ(v,W ) to be u ∈ W such that
u.id = min{w.id | w ∈ W and w.id > v.id}, or if this does not
exist succ(v, U) := > and define >.id = ∞. Here, −∞ and +∞
are resp. the lowest and largest elements in the identifier space U
not allowed as identifiers of real nodes.

The definitions needed for the ideal skip graph are marked by a
superscript ∗ to distinguish them from analogous definitions used in
the algorithm, which are all based on the current local views of the
nodes.

For any i ≥ 0, let prei(v) denote the first i bits of v.rs (i.e.,
the prefix of v.rs of length i) and v.rs[i] represent the ith bit of
v.rs . Now define the level-i predecessor of v by pred∗i (v) :=
pred(v, {w | prei(w) = prei(v)}), and the level-i successor of v
by succ∗i (v) := succ(v, {w | prei(w) = prei(v)}).

DEFINITION 2.1 (SKIP GRAPH). Assume we are given a set
of nodes together with associated IDs and random strings. In the
corresponding skip graph, every node v is connected exactly to
pred∗i (v) and succ∗i (v) for every i ≥ 0 (except for the case of ⊥
and >).

Given unique node identifiers, the skip graph is uniquely defined.
It is not difficult to see that the skip graph has logarithmic diameter
and maximum degree and allows hypercubic-style routing between
any pair of nodes in O(logn) time, w.h.p. However, the nodes can-
not locally verify the correctness of the skip graph topology. There-

fore, we propose a slight extension of the skip graph that we call
SKIP+.

The definition of SKIP+ requires us to also define (extended)
predecessors and successors on level i with a specific value in the
next bit. For any i ≥ 0 and x ∈ {0, 1} define pred∗i (v, x) =
pred(v, {w | prei+1(w) = prei(v)◦x}) and similarly succ∗i (v, x)
(where operator ◦ means concatenation of bit strings). Let
low∗i (v) = min{pred∗i (v, 0).id , pred∗i (v, 1).id} and high∗i (v) =
max{succ∗i (v, 0).id , succ∗i (v, 1).id}, and let v.range∗[i] ⊆ U be
defined as [low∗i (v), high∗i (v)]. With this, the SKIP+ graph has the
neighbor set N∗i (v) of v at level i as the set of all nodes w with
prei(w) = prei(v) and w.id ∈ v.range∗[i].

DEFINITION 2.2 (SKIP+GRAPH). Assume we are given a set
of nodes together with associated IDs and random strings. In the
corresponding SKIP+ graph every node v is connected to exactly
the nodes in N∗i (v) for all i ≥ 0, i.e., N(v) =

⋃
i≥0N

∗
i (v).

Figure 1 illustrates the connections in SKIP+. The white (resp.
black) nodes in the figure illustrate the nodes v at level i for which
v.rs[i + 1] = 0 (resp. v.rs[i + 1] = 1). The total sorted order of
the nodes according to their identifiers is shown at the bottom; the
SKIP+ structure at level 0 is depicted in the middle, whereas the
top part of the figure (top two connected components of black and
white nodes) correspond to level 1. Note that skip graph edges of
level i+ 1 appear in the SKIP+ graph already on level i.

i=0

i=1

rs=0...

rs=1...

rs=01..

rs=00..

rs=10..

rs=11..

Figure 1: Visualization of SKIP+ connections.

Since the skip graph is a subgraph of SKIP+ (on the same set of
nodes), SKIP+ has a logarithmic diameter and constant expansion.
Also, it is not too difficult to see that the maximum degree remains
logarithmic w.h.p.

DEFINITION 2.3 (HEIGHT H ). The height HG of a SKIP+

graph G is defined as the maximal number of non-trivial levels. A
non-trivial level is a level which consists of more than one node,
that is, HG = max{|ρ| : |Vρ| ≥ 2} where Vρ = {v ∈ V | ρ =
pre|ρ|(v)}.

It is straightforward to show that HSKIP+ is in O(logn) w.h.p.
The goal is to establish the SKIP+ graph as the target topology

using bi-directed edges (this is why the edges in Figure 1 are undi-
rected), but during the construction, the network has to deal with
directed edges.

2.2 The ALG+ Algorithm
In the description and analysis of our algorithm, we will make use

of the following definitions.

DEFINITION 2.4 (GRAPH Gρ). Given any directed graph
G = (V,E) currently formed by the nodes and any prefix ρ, the
graph Gρ = (Vρ, Eρ) is a subgraph of G where Eρ = {(u, v) ∈
E : u, v ∈ Vρ}. The nodes in Vρ are called ρ-nodes and the edges
in Eρ are called ρ-edges.



DEFINITION 2.5 (CONNECTED ρ-COMPONENT). Given a
prefix ρ, we will refer to a weakly connected component of nodes
in Gρ as a connected ρ-component. A pair of nodes in such a
component is called ρ-connected.

For any node v let N(v) be its current outgoing neighbor-
hood and v.range[i] be its current range at level i, which is
based on its current view of predi(v, x) and succi(v, x), where
predi(v, x) is the node such that predi(v, x).id = max{w.id |
w ∈ N(v) and w.id < v.id and prei+1(w) = prei(v) ◦ x} and
succi(v, x) is the node such that succi(v, x).id = min{w.id |
w ∈ N(v) and w.id > v.id and prei+1(w) = prei(v) ◦ x}. For
each level i, v.range[i] ⊇ v.range∗[i], i.e, the current range will
always be a superset of the desired range in the target topology (as
defined in SKIP+). We will see that as long as no faults or adver-
sarial changes happen during the self-stabilization process, ALG+

monotonically converges to the desired ranges for every i.
ALG+ distinguishes between stable edges and temporary edges.

Node v considers an edge (v, w) to be temporary if from v’s point of
view (v, w) does not belong to SKIP+ and so v will try to forward it
to some of its neighbors for which the edge would be more relevant.
Otherwise, v considers (v, w) to be a stable edge and will make
sure that the connection is bi-directed, i.e., it will propose (w, v)
to w. There is a binary flag v.F (w) for each neighbor w that states
whether the edge to it is stable. The flag turns out to be important
when a stable edge destabilizes (i.e., converts into a temporary edge)
because this triggers the introduction of several temporary edges
that are needed for our proofs to go through. The other conversion,
from temporary to stable, essentially boils down to introducing also
the other direction of the edge. More details will be given later.

The intuition behind the ALG+algorithm is as follows. The
algorithm has two main phases: The first phase proceeds in a
bottom-up (i.e., from level 0 upwards) fashion, forming connected
ρ-components for every prefix ρ. This will be accomplished by let-
ting each node v find another nodew of the opposite color, i.e., such
that prei(w) = prei(v) and v.rs[i+ 1] 6= w.rs[i+ 1] for all levels
i ≥ 0 (we will call w a buddy of v). We can show that once all
nodes in Vρ have formed a single connected component and have
found a buddy, then connecting all nodes which are at most three
hops away in the ρ-component results in a single connected ρ0- and
ρ1-component. This will be accomplished by Rules 1 (where new
nodes in the range of a node are discovered and where ranges may
be refined) and Rules 3 (where an efficient variation of a local tran-
sitive closure is performed) below.

Once the connected ρ-components are formed, the second phase
of the algorithm will form a sorted list out of each ρ-component.
This is accomplished in a top-down fashion by merging the two
already sorted ρ0- and ρ1-components into a sorted ρ-component
until all nodes in the bottom level form a sorted list.

Of course, this “division into phases”-intuition oversimplifies
what is really going on in our algorithm. Whereas for the sake of
simplicity, we can think of the execution of the phases of the algo-
rithm as being perfectly synchronized, with all nodes waiting for the
connected components at level i to converge before the components
at level i+1 are formed in the first phase, and with the sorting of the
components at level i only starting after we have successfully sorted
the components at level i+1 in the second phase (and of course with
the second phase only kicking in after the first phase is completed),
all actions in our algorithm may be enabled at any time, causing the
phases to be intertwined in the real execution. Hence, the main chal-
lenge in this paper is to show that nevertheless the actions transform
any initially connected graph into SKIP+ in O(log2 n) rounds.

Now we are ready to present ALG+. The local state of a node v
consists of v.id , v.rs ,N(v) (which imply the edges and ranges of v)
and its flags. We assume that every node v knows (besides its own
local state) the current local state of all nodesw ∈ N(v). Hence, the
actions of a node v may be based on any local state information of v

or its neighbors. Recall that we assume the synchronous message-
passing model. At the beginning of a round i, every node receives
all the requests to establish an edge that were generated in the pre-
vious round. After a preprocessing step in which each node updates
its neighborhood and the state information about its neighborhood,
a set of three types of actions is processed, which we also call rules
here. For readability, we will present the rules in words, but trans-
forming them into the formal terminology of our model is straight-
forward. We note that the preprocessing step is separated from the
actions to ensure a deterministic state transition in the synchronous
message-passing model. In an asynchronous model, the preprocess-
ing step would be continuously performed in the background at any
time. For each node u we do the following in a round:

Preprocessing.

First, a node u processes all insert(u, v) requests from the pre-
vious round where v ∈ V \ ({u} ∪ N(u)) (the others would be
thrown away, but our algorithm avoids issuing such requests in the
first place). This is done by adding v to N(u) and setting its flag
u.F (v) to 0 (temporary). Then u makes sure that its state is valid,
i.e., the flags carry binary values and N(u) is a set of nodes v 6= u
that are all alive (otherwise, u removes that node from N(u)). Now
u determines for every i its current predecessors predi(u, 0) and
predi(u, 1) and its current successors succi(u, 0) and succi(u, 1)
(within N(u)). This allows u to update its range information. The
updated local state is exchanged between the nodes so that the rules
below are based on up-to-date information.

DEFINITION 2.6 (STABLE EDGES). Every edge (u, v) is con-
sidered stable, if

• its endpoints mutually fall on each other’s range at some level
prei(u) = prei(v), i.e., v.id ∈ u.range[i] and u.id ∈
v.range[i], for some i. In this case (u, v) is defined to be
stable on all levels j ≥ i with prej(u) = prej(v). Or

• v = predi(u, x) or u = predi(v, x), or v = succi(u, x) or
u = succi(v, x), for some level i and bit x ∈ {0, 1}. In this
case (u, v) is stable only on level i.

This second kind of stable edges is needed to stay in touch with
a “buddy” (see below), in order to forward temporary edges. Our
algorithm guarantees that once a node has a buddy to the left (or to
the right), it will always have such a buddy in the future.

DEFINITION 2.7 (LEVEL OF TEMPORARY EDGE). We define
the level of a temporary edge (u, v) as the length of the longest
common prefix of u and v.

All of the rules below are only activated if the resulting action
changes the graph or the state, i.e., if the to be inserted edge does
not already exist or the flag changes its value.

Rule 1a: Create Reverse Edges.

For every stable edge (u, v), u sets F (v) = 1 (if it has not already
done so) and initiates an insert(v, u) request.

Rule 1b and Rule 1c: Introduce Stable Edges.

For every stable neighbor v (the edge (u, v) is considered stable
as defined in Preprocessing) of a node u, for every i ≥ 0 and every
node w ∈ N(u), w 6= v with prei(v) = prei(w) and w.id ∈
v.range[i], node u initiates insert(v, w) (Rule 1b) and insert(w, v)
(Rule 1c).



Rule 2: Forward Temporary Edges.

Every temporary edge (u, v) is forwarded to a stable neighbor
of u that has the largest common prefix with v.rs . (Such an edge
exists because otherwise (u, v) would be a stable edge.)

Rule 3a: Introduce All.

For all nodes u ∈ V whose set of stable neighbors is different
from the previous round, u initiates insert(v, w) for all neighborsw
of u. (In particular, if an edge destabilizes, both incident nodes will
introduce their neighbors.)

Rule 3b: Linearize.

For every level i, u identifies the stable neighbors v1, . . . , vk with
v1.id < v2.id < . . . < vk.id that have exactly the first i bits in
common with u.rs and initiates insert(v1, v2), insert(v2, v3),. . .,
insert(vk−1, vk) for them.

3. ANALYSIS
We first analyze the bottom-up phase and then tackle the top-

down phase.

3.1 Bottom-up Phase

LEMMA 3.1. Consider any bit string ρ ∈ {0, 1}∗. Suppose that
nodes a and b are ρ-connected at time t0. Then a and b are also
ρ-connected at any time t ≥ t0.

PROOF. We prove the lemma by induction over the time steps.
Consider any edge e = (u, v) (temporary or stable) at time t ≥ t0
with u, v ∈ Vρ. The only rule that may remove this edge is Rule 2,
all other rules only create edges. If the edge e is forwarded by Rule 2
to a nodew, nodew must have a shared prefix with u that extends ρ,
and all three nodes u, v, w remain connected in Gρ at the next time
step.

In the following lemma, an edge (u, v) is said to be to the right
(resp. left) if u.id < v.id (resp. u.id > v.id ).

LEMMA 3.2. Assume a node u has a stable ρ-edge to the right
(left) at time t0. Then at any time t > t0, node u will have a stable
ρ-edge to the right (left).

PROOF. By induction over time. A stable ρ-edge (u, v) only
destabilizes because the |ρ|-range of u has become smaller, and
there now is another ρ-node w stably connected to u, and w is be-
tween u and v.

A ρ-buddy of a node u is a stable neighbor v (the edge (u, v)
exists and is considered stable) with pre |ρ|(u) = pre|ρ|(v) = ρ

and u.rs[|ρ|+ 1] 6= v.rs[|ρ|+ 1]. Our algorithm ensures that once
a node has a left (or right) buddy at time t, then it will also have a
left (or right) buddy at all times t′ ≥ t. In the following, the V in
V-linked does not refer to a set V but to the V-shaped situation of
two nodes being linked indirectly via precisely two edges to a third
node.

DEFINITION 3.3 (σ-V-LINK). Consider any ρ ∈ {0, 1}∗ and
x ∈ {0, 1}. Assume there are two nodes u, v with prefix ρx = σ
and one node w with prefix ρx̄. If u, v ∈ N(w), we say that u and v
are σ-V-linked via w.

LEMMA 3.4. Assume that u and v are σ-V-linked via w at
time t. Then, at time t + 1 the nodes u and v are σ-connected,
i.e., in the same connected component of Gσ .

PROOF. Assume (w.l.o.g.) that u, v have label σ = ρ1, and w
has label ρ0. By Rule 3b, all stable ρ1-neighbors of w are in the
same ρ1-component C at time t+ 1. If (w, u) is a temporary edge,
this is forwarded to one of the stable ρ1 neighbors of w, and hence
u is also in the ρ1-component C. By the same reasoning v is also
in C at time t+ 1, which proves the lemma.

LEMMA 3.5. Consider any ρ ∈ {0, 1}∗ and x ∈ {0, 1}. Let
node a with label ρx be a ρ-buddy of u at time t and b a ρ-buddy
of u at time t′ ≥ t. Then a and b are in the same ρx-component at
time t′ + 1.

PROOF. If than t = t′, this follows from Lemma 3.4. Otherwise
the proof is an induction over time. Let a = at, at+1, . . . , at′ =
b be ρ-buddies of u at the respective times. With Lemma 3.1, it
suffices to show that ai−1 and ai are in the same ρx-component at
time i + 1. Because no rule deletes or forwards stable edges, the
edge (u, ai−1) exists at time i and Lemma 3.4 can be applied.

Note that the σ in “σ-V-linked” refers to the nodes that are linked,
not the node that is providing the link. Similarly, we define a bridge
by the prefix of the nodes that are connected by this bridge, not by
the nodes that provide the bridge.

DEFINITION 3.6 (TEMPORARY/STABLE BRIDGE). Consider
two nodes a, b with prefix σ = ρx that are in different connected
components of Gσ . Then, for k ≥ 1, a and b are connected by
a (σ, k)-bridge if there is a node c with stable edge (c, a) and a
node d with stable edge (d, b), where c, d have prefix ρx̄ and have
the edge (c, d) at level |ρ|+ k (i.e., pre|ρ|+k(c) = pre|ρ|+k(d)). If
(c, d) is stable, this is a stable bridge; if (c, d) is temporary, it is a
temporary bridge.

The following definition is needed to show connectedness mov-
ing up the levels by the rules. It is central to the bottom-up proof
that eventually for all prefixes ρ we have that Gρ consists of only
one connected component. In the process where the connectedness
ofGρ0 follows fromGρ being connected, the bridges play an impor-
tant role. First, as long as a bridge is temporary, the level increases
in every step, but then, once it becomes a stable bridge, the level of
the used bridges decreases.

DEFINITION 3.7 ((σ, k)-PRE-COMPONENT). Two nodes a
and b, both with prefix σ = ρx for some x ∈ {0, 1}, are (directly)
(σ, k)-pre-connected if (1)Gρ is connected, if (2) every node inGρx
knows at least one node from Gρx and vice versa,1 and if (3) there
is an edge (irrespective of this being temporary or stable), between
a and b, or if they are σ-V-linked, or if there exists a stable (σ, k′)-
bridge with k′ ≤ k between them. The transitive closure of this
(undirected) relation defines the (σ, k)-pre-component.

Requirements (1) and (2) will be made precise in the subsequent
analysis and especially Lemma 3.14 where the connectivity ofGρ is
proved by induction. Note that for k = 0, the σ-links and the (σ, 0)-
pre-component (but without stable bridges) yield the transitive hull
of the σ-V-links. Figure 2 illustrates the situation.

LEMMA 3.8. Assume nodes a, b are in the same (σ, k)-pre-
component at time t0, k ≥ 1. Then a and b are in the same (σ, k)-
pre-component at any time t > t0.

1Throughout this paper, · will denote the logical negation.
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Figure 2: The shaded nodes belong to the same (ρ0, k)-pre-
component. In this figure, |τ | = k − 1, temporary edges are
dashed and stable edges are solid.

PROOF. Assume w.l.o.g. σ = ρ1. By induction over time, and
the definition of the pre-component being a transitive closure, it is
sufficient to argue that nodes a, b with prefix ρ1 that are directly
(σ, k)-pre-connected at time t are in the same (σ, k)-pre-component
at time t+ 1.

If a, b are directly linked, we can employ Lemma 3.1, and the
case that they are σ-V-linked is due to Lemma 3.4. The remaining
(and only interesting) case is that a and b have a (σ, k)-bridge via a
stable edge e = (u, v) (then there are also stable edges (u, a) and
(v, b)) at time t. Let a′ and b′ be σ-nodes that are stable neighbors
of u and v respectively. Then a and a′ are σ-V-linked and are in the
same σ-component at time t+1 by Lemma 3.4. The same reasoning
shows that b and b′ are in the same σ-component at time t + 1.
If e remains stable, a′ and b′ have a (σ, k)-stable bridge also at
time t + 1. Otherwise e destabilizes and by Rule 3a a temporary
edge (v, a′) or (u, b′) is present at time t + 1, so a′ and b′ are σ-
V-linked via v or u, and hence in the same (σ, k)-pre-component at
time t+ 1.

LEMMA 3.9. Assume that nodes a, b are in the same (σ, k)-pre-
component at time t, k > 1. Then, a and b are σ-connected at time
t+ 4.

PROOF. If a and b are in the same (σ, k)-pre-component (assume
again that σ = ρx for some x ∈ {0, 1}), there must exist a path
a = p1  p2  ... p` = b where pj is connected to pj+1 either
directly, via a σ-V-link, or via a stable (σ, k)-bridge. We only allow
a bridge between pj and pj+1 if these two nodes are not in the same
(σ, 0)-pre-component.

Consider this path and assume pj and pj+1 are connected by a
bridge over an edge e = (u, v) of length λ (w.r.t. node identifiers, u
and v having prefixes of the form ρxτy where |τ | = k − 1 and y ∈
{0, 1}). Then, whenever possible, we replace e by two edges via
an intermediate node w if for the lengths it holds that |(u,w)| < λ
and |(w, v)| < λ. Thus, in our path, a new node p∗—w’s buddy—
is inserted, maintaining our “path property”. Note that this process
terminates (the number of “turning points”—the local extrema of
the identifiers along the path—does not increase).

Consider a bridge edge (u, v) on this path with shortest bridges.
First, consider the case that (u, v) is unilaterally stable because of
the nearest neighborhoods. That is, w.l.o.g. assume v is u’s nearest
neighbor but for some level, u is not in v’s range. Then, it holds that
v must know two closer nodes than u (due to the range definition),
one of which will be proposed to u in the next round (hence (u, v)
will no longer be stable), triggering Rule 3a at t+2, from which the
claim follows.

From now on it remains to consider the case where u and v mu-
tually include each other in their ranges on some level. First assume
that (u, v) is stable on a level > |σ|—the other case where (u, v)
is stable on level |σ| is treated later. Let us refer to the lowest level
where (u, v) is stable as i+1, that is, where prei+1(u) = prei+1(v)
but either u.id /∈ v.range[i] or v.id /∈ u.range[i] (or both, cf Def-
inition 2.6), so |σ| + k ≥ i + 1 > |σ|. W.l.o.g., assume that

u.id /∈ v.range[i]. Due to the definition of the ranges, v must have
both a stable predecessor (relatively to the current neighborhood)
with last bit 0 and a predecessor with last bit 1 that lie between u
and v: w0 = predi(v, 0) andw1 = predi(v, 1). Letw ∈ {w0, w1}
such that prei+1(u) = prei+1(w) = prei+1(v). See Figure 3.
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Figure 3: Situation for i+1 > |σ| in proof of Lemma 3.9 at time
t. Here we use x = 0.
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Figure 4: The two situations for i + 1 = |σ| in proof of
Lemma 3.9.

However, (w, u) 6∈ E at time t, due to our selection of the short-
est bridge path: (u,w) and (w, v) would imply a path (see your
“path property” described before) with shorter bridges. Thus, at
time t + 1, (u,w) is created by Rule 1b. Now, we will show that
this triggers u to fire Rule 3a at t+2, either because (u,w) becomes
stable or because (u, v) becomes instable. (Note that (u, v) must be
stable at time t, since the edge forms a bridge.) Observe that it is
not possible that (u, v) remains stable and (u,w) is instable, since
both are within u’s range on level i+ 1, as u and w have a common
prefix ρ = prei+1(w). Thus, at time t + 1, Rule 3a is triggered at
u, and thus, at t+ 2, a and b are σ-V-linked and connected in round
t+ 3.

Observe that if w has a buddy w′ closer to u, see Figure 3, the
same arguments apply, as w′ will be introduced to v, which triggers
Rule 3a at v.

It remains to study the case where (u, v) is stable on level i = |σ|
(see Figure 4). Assume u is stably connected to pj and v is stably
connected to pj+1 (u, v ∈ Gρx). We distinguish two cases: Either
there is a node c ∈ Gρx between u and v or not. First, assume there
is such a node c, and w.l.o.g., assume c is stably connected to v on
level |ρ|. (Observe that due to our path selection, c /∈ Gρx, and
hence it holds that c ∈ Gρx.) We will show that in this case, a new
connection (u, c) is proposed. Thus, there cannot be both edges
(u, c) and (c, v), otherwise the bridge would not be necessary, as
the nodes must be in the same (σ, 0)-pre-component. Therefore,
either (u, v) destabilizes at time t+1, triggering Rule 3a at t+2, or
(u, c) or (c, v) must be proposed according to Rule 1b. By the same
reasoning as above, the claim follows for time t+ 4 in this case.

If there is no such node c, consider the buddy of u or v closest
to position µ = (u.id + v.id)/2. That is, let B denote the set of



all buddies of u and v on level i, i.e., B = (N(u) ∪N(v)) ∩Gρx.
Let w ∈ B be the buddy which minimizes |µ−w|. Without loss of
generality, assumew is the buddy of u. Now letw′ be the buddy of v
which is located on the same side of µ asw. Observe that v.range[i]
is defined by w′ due to our assumption that c does not exist and
since w′ is further away from µ and hence also from v. Therefore,
w ∈ v.range[i]. On the other hand, if no such w′ exists, then
v.range[i] is not bounded, and the claim follows trivially. Thus,
a and b are σ-V-linked in round t + 2. Therefore, the claim also
follows for the case i+ 1 = |σ|, which concludes the proof.

LEMMA 3.10. A temporary edge (u, v) of level ` at time t is
either transformed into a stable edge or forwarded and changed by
this into a temporary edge of level at least `+ 1.

PROOF. Let ρ be the common prefix of u and v with |ρ| = `,
and assume w.l.o.g. that u has label ρ0 and v has label ρ1. If (u, v)
is temporary, it either becomes stable by Rule 1a or there must be
a stable ρ1-node w ∈ N(u) between u and v In this case, Rule 2
replaces (u, v) with (w, v) for such a w, which is a temporary edge
of level at least `+ 1.

The following lemma follows from the previous one because no
temporary edge has a level higher than the height H .

LEMMA 3.11. Every temporary edge becomes stable after H
time steps.

Next, the case of temporary bridges is investigated.

LEMMA 3.12. Assume two ρx-nodes a, b for some x ∈ {0, 1}
are directly connected by a temporary ρx-bridge, i.e., there is a tem-
porary edge (u, v) and stable edges (u, a) and (v, b). Then, for
k = H − |ρ|, a and b are (ρx, k)-pre-connected at time t+ k.

PROOF. W.l.o.g. let x = 1. By the rules of temporary edges, the
destination v never changes. Let bi be a ρ-buddy of v, i.e., the stable
edge (v, bi) exists at time t+ i, b0 = b. At time t+ i+ 1, there is
at least the temporary edge (v, bi), and bi and bi+1 are ρ1-V-linked,
and hence, by Lemma 3.8, bi is (ρ1, k)-pre-connected with b also at
time t+ k.

Let ui be the starting point of the temporary edge at time t + i,
i.e. (ui, v) be the temporary edge, and let ai (with a0 = a) be some
stable neighbor of ui at that time, i.e., the stable edge (ui, ai) exists
at time t+ i. At time t+ i the stable edge (ui, ui+1) exists (because
the temporary edge was forwarded along this edge). Further, let ci
be some stable neighbor of ui+1 at time t+ i. If this does not exist,
set ci = ai, and note that at time t+ i+1 the stable edge (ui+1, ai)
must exist because of Rule 1b. By definition, ai and ci have a stable
(ρ1, k′)-bridge for k′ ≤ k and are hence (ρ1, k)-pre-connected. At
time t + i + 1 at least the temporary edge (ui+1, ci) exists, and
hence ci and ai+1 are ρ1-V-linked, so by Lemma 3.8 ai is (ρ1, k)-
pre-connected with a at time t+ k.

By Lemma 3.10 the level of (ui, v) is at least |ρ| + i. Hence for
some j ≤ k the stable edge (uj , v) exists at level smaller than H at
time t+ j. Hence, at time t+ j the nodes aj and bj are (ρ1, k)-pre-
connected, and we can conclude from Lemma 3.8 that a and b are
(ρ1, k)-pre-connected at time t+ k.

LEMMA 3.13. Consider any bit string ρ ∈ {0, 1}∗. Suppose
that Gρ is weakly connected at time t0. Then every node u ∈ Vρ
will have a neighbor in Vρ0 and Vρ1 within O(logn) rounds.

PROOF. Consider any node u that does not have a neighbor in
Vρ0 or Vρ1. In this case, u.range[i] = U for i = |ρ|, which implies
together with Rule 1b and Rule 1c that every node v ∈ N(u) ∩ Vρ
with missing ρ-buddy will introduce every node w ∈ N(v) ∩ Vρ
to u. Suppose w.l.o.g. that u is still missing a node in Vρ0. Then
the neighbor introduction of Rule 1b and Rule 1c implies that the

distance of u in Gρ to the closest node in Vρ0 is cut in half in each
round. Thus, it takes at most O(logn) rounds into a node in Vρ0 is
a direct neighbor of u, which implies the lemma.

Lemma 3.13 can also be proved by observing that in every round,
due to the “pointer doubling” operations, the diameter of the con-
nected component formed by nodes without a buddy is cut in half.

LEMMA 3.14. Assume Gρ is connected at time t. Then, at time
t+(H−|ρ|)+O(logn) the graphGρ0 is connected and so isGρ1.

PROOF. Define k = H − |ρ|. At time t0 = t + O(logn), by
Lemma 3.13, every ρ0 node has a stable connection to a ρ1 node and
vice versa. Let a and b be two ρ1 nodes. BecauseGρ is connected at
time t, it is so at time t0, and there is a path a = u1, u2, . . . , um = b
in Gρ at time t0. If ui is a ρ0 node, define vi to be one of its ρ1
buddies, otherwise set vi = ui. Then, by definition, at time t0 the
nodes vi and vi+1 are either directly connected, or connected by a
temporary (ρ1, k)-bridge. Hence, by Lemma 3.12 (or Lemma 3.1),
at time t0 + k the nodes vi and vi+1 are in the same (ρ1, k)-pre-
component, and by Lemma 3.9, Lemma 3.8, and Lemma 3.1 vi and
vi+1 are in the same connected component of Gρ1 at time t0 + k+
O(1). With this and the symmetric argument for Gρ0 the claim of
the lemma follows.

3.2 Top-down Phase
In the previous section, it has been shown that in O(log2 n)

rounds, all nodes sharing a given prefix ρ have discovered each other
and are connected (via other nodes with prefix ρ). In addition, each
node is connected—on each level—to at least one “buddy” having
the opposite last bit of the corresponding prefix. We now prove that
after these properties have been achieved, the final SKIP+topology
is established in only O(logn) rounds.

The analysis of the top-down phase is done by induction over-
loading. For our induction step, we need the concept of finished
levels.

DEFINITION 3.15 (i-FINISHED). We say that a graph is i-
finished if and only if

1. ∀ρ with |ρ| = i, it holds that Gρ contains all edges of the
SKIP+-graph as stable edges;

2. ∀u ∈ V let ρ = prei(u) and ∀j < i: if v is a level j right-
buddy of u (current closest node on the right with prej(v) =
prej(u) and v.rs[j + 1] 6= u.rs[j + 1]), then for all ∀w
with prei(w) = ρ (i.e., w ∈ Gρ) and w lying between u
and v, i.e., w.id ∈ [u.id , v.id ], it holds that u and w are
connected by a stable edge. If there is no such buddy v, then u
is connected to all nodes to the right of u inGρ; and similarly
to the left.

Figure 5 shows an example.
Observe that after the bottom-up phase, the “top label” is fin-

ished trivially: This label forms a graph Gρ with more than one
node, whereasGρ1 andGρ0 are trivial, i.e., consist of a single node.
Clearly, for a top label ρ the graph Gρ consists of precisely two
nodes. In addition, once the graph Gρ is connected, it contains all
edges of the SKIP+-graph as stable edges.

The following reasoning shows that the levels will finish one after
the other starting from the highest level (hence this phase’s name),
where each level takes constant time only.

LEMMA 3.16. Assume at time t the graph is i-finished. Then, at
time t+ 3, the graph is (i− 1)-finished

PROOF. Figure 6 illustrates the situation. We consider a node
u. We will show that at time t + 1, u knows its closest level-i
neighbor w in the direction of the old buddy (that must exist due
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Figure 5: Visualization of the i-finished concept: node u is
connected to all nodes having prefix ρ between its buddies on
level i. Note that the distances to the buddies may not decrease
monotonously towards lower levels!

to Lemma 3.14 of the bottom-up phase). Having established this, it
follows directly that at time t + 2, w will inform u about all other
neighbors in the desired region (Rule 1b and Rule 1c). At time t+3,
node u will be informed about its neighbors on the opposite side of
the level i− 1 interval by the corresponding buddy, establishing our
induction invariant.
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Figure 6: Proof of Lemma 3.16.

In order to prove that u knows its closest neighborw at time t+1,
we distinguish three cases. From the bottom-up phase, we know
that u already has a buddy on one side. Without loss of generality,
assume this buddy is on the right of u. Let this buddy node be
denoted by v.

Case I: If v is already the closest node to the right, the claim holds
trivially (v = w).

We know thatw also has a buddy, which can either be on the right
(Case II) or on the left (Case III) of w (and hence also u). Let w’s
buddy (take any if w has two) be denoted by w′.

Case II: Assume w′ is also on the right of w. We distinguish two
cases: Either v is left of w′ or right of w′. If v is left of w′, by
our induction hypothesis, w must have a stable edge to node v. By
Rule 1b and Rule 1c, v will introduce w to u at t+ 1 (edge (w, u)),
and the claim follows. The case where v is right of w′ is analogue:
the roles of v and w′ are simply switched.

Case III: Now assume w has a buddy w′ on the left. We distin-
guish two cases. If u has another buddy u′ on the left as well, the
same arguments as in Case II show that either u′ orw′ will introduce
the corresponding neighbors at time t + 1. If, on the other hand, u
does not have a buddy on the left, then by our induction hypothesis,
w′ must have a stable edge to u, over which u is introduced to w in
the next round as well.

Finally, observe that after all levels are finished, all non-SKIP+

edges must be temporary. They will be forwarded towards the high-
est level and disappear in logarithmic time (in H rounds). There-
fore, we conclude that the top-down phase takes logarithmic time
only.

3.3 Combining Bottom-up and Top-down
From the previous discussion, we can draw the following con-

clusions. From Lemma 3.14, by summing up over all levels, it fol-
lows that the bottom-up phase lasts for at most O(log2 n) rounds
w.h.p. The subsequent top-down phase takes time O(logn) (cf
Lemma 3.16) w.h.p. Thus, we have derived the following theorem.

THEOREM 3.17. Given an arbitrary weakly connected graph,
the self-stabilizing algorithm ALG+ constructs SKIP+ inO(log2 n)
rounds, w.h.p.

4. NODE JOIN/LEAVE
In this section we study the amount of work it takes to handle a

node departure (leave) or the inclusion of a new node (join). We
show that once we reach a valid SKIP+ graph, our algorithm can
efficiently support any single join or leave operation in O(log4 n)
work and O(logn) rounds w.h.p. For proving this result, we first
need to bound the degree of a node in SKIP+.

LEMMA 4.1. The degree of a node v in SKIP+ is O(logn)
w.h.p.

PROOF. Recall the definition of a SKIP+ graph and consider any
node v. For any level i, let the random variable XR

i be defined as

XR
i = max{|{w ∈ N∗i (v) | w.id > v.id}| − 1, 0}.

In order to bound the probability that XR
i = k for some k > 0,

we consider three cases. If v does not have k + 1 nodes in N∗i (v)
to the right of it, then Pr[XR

i = k] = 0. If v has exactly k + 1
nodes in N∗i (v) to the right of it, then XR

i = k if and only if for the
k closest successors w of v in N∗i (v) it holds that w.rs[i + 1] =
succ∗i (v).rs[i + 1], so Pr[XR

i = k] = 1/2k−1. Finally, if v has
more than k + 1 nodes in N∗i (v) to the right of it, then XR

i = k
if and only if the closest k successors w of v in level i have the
property that w.rs[i + 1] = succ∗i (v).rs[i + 1] and the (k + 1)th
closest successor of v, w′, satisfies w′.rs[i+ 1] 6= succ∗i (v).rs[i+
1], so Pr[XR

i = k] = 1/2k. In any case, Pr[XR
i = k] ≤ 1/2k−1

for any k > 0, and this probability bound holds independently of the
other levels. Hence, for XR =

∑H
i=1X

R
i , where H = Θ(logn) is

an upper bound on the number of levels that holds w.h.p., it follows
that

Pr[XR = d] ≤

(
d

H

)
1

2d−H
.

If d = c ·H , we get(
d

H

)
1

2d−H
≤ (ec)H

2cH−H
≤ 1

nc′

for some constant c′ that can be made arbitrarily large if the constant
c is sufficiently large. Hence, the number of v’s neighbors to the
right is at most O(logn) w.h.p. A similar argument applies to the
left neighbors of v, which implies the claim.

THEOREM 4.2. When a node v leaves the system, it takes
O(logn) rounds of the algorithm and O(log4 n) total work w.h.p.
for the graph to converge back to a valid SKIP+ structure.



PROOF. Certainly, only the nodes that were directly connected
to node v will need to adapt their current set of neighbors upon the
departure of v (since the departure of v could not possibly alter the
neighborhoods or ranges of other nodes, given that v is directly con-
nected to all nodes in its range for all levels). By Lemma 4.1, the size
of the entire neighborhood of node v (across all levels) is O(logn)
w.h.p., so only O(logn) nodes need to change their neighborhood.

In order to show that theseO(logn) nodes can quickly adapt their
neighborhoods, we distinguish between several cases for every level
i. In these cases, let Vl (resp. Vr) be the set of all left (resp. right)
neighbors w ∈ N∗i (v) with w.rs[i + 1] = v.rs[i + 1] and let Wl

(resp. Wr) be the set of all left (resp. right) neighbors w ∈ N∗i (v)
with w.rs[i + 1] 6= v.rs[i + 1]. Certainly, Vl ∪ Vr ∪Wl ∪Wr =
N∗i (v). Let vl, vr , wl and wr be the closest neighbors in Vl, Vr , Wl

and Wr to v. Let us assume for now that vl, vr , wl and wr exist.
Case 1: wl.id < vl.id < vr.id < wr.id. In this case, all neigh-

borhoods are correct once v has been removed, so no further edges
are needed by the nodes.

Case 2: vl.id < wl.id < vr.id < wr.id. In this case, all nodes
in {vl}∪Wl \ {wl} have to learn about vr and vice versa to update
the neighborhoods. The other nodes just have to remove v from their
neighborhood. Since wl has edges to all nodes in {vl, vr} ∪Wl, a
single round of applying Rule 3a suffices to update all neighbor-
hoods correctly.

Case 3: wl.id < vl.id < wr.id < vr.id. This case is just the
reverse of Case 2.

Case 4: vl.id < wl.id < wr.id < vr.id. In this case, all nodes
in {vl} ∪Wl have to learn about Wr ∪ {vr} and vice versa. Since
wl knows {vl} ∪Wl ∪ {wr} and wr knows {wl} ∪Wr ∪ {vr},
after one round of applying Rule 3a, all nodes in {vl} ∪Wl learn
about wr and all nodes in Wr ∪ {vr} learn about wl. Since the
stable neighborhoods of wl and wr just got updated, wl and wr will
trigger another round of "introduce all" by Rule 3a, son nodes in
{vl ∪Wl ∪Wr ∪ {vr} will have updated their neighborhoods by
the second round.

The other cases when some of the nodes vl, vr , wl and wr do
not exist are very similar and dropped here. Hence, after at most
two rounds, all (stable) neighborhoods have been updated. Since
only O(logn) nodes need to change their neighborhood, and each
of these nodes inserts at most O(log2 n) edges due to Rule 3a in
each round, at most O(log3 n) edges are inserted in total. These
either merge with stable edges, become a new stable edge or become
a temporary edge. Each of the temporary edges will need at most
O(logn) applications of Rule 2 until it merges with a stable edge.
Hence, altogether the time is bounded by O(logn) and the work is
bounded by O(log4 n).

THEOREM 4.3. Assume a new node v joins the system by estab-
lishing an edge to a node u which is currently in SKIP+. It will take
O(logn) rounds of the algorithm and O(log4 n) total work w.h.p.
for the graph to converge back to a valid SKIP+ structure.

PROOF. Upon learning about node u, node v immediately con-
siders edge (v, u) as stable (since u is currently the only predecessor
or successor node v knows). That will prompt the insertion of edge
(u, v) by Rule 1a. If u considers (u, v) as a temporary edge, then it
forwards the edge via Rule 2 to a node u′ with a longer prefix match
with v than u. This leads, after at most H steps, to a stable edge
(w, v). Till then, v keeps inserting the edge (u, v) in each round (as
it considers u to be a stable neighbor), so there will be a string of
temporary edges moving upwards from u. Besides Rule 2, no other
rule will be applied at this point by the old nodes in SKIP+.

Suppose that w is the first node that considers the edge (w, v) to
be stable. Let i be the maximum level such that prei(v) = prei(w).
Let Vl (resp. Vr) be the set of all nodes to the left (resp. right) of v in
SKIP+ of maximum cardinality so that for all w′ ∈ Vl (resp. w′ ∈
Vr), prei+1(w′) = prei+1(v) and there is no node w′′ in between

the nodes of Vl (resp. Vr) with maximum common prefix equal to i
with v. Moreover, letWl (resp.Wr) be the set of all nodes to the left
(resp. right) of v of maximum cardinality so that for all w′ ∈ Wl

(resp. w′ ∈ Wr), the maximum common prefix with v is equal to i
and there is no nodew′′ in between the nodes ofWl (resp.Wr) with
maximum common prefix more than i with v. Let vl, vr , wl and wr
be the closest neighbors in Vl, Vr , Wl and Wr to v. Let us assume
for now that vl, vr , wl and wr exist. Recall that w considers v to be
a stable neighbor. Suppose w.l.o.g. that v is to the right of w. We
distinguish between the following cases.

Case 1: wl.id < vl.id < vr.id < wr.id. In this case, all nodes
in {wl} ∪ Vl ∪ Vr ∪ {wr} have to connect to v and vice versa,
and besides these, no other connections are needed to fully integrate
v into level i. Since w = wl and w therefore knows all nodes in
Vl ∪ Vr ∪ {wr} by the SKIP+ definition, one round of applying
Rule 3a (which is caused by (w, v)) suffices to fully integrate node
v into level i.

Case 2: vl.id < wl.id < vr.id < wr.id. In this case, all nodes
in {vl} ∪Wl ∪ Vr ∪ {wr} have to learn about v and vice versa to
fully integrate v into level i. Since w is a node in Wl, w has links to
all nodes in {vl}∪Wl ∪Vr ∪{wr}, so again one round of applying
Rule 3a suffices to fully integrate node v into level i.

Case 3: wl.id < vl.id < wr.id < vr.id. In this case, all nodes
in {wl}∪Vl∪Wr∪{vr} have to learn about v and vice versa to fully
integrate v into level i. Since w = wl, w has links to all nodes in
Vl∪{wr}. Hence, one round of Rule 3a introduces v to the nodes in
Vl ∪ {wr} and vice versa. Afterwards, wr will apply Rule 3a since
its stable neighborhood changed due to v, so wr will introduce v to
Wr∪{vr} and vice versa, which completes the integration of v into
level i.

Case 4: vl.id < wl.id < wr.id < vr.id. In this case, all nodes
in {vl} ∪ Wl ∪ Wr ∪ {vr} have to learn about v and vice versa
to fully integrate v into level i. As w is any node in Wl, w knows
about {vl} ∪Wl ∪Wr ∪ {vr}, so one round of applying Rule 3a
suffices to fully integrate node v into level i.

The remaining cases in which vl, vr or wr do not exist are sim-
ilar and dropped here. Hence, it takes at most two rounds to fully
integrate v into level i.

Once v is fully integrated into a level i, it knows the closest pre-
decessor and successor w in SKIP+with maximum prefix match at
least i + 1 (if it exists). Since each of these nodes will consider v
to be a stable neighbor in level i + 1, we can use similar case dis-
tinctions as above to show that v will be fully integrated into level
i + 1 in at most two further rounds. Node v also knows its closest
predecessor and successor w in SKIP+with maximum prefix match
at least i. Since each of these nodes will consider v to be a stable
neighbor in level i− 1, we can also use similar case distinctions as
above to show that v will be fully integrated into level i−1 in at most
two further rounds. Using these arguments inductively implies that
v will be fully integrated into the SKIP+ graph in O(logn) time.
It remains to bound the work. The first part (creating and forward-
ing temporary edges),2 just consumes O(log2 n) work. Each time a
node destabilizes, O(log2 n) new edges are created. Certainly, only
nodes that will consider v to be their stable neighbor (and vice versa)
will destabilize, and we know from Lemma 4.1 that the degree of v
in SKIP+ will be O(logn) in the end w.h.p. Hence, altogether at
mostO(log3 n) new edges are created. These either merge with sta-
ble edges, become a new stable edge or become a temporary edge.
Each of the temporary edges will need at most O(logn) applica-
tions of Rule 2 until it merges with a stable edge. This yields the
claim.

2By “first part” we mean the part where v contacts u until a first
node is met that considers the edge to v to be stable. The sequence
of nodes involved here will continuously forward temporary edges
upwards until v ceases to insert the edge (u, v). This happens once
v is not a nearest neighbor of u anymore for some level.



5. CONCLUSION
This paper described the first self-stabilizing algorithm that

quickly establishes a scalable peer-to-peer topology out of any state
in which this is in principle possible. Our work opens many impor-
tant directions for future research. In particular, so far, we do not
have a polylogarithmic bound on the enabled actions per node and
round. Hence, we want to explore the corresponding complexities
further and come up with the necessary algorithmic modifications.
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