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Abstract. Quantum computing combines the framework of quantum
mechanics with that of computer science. In this paper we give a short
introduction to quantum computing and survey the results in the area
of distributed quantum computing and its applications to physics.

1 Introduction

Computing is a physical process and therefore the theory of computing should
incorporate the laws of physics. Quantum mechanics, developed during the last
century, is to date the most accurate description of nature. Quantum computing
is the area that combines the laws of quantum mechanics with computer science.
In this paper we give a short introduction to quantum computing and its for-
malism; for a more detailed treatment of this we refer the reader to the excellent
textbook of Nielsen and Chuang [46]. Quantum bits or “qubits” are the basic
building blocks for quantum computers. As was shown already in the seventies
by Holevo [30], qubits cannot be used to compress messages better than with
bits. In general, a k-bit message needs also k qubits to be stored or sent over a
channel. Qubits can, however, reduce the communication of certain distributed
computational tasks, as was first demonstrated in [22] and subsequent papers,
among them [17,23,21,48,7].

We survey some of these results here. The first result of a cheaper quantum
than classical communication protocol [22] was inspired by nonlocality experi-
ments constructed by physicist in order to test the strange and nonlocal behavior
of entanglement. In 1935, Einstein, Podolsky, and Rosen devised a thought ex-
periment that sought to show how quantum mechanics is incomplete because
it would allow for some form of faster-than-light communication. Much later,
in 1964, Bell [10] came up with an experimental way of testing the nonlocal
behavior of quantum mechanics. These tests and the so-called Bell inequalities
lead to experiments [9], that seem to demonstrate the nonlocality of quantum
mechanics. However, these tests suffered from the drawback that implementa-
tions in the lab are error prone and sometimes do not give the right outcome or
none at all. When the classical local theory is also allowed to make such errors,
it can be shown that the nonlocality tests can also be explained by classical
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physics, and do not demonstrate the nonlocal behavior of quantum mechanics
at all! In this paper we survey how the results obtained in quantum communica-
tion complexity can be used to propose nonlocality experiments that are robust
against errors and would for the first time demonstrate conclusively nonlocality.
The paper is organized as follows. In Sect. 2 we give a short introduction to
quantum mechanics and the notation used in this paper. In Sect. 3 we describe
the quantum analogue of the black-box model of computation and describe one
of the first quantum algorithms, due to Deutsch and Jozsa. Section 4 surveys
some of the results in distributed computing.

2 Quantum Mechanics and Computing

One of the main and very counterintuitive features of quantum mechanics is the
superposition principle. A physical system may be in a superposition of two or
more different states at the same time. Quantum mechanics prescribes that when
we observe such a system we see one of these states with a certain probability
resulting in a collapse of the system into the state that we observed.

2.1 Qubits, Superposition, and Measurement

Let us concentrate now to computation. Classically a bit can be in any of two
states: 0 or 1. Quantum mechanically a quantum bit or qubit may be in a
superposition of both 0 and 1. It is useful to describe such systems as vectors
in a finite-dimensional Hilbert space, in this case a two-dimensional one. We

will identify the vector
[
1
0

]
with the symbol |0〉 to denote the classical bit 0

and vector
[
0
1

]
with the symbol |1〉 denoting the classical bit 1. This notation

is called Dirac or “ket” notation, from “bra-ket.” The “bra” is 〈 | and 〈a|b〉
denotes the inner product between a and b. Quantum mechanics now allows for
a superposition of these two classical states:

α|0〉 + β|1〉 =
[
α
β

]
, (1)

where α and β, called amplitudes, are complex numbers with the property that

|α|2 + |β|2 = 1 . (2)

Next, observing or measuring a qubit α|0〉 + β|1〉 will yield outcome 0 with
probability |α|2 and 1 with probability |β|2. Moreover, after this measurement
the qubit is either in the classical state |0〉 if we measured a 0, and in |1〉 if we
measured a 1. Note that equation (2) guarantees that a qubit, when measured,
indeed induces a probability distribution over 0 and 1.

Let us try to plug in some values for α and β:

1√
2
|0〉 +

1√
2
|1〉 (3)
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Observing this qubit will result with probability 0.5 in seeing a 0 and with
probability 0.5 in a 1. In general, our system will consist of more than just one
qubit. Equations (1) and (2) generalize in the obvious way. Suppose we want to
model k qubits. Classically k bits can be in any of 2k different configurations:
1 . . . 2k. This means that k qubits can be in a superposition of all (or part) of
these 2k basis states:

α1

k︷ ︸︸ ︷
|00 . . . 0〉 + . . . + α2k

k︷ ︸︸ ︷
|11 . . . 1〉 =

∑
i∈{0,1}k

αi|i〉 (4)

with the additional requirement that
∑

i∈{0,1}k

|αi|2 = 1 . (5)

When observing these k qubits we will see i with probability |αi|2.
If we have two qubits |x〉 = α0|0〉+α1|1〉 and |y〉 = β0|0〉+β1|1〉 then |x〉⊗|y〉

are the two qubits in a four-dimensional Hilbert space. This construction is called
the tensor or Kronecker product:

|x〉 ⊗ |y〉 = (α0|0〉 + α1|1〉) ⊗ (β0|0〉 + β1|1〉)
= α0β0|00〉 + α0β1|01〉 + α1β0|10〉 + α1β1|11〉.

By convention, |0〉 ⊗ |0〉, |0〉|0〉, and |00〉 denote the same thing.
In general not all the two-qubit states that satisfy (4) and (5) are obtained

as the tensor of two qubits. We will see an important example, the EPR pair, in
Subsect. 2.3. Such states are called entangled.

2.2 Unitary Operations

Next we would like to model operations on qubits. Quantum mechanics tells us
that these operation have to be modeled as linear operations with the additional
constraint that these operations preserve the probability interpretation, i.e., the
squares of the amplitudes sum up to 1 (see (2) and (5)). Such transformations
are called unitary; they are the square matrices U that satisfy

UU∗ = I ,

where U∗ is the complex conjugate transpose of U and I is the identity matrix.
In terms of computation, the unitarity constraint implies that the computation
is reversible.

The following transformation on a single qubit is important and very useful.
It is called the Hadamard transform.

H =
1√
2

[
1 1
1 −1

]
(6)

It is a unitary operation since:
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1√
2

[
1 1
1 −1

]
· 1√

2

[
1 1
1 −1

]
=

[
1 0
0 1

]

Now let us do a Hadamard operation on a qubit that is in the classical state |0〉:
1√
2

[
1 1
1 −1

]
·
[
1
0

]
=

1√
2

[
1
1

]

This is in ket notation 1√
2
|0〉+ 1√

2
|1〉, which is the random qubit from (3). When

we apply the Hadamard transform again on this qubit,

1√
2

[
1 1
1 −1

]
· 1√

2

[
1
1

]
=

[ 1
2 + 1

2
1
2 − 1

2

]
=

[
1
0

]
, (7)

we get the |0〉 again. The important point is the minus sign in the Hadamard
transform. Its effect is illustrated in (7) above. The minus sign caused the 1

2 − 1
2

in the lower half of the vector to cancel out, or interfere destructively, while both
terms in the upper half interfered constructively. It is the superposition principle
together with this interference behavior that gives quantum computing its power.

The tensor product is also defined on linear operations. If we have an m × n
matrix A and an m′ × n′ matrix B then A ⊗ B is a (m · m′) × (n · n′) matrix
defined as: 


a1,1 · B a1,2 · B . . . a1,n · B
a2,1 · B a2,2 · B . . . a2,n · B

...
...
. . .

...
am,1 · B am,2 · B . . . am,n · B




2.3 Einstein-Podolsky-Rosen Paradox

In Sect. 2.1 we have seen that any set of k qubits is admissible if it satisfies (4)
and (5). Bearing this in mind let us examine the following state consisting out
of 2 qubits:

1√
2
|00〉 +

1√
2
|11〉 (8)

Note that the first 0 and the first 1 form the first qubit and the second 0 and the
second 1 form the second qubit. This state is called the “EPR state” after its
inventors Einstein, Podolsky, and Rosen [25]. The purpose of this state was to
devise a thought experiment to show the incompleteness of quantum mechanics.
Imagine that we have this EPR state and that Alice has the first qubit somewhere
on Mars and that Bob has the second, say, here on earth. If Alice measures her
qubit she will see a 0 or a 1 with equal probability and the state will have
collapsed to either |00〉, if she saw a 0 or |11〉 in case it was a 1. The same
is true for Bob. This leads to the following situation. Suppose that the first
qubit, on Mars, was measured first and that Alice saw a 1. This now means that
when Bob measures his qubit he will also measure a 1. It appears that some
information, i.e., the outcome of Alice’s measurement, has somehow traveled to
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earth instantaneously. Since nothing can travel faster than the speed of light
something must be wrong.

It turns out that EPR pairs cannot be used for communication: straightfor-
ward arithmetic shows that the probabilities of Bob obtaining a certain measure-
ment outcome are not changed no matter what Alice does. However, they can
be used to reduce communication complexity as we are going to see in Sect. 4.2.

Classical bits can be copied. Qubits on the other hand can not be copied.

Theorem 1. [24,52] Qubits cannot be copied

The reason for this is that the copy-qubit operation is not linear and, hence, not
unitary. Suppose we had a linear operation Uc that would copy a qubit. This
means on state (α|0〉 + β|1〉) ⊗ |0〉 it would do the following:

Uc[(α|0〉 + β|1〉) ⊗ |0〉] = (α|0〉 + β|1〉) ⊗ (α|0〉 + β|1〉) (9)
= α2|00〉 + αβ|01〉 + αβ|10〉 + β2|11〉 (10)

On the other hand, since Uc is linear and because (α|0〉 + β|1〉) ⊗ |0〉 = α|00〉 +
β|10〉:

Uc[α|00〉 + β|10〉] = α|00〉 + β|11〉 (11)

It is clear that (10) and (11) are the same if and only if α = 1 and β = 0 or
α = 0 and β = 1. This is precisely the case if we have a classical 0 or 1. Hence,
there cannot be a linear operation that copies an arbitrary unknown qubit.

Now imagine that Alice has an unknown qubit |x〉 = α|0〉 + β|1〉 that she
wants to send to Bob and that she furthermore can only communicate using
classical bits. Is it in this case possible for Alice to communicate |x〉 to Bob? In
the light of the no-cloning Theorem 1 it certainly is impossible to do this since
whenever she measures x she will destroy/collapse it to a classical bit and she
cannot copy it first. But suppose that Alice and Bob in addition each share one
half of an EPR pair (8). The surprising observation is that there is a scheme
that allows Alice to send or “teleport” |x〉 to Bob using only 2 classical bits [11].

In operational terms, the scheme works as follows. Let φ+ be the first part of
an EPR pair and φ− the other half. That is, φ+ is the first bit of 1√

2
[|00〉+ |11〉]

and φ− the second bit. Alice has φ+ and Bob has φ−. At some point Alice gets
the unknown qubit |x〉 = α|0〉 + β|1〉. She now does a unitary operation1 on the
two qubits, i.e., φ+ and x. Then she measures these two qubits, obtaining two
bits: 00, 01, 10, or 11. Next she send these two bits to Bob, who depending on
the two bits, does one of four unitary operations on his φ−. It turns out that
this last unitary operation changes2 φ− into the unknown qubit |x〉. After the
protocol, the EPR pair is destroyed, so in order to repeat this procedure a fresh
EPR pair is needed.
1 The unitary operation is a controlled-not of x on φ+, followed by a Hadamard on x.
2 In fact after the controlled-not and the Hadamard transform of Alice, it follows that

their joint state is: |00〉(α|0〉+β|1〉)+|01〉(α|1〉+β|0〉)+|10〉(α|0〉−β|1〉)+|11〉(α|1〉−
β|0〉). This means that after Alice does her measurement, the third bit, i.e., φ−, is
the unknown qubit x up to a possible bit flip and/or phase shift depending on the
outcome of Alice’s measurement.
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The important point for communication complexity is that this teleportation
scheme is a way to simulate a qubit channel between Alice and Bob with a
classical channel, at the cost of two bits per qubit, whenever Alice and Bob
share EPR pairs.

Theorem 2. [11] When Alice and Bob share EPR pairs, they can simulate a
qubit channel with a classical bit channel at the cost of two classical bits per
qubit.

3 Quantum Black-Box Computation

Perhaps the simplest form of a computational task is the following. Suppose
we have n Boolean variables X0, . . . , Xn−1, and we want to compute a prop-
erty P (X0, . . . , Xn−1). The goal is to compute P looking at as few variables as
possible. For example, suppose P (X0, . . . , Xn−1) = 1 iff there exists an i such
that Xi = 1. That is, we want to compute the OR(X0, . . . , Xn−1). How many
variables do we have to query? It is not too hard to see that we have to look at
all the variables. A similar kind of reasoning shows that also in the randomized
setting the bound is Ω(n). It has been shown by Grover [29] that a quantum
algorithm can solve the OR with only O(

√
n) quantum queries.

Next we will turn our attention to another problem that allows even an ex-
ponential speedup. Define the following promise on the variables. We are guar-
anteed that they are either constant (i.e., all the Xi are either all 0 or all 1) or
they are balanced: exactly half the Xi are 0 and the other half is 1. The problem
is to find out whether the variables are constant or balanced.

It is easy to see that classically this problem requires n/2 + 1 queries to the
variables. One of the first quantum algorithms, by Deutsch and Jozsa [33], estab-
lishes that this problem can be solved with just a single quantum query! Before
we explain this algorithm we first have to explain how we model a quantum
query.

Quantum Query. We have to model a quantum query in such a way that it is
a unitary operation. We define a quantum query to variable Xi as follows. The
state |i, 0〉 becomes after the query |i, Xi〉 and |i, 1〉 becomes |i, 1 − Xi〉. That is,
for 1 ≤ i ≤ n and b ∈ {0, 1} :

|i, b〉 �→ |i, b ⊕ Xi〉

Since this describes what a query does on basis states, because of linearity it
also works on states that are in superposition:

∑
i∈{0,1}log(n),b∈{0,1}

αi,b|i, b〉 �→
∑

i∈{0,1}log(n),b∈{0,1}
αi,b|i, b ⊕ Xi〉 . (12)

It can be easily checked that this operation is unitary.
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The Deutsch-Jozsa Algorithm. Suppose n is a power of 2 and l = log n. We
start in a state with l 0s followed by a 1:

|0l1〉
Remember the Hadamard transform H on one qubit from (6). We do a Hadamard
transform on all the qubits of the state, i.e., the following operation

l+1︷ ︸︸ ︷
H ⊗ H ⊗ . . . ⊗ H = H⊗l+1 .

This will result in the following state:

1√
n

∑
i∈{0,1}l

|i〉 1√
2
(|0〉 − |1〉) (13)

Then we perform the only quantum query. This will affect our state according
to (12) as follows:

1√
n

∑
i∈{0,1}l

(−1)Xi |i〉 1√
2
(|0〉 − |1〉) (14)

To see that this is correct, first observe that we perform the quantum query with
the target qubit in superposition (|0〉 − |1〉) This means that |i〉 1√

2
(|0〉 − |1〉)

after the query becomes |i〉 1√
2
(|0 ⊕ Xi〉 − |1 ⊕ Xi〉). Furthermore, if Xi is 0 then

this is simply |i〉 1√
2
(|0〉 − |1〉); on the other hand if Xi = 1 then it becomes

|i〉 1√
2
(|1〉−|0〉), which is the same as (−1)|i〉 1√

2
(|0〉−|1〉). Hence, we get a factor

of −1 iff Xi = 1. Next we apply again H⊗l+1 to the state and obtain the following
messy-looking expression:

1√
n

∑
i∈{0,1}l

1√
n

∑
j∈{0,1}l

(−1)Xi⊕(i,j)|j〉|1〉 , (15)

where (i, j) is the inner-product between i and j modulo 2. Let us take a closer
look at the part of this sum where j = 0l:

1
n

∑
i∈{0,1}l

(−1)Xi |0l〉|1〉 (16)

Suppose that all the Xi = 0 and we are in the case “variables constant 0.” Then
(16) boils down to: 1

n

∑
i∈{0,1}l |0l〉|1〉 = |0l1〉. For the “constant 1” case we will

end up in (−1)|0l1〉. This means that when we observe the final state in (15), we
will see 0l1 with probability 1. On the other hand, if half of the Xi = 1 and the
other half are 0, then half of the terms in (16) are 1 and the other half are −1
and cancel each other out. The result of this is that |0l1〉 has amplitude 0 and
will be seen with probability 0. So by observing state (15) we can conclude that
if we observe 0l1 we are in the constant case and if we observe anything else we
are in the balanced case.
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4 Applications in Distributed Computing

4.1 Communication

One of the main themes in quantum information processing is to extend clas-
sical communication and communication schemes with quantum ones. Here we
will consider three models of quantum communication and compare them with
classical communication.

1. Communication is done with qubits.
2. Both parties share EPR pairs but communication is done via a classical-bit

channel.
3. Both parties share EPR pairs and communication is done with qubits.

The most simple form of communication is where Alice wants to send a message
m of say k bits to Bob. We know that classically in general Alice needs to send k
bits to Bob. Is this still true in the setting 1, 2, and 3? It follows from a theorem
of Holevo [30] that when only qubits are used for communication Alice still needs
to send k qubits. Moreover Cleve et al. [23] show that the same is true when
both parties share EPR-pairs and classical communication is used.

For the third variant, where both EPR pairs and qubits are used, things are
slightly different. Bennett and Wiesner [12] show that in this case there is a
kind of a reverse of Theorem 2. This is a scheme, called super-dense coding, that
allows Alice to send two classical bits with one qubit to Bob provided they share
an EPR pair. It can be shown that, like Holevo’s theorem, this is optimal.

4.2 Communication Complexity

Communication Complexity was introduced by Yao and Abelson [2,53]. Alice
has an n-bit string x and Bob has an n-bit string y and their goal is to compute
some function f : {0, 1}n ×{0, 1}n �→ {0, 1}, minimizing the number of bits they
communicate to each other. The area of communication complexity is well stud-
ied, see for example the books by Kushilevitz and Nisan [37] and Hromkovič [32].
The question we want to address here is: how does the communication complex-
ity of certain problems vary when different models of quantum communication
are used. We will denote C(f) to denote the classical communication complexity
of f . That is the number of bits the optimal protocol uses on the worst-case
input. The model where only qubits can be used for communication (model 1,
Sect. 4.1) was introduced by Yao [54]. We will use Q(f) for the quantum commu-
nication complexity in the model where only qubits are used for communication.
The first results in that model were lower bounds or impossibility results due to
Yao and Kremer [36] and we will discuss them in Sect. 3.

The model where the communication is classical but both parties share en-
tanglement, model 2, was introduced by Cleve and Buhrman [22]. We will denote
the communication complexity in this model with C∗(f), the model which uses
both EPR pairs and qubits will be Q∗(f). Cleve and Buhrman were the first to
show that communication complexity can be reduced contrary to what one might
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believe considering Holevo’s theorem. Their setting differed slightly from the
models we discuss here. In this setting they exhibit an example of a three party
communication problem where the three parties share an entangled state, like an
EPR pair but then for three parties. It is shown that when the parties share this
entangled state the communication problem can be solved with two bits of com-
munication whereas without such a prior shared state three bits are necessary.
That is, there is a function f such that C∗(f) = 2 whereas C(f) ≥ 3. Better sep-
arations in the multiparty setting were found in [15] and [21]. The latter paper
exhibits a function f for k parties such that C∗(f) = k and C(f) = Ω(k log(k)).

Next we will turn our attention to the qubit communication model Q(f).
However, keep in mind that protocols for this model can be translated to the
model where both parties share EPR pairs and communicate classically, since
via teleportation, Theorem 2 gives us: C∗(f) ≤ 2Q(f).

Deutsch-Jozsa Communication Problem. The first gap for two-party qubit
communication complexity was demonstrated by Buhrman, Cleve, and Wigder-
son [17]. They showed for a promise version of the equality problem3, EQ′,
that Q(EQ′) = O(log(n)) and that also C(EQ′) = Ω(n). This exhibits an ex-
ponential gap between classical and quantum communication complexity. The
quantum protocol is inspired by the Deutsch-Jozsa algorithm from Sect. 3 and
the classical bound stems from a deep and surprising combinatorial theorem
from Frankl and Rödl [27].

EQ′(x, y) = 1 iff x = y but with the extra promise that it will always be
the case that the Hamming distance ∆(x, y) = 0 or n/2. The Hamming distance
between two strings x and y, ∆(x, y), is the total number of bits where x and
y are different. We will see that EQ′ can be solved with just log(n) + 1 qubits
of communication from Bob to Alice. Note that under the Hamming distance
promise, Alice and Bob have to figure out whether x1 ⊕y1 . . . xn ⊕yn is constant
or balanced, since in the constant 0 case x = y and in the balanced x �= y. So if
we set Xi = xi ⊕ yi then we have the Deutsch-Jozsa problem back.

If Alice could obtain the final state from equation (15),

1√
n

∑
i∈{0,1}l

1√
n

∑
j∈{0,1}l

(−1)Xi⊕(i,j)|j〉|1〉 ,

she would do a final measurement and know the answer. To this end Bob prepares
the following state:

1√
n

∑
i∈{0,1}l

|i〉 1√
2
(|0 ⊕ yi〉 − |1 ⊕ yi〉)

3 EQ(x, y) = 1 if x = y and 0 otherwise. EQ requires n bits of communication. A
promise version of a problem means that Alice and Bob are only required to compute
the answer correctly on certain instances that fall within the promise and it doesn’t
matter what they compute on the other instances that don’t satisfy the promise.
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and sends these log(n) + 1 qubits to Alice. Alice then performs the unitary
transformation that changes state |i〉|b〉 to |i〉|b ⊕ xi〉 resulting in state:

1√
n

∑
i∈{0,1}l

|i〉 1√
2
(|0 ⊕ yi ⊕ xi〉 − |1 ⊕ yi ⊕ xi〉)

which is after we rewrite it precisely the state from (14):

1√
n

∑
i∈{0,1}l

(−1)Xi |i〉 1√
2
(|0〉 − |1〉)

Next Alice proceeds as in the Deutsch-Josza algorithm and applies H⊗ log(n)+1

and measures the final state.
The general idea is to use a quantum black-box algorithm in a distributed

setting. Whenever the black-box algorithm wants to make a query, Alice and
Bob exchange a round of log(n) + 1 qubits and Alice continues the black-box
algorithm. This allows one in general to use any black-box algorithm as a com-
munication protocol. In this way it can be shown that, by using Grover’s al-
gorithm [29] the Disjointness problem can be solved with O(

√
n log(n)) many

qubits [17].

Bounded-Error Protocols. All the above (quantum) protocols don’t make
errors and compute the outcome exactly. When studying randomized versions
of communication complexity, however, it is unavoidable to introduce errors. A
classical randomized protocol for f , R2(f), is a protocol where both Alice and
Bob can use random bits. They are required to compute the correct outcome
with probability at least 2/3. The distinction between private and public random
bits can be made, where in the public bit/coin model Alice and Bob see the
same random bits and in the private they each have a different random source.
Newman [45] has shown that up to an additive logarithmic term the models are
the same.

Rabin and Yao show for EQ that there exists a classical randomized protocol
that only needs O(log(n)) bits: R2(EQ) = O(log(n)). This implies that the
promise problem EQ′ also has a O(log(n)) randomized classical bit protocol
that is correct with probability at least 2/3. Note, however, that the quantum
protocol never makes an error.

The disjointness problem DISJ is defined as follows. Alice and Bob each have
a subset A and B of {0, 1}n, they have to decide whether A ∩ B = ∅. Kalyana-
sundaram and Schnitger [34] show that this problem also has high communica-
tion complexity in the randomized setting: R2(DISJ) = Ω(n). Buhrman et al.
in the same paper show that when we allow the quantum protocol to com-
pute the answer with probability at least 2/3, we denote this by Q2(f), that
Q2(DISJ) = O(

√
n log(n)). This bound was improved by [31] and a O(

√
n)

protocol was recently constructed by Aaronson and Ambainis [1]. Razborov has
shown, using some variant of the polynomial method, that this bound is tight [49]
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The disjointness problem demonstrates a quadratic gap between classical ran-
domized and quantum communication complexity. Moreover this is an example
of a gap known where the function f is not a promise problem. The only other
known total problem that allows for a more efficient quantum protocol is that of
the equality problem in the simultaneous message passing model [16]. The main
ingredients to the protocol are a quantum fingerprinting scheme and a test to
distinguish orthogonal states from parallel ones. In the simultaneous message
passing model Alice and Bob don’t send messages to each other but send one
message to a third party, called the referee. The referee only sees the messages
from Alice and Bob and has to output f(x, y).

The biggest gap between the randomized and the quantum two party com-
munication complexity model was obtained by Raz [48]. He showed that there
is a promise problem f such that Q(f) = O(log(n)) but R2(f) = Ω(

√
n). Am-

bainis et al. [7] also exhibit an exponential gap between quantum protocols and
classical protocols for a different form of communication problem called sampling
which we shall not discuss here further.

Summarizing for promise problems there exist exponential gaps between clas-
sical and quantum communication complexity. For total problems the best known
gap is only quadratic. In turn this sheds some light on the EPR paradox. Holevo’s
theorem proves that EPR pairs cannot be used to reduce communication. Since
all the protocols in this section work for the model where the parties share EPR
pairs and communicate classically it follows that EPR pairs can reduce the com-
munication complexity of certain problems. This situation seems contradictory
but notice that the actual amount of information that needs to be communicated
between Alice and Bob is only 1 bit, namely the outcome of f .

Lower Bounds. In the previous section we showed that quantum communi-
cation protocols are sometimes superior to classical protocols. In this section
we examine the converse and turn our attention to lower bounds for quantum
communication complexity.

Classically for deterministic communication complexity there is a general
technique for proving lower bounds. For any function f : {0, 1}n × {0, 1}n �→
{0, 1} one can define the boolean 2n × 2n communication matrix Mf (x, y) =
f(x, y). Mehlhorn and Schmidt [44] related the rank of this matrix to the com-
munication complexity. They show that log(rank(Mf )) ≤ C(f). This is a very
useful tool. Take for example the equality problem. The communication com-
plexity matrix for EQ is the 2n × 2n identity matrix which has only 1’s on the
diagonal and is 0 on off-diagonal entries. Since this matrix has rank 2n it follows
that C(f) ≥ n. A similar statement is true in the quantum setting:

Theorem 3. For any communication problem f :

1. log(rank(Mf ))/2 ≤ Q(f) [36].
2. log(rank(Mf )) ≤ C∗(f) [18].
3. log(rank(Mf ))/2 ≤ Q∗(f) [18].
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A natural and long standing open problem is whether the communication com-
plexity is also a lower bound for the log-rank. That is, whether the log-rank
characterizes the communication complexity. The biggest known gap between
the log-rank and the communication complexity is almost quadratic [47]. The
log-rank conjecture states that for every total f , log(rank(f)) and C(f) are all
polynomially related. It follows from Theorem 3 that if the log-rank conjecture
is true then for total f : Q(f), C∗(f), Q∗(f), and C(f) are polynomially related.

The log rank lower bound method only works well for errorless protocols. For
bounded error models there is another bound called discrepancy. Kremer [36] and
Yao show that the discrepancy bound also works for the bounded error qubit
communication model Q2. This enables them to show a linear lower bound in
this model for a problem called inner product modulo 2, IP . Here IP (x, y) =
x1 · y1 + · · · + xn · yn mod 2. Ambainis et al. [7] extend this bound to also yield
a Ω(n) bound even when Alice and Bob are allowed to make an error which is
very close to 1/2.

For the model where both parties share EPR pairs, Cleve et al. [23] were the
first to show a linear lower bound for IP . They came up with a new technique
that is essentially quantum mechanical in nature. It can be seen as a quantum
adversary argument. This enabled them to show that any (quantum) protocol
for IP can be (ab)used, when run in superposition, to communicate n bits from
Alice to Bob. Let Q∗

2(f) denote the communication complexity of f where Alice
and Bob compute f correctly with probability 2/3, they share EPR pairs and
the communication is with qubits.

Theorem 3 yields a lower bound of Ω(n) for DISJ in the errorless models
since the MDISJ has rank 2n. In the bounded error model recently Razborov
showed, in a very nice paper, that the DISJ needs Ω(

√
n) qubits of commu-

nication even in the presence of shared EPR pairs. Summarizing we have the
following theorem:

Theorem 4. 1. Q∗
2(IP ) = Ω(n) [36,23].

2. Q∗
2(DISJ) = Ω(

√
n) [49]

4.3 Loopholes in Nonlocality Experiments

Tools and results from the study of quantum communication complexity have
been applied fruitfully to tune parameters in physical experiments that test the
“quantumness” of our world. The EPR paradox has been and still is a subject
of dispute. Much progress was made when Bell [10] came up with a test that
would, in case quantum mechanics was correct, show correlations that could not
be explained with just classical reasoning. Such nonlocality experiments have
been performed in the lab and non-classical correlations have been observed [9].

However, experimental realizations of the nonlocality tests are hampered by
noise and imperfections in the physical apparatus. In particular, measurement
devices for individual quantum systems (e.g., single-photon detectors) tend to
fail on most runs of the experiment, allowing local classical explanations of the
data by means of local classical theories that are allowed to make the same kind
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of errors and this opens the so-called “detection loophole.” Ideas from quantum
communication complexity have been used by Brassard et al. [14], Massar [40],
and Buhrman et al. [19] to propose new nonlocality experiments and to bound
the maximum detector efficiency, minimum noise, and hidden communication
using which the results can be explained by means of a classical local model. The
goal is to construct an experiment that demonstrates the nonlocal character of
quantum mechanics even when the experiments are faulty and make errors.

An experiment is modeled as two (or more) parties Alice and Bob that each
have an input of length n. However, contrary to the communication complexity
model, Alice and Bob are not allowed to communicate with each other. In the
classical setting Alice and Bob share a common source of random bits, and in
the quantum scenario Alice and Bob share EPR pairs or more generally an
entangled state. Alice now will depending on her input and her random bits (or
some operation on her part of the EPR pairs) output some string a of m bits. Bob
follows some protocol to also output m bits b. This way they produce correlation
distributions Pr[a, b | x, y]. The goal now is to come up with a set of correlation
distributions and show that there is a quantum protocol that generates these
distributions whereas every classical protocol fails to do so even if it is allowed
to make small errors or sometimes not produce an output at all.

Deutsch-Josza Correlations. To demonstrate these ideas, we return once
more to the Deutsch-Josza problem, following Brassard et al. [14] and Mas-
sar [40]. This time, Alice and Bob cannot communicate, but they start out shar-
ing a quantum state, receive classical bit strings x, y ∈ {0, 1}n, respectively; both
Alice and Bob produce outputs, a, b ∈ {0, 1}l, respectively, and we are interested
in the correlations between these outputs, namely the probability distributions
Pr[a, b | x, y] of Alice outputting a and Bob outputting b given that Alice got
input x and Bob input y. Recall that the “trick” in turning the Deutsch-Josza
algorithm into a communication protocol was to let Bob perform the first steps
of the algorithm and then send the quantum state to Alice who completed the
steps with her input. Now, since Alice and Bob cannot communicate, we replace
the quantum channel by EPR pairs. Alice and Bob start out with the following
state comprised of l = log(n) EPR pairs and two auxiliary qubits:

1
2
√

n

∑
i∈{0,1}l

|i〉 (|0〉 − |1〉) |i〉 (|0〉 − |1〉)

Here, Alice has the first l+1 qubits and Bob the remaining l+1 qubits. Now they
pretend that each on her/his side are in the Deutsch-Jozsa algorithm before the
oracle query, as given in (13). Accordingly, they perform the operation |i〉|b〉 �→
|i〉|b ⊕ yi〉 on their part of the state, resulting in the following global state:

1
2
√

n

∑
i∈{0,1}l

(−1)xi+yi |i〉 (|0〉 − |1〉) |i〉 (|0〉 − |1〉)

Then they apply the Hadamard operation on their l+1 qubits, yielding the state



14 Harry Buhrman and Hein Röhrig

1
n
√

n

∑
i∈{0,1}l

(−1)xi+yi


 ∑

a∈{0,1}l

(−1)(i,a)|a〉

 |1〉


 ∑

b∈{0,1}l

(−1)(i,b)|b〉

 |1〉

=
1

n
√

n

∑
a,b∈{0,1}l


 ∑

i∈{0,1}l

(−1)xi+yi+(i,a⊕b)


 |a〉|1〉|b〉|1〉

Now they both measure and output their measurement. By the laws of quantum
mechanics, the probability for Alice to observe |a〉|1〉 and Bob |b〉|1〉 is

Pr[a, b | x, y] =
1
n3


 ∑

i∈{0,1}l

(−1)xi+yi+(i,a⊕b)




2

If x = y, then

Pr[a, b | x, y] =

{
1
n if a = b

0 if a �= b

whereas for ∆(x, y) = n/2 and a = b we have Pr[a, b | x, y] = 0. Hence, the
outputs are correlated in that whenever x = y, we always see a = b and whenever
∆(x, y) = n/2, we never see a = b.

Can these correlations be realized by a classical protocol with shared random-
ness and no communication? No, since then Bob could send his output to Alice,
solving the communication problem with O(log n) bits, which is ruled out by
the lower bound of Ω(n). Then, how closely can they be realized approximately,
i.e., how precise does an experiment need to be? For the “detection loophole,”
it is assumed that any measurement succeeds with probability at least η and if
it fails, there will be no output. Then η2 is the probability that both Alice’s and
Bob’s measurements succeed. If the world is classical, then we have an adver-
sary who is trying to reproduce the correlations without communication using
the possibility not to produce an output on a η2 fraction of the runs of the ex-
periment. By the Yao principle there will be for any distribution on the inputs
a classical local deterministic strategy which produces a (correct) output for an
η2 fraction of the inputs. Consider the input distribution where x ∈ {0, 1}n is
chosen uniformly and random and y = x; fix the best deterministic strategy. Let
Za = {x : Alice and Bob output a}, then

η22n ≤
∑

a∈{0,1}l

|Za|

Moreover, for each a ∈ {0, 1}l, Za ⊆ {0, 1}n must not contain x, y with ∆(x, y) =
n/2, therefore, by a deep theorem by Frankl and Rödl [27], |Za| ≤ 20.993n. This
implies η22n ≤ n20.993n or η ≤

√
n2−0.007n. Hence, with growing n, the detector

efficiency at which there still exists a classical local model decreases exponen-
tially. So if the quality of the measurement equipment does not decrease too fast
with growing n, the detection loophole can be “closed” with an experiment for
the Deutsch-Jozsa correlations.
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There are several issues with this approach. In a nonlocality experiment, the
input distribution should a product distribution so that it can be implemented
locally in the lab. Furthermore, there are very efficient classical bounded-error
protocols for equality, implying that the quantum correlations above can be very
well simulated classically if the experiment is subject to noise. And finally, an
asymptotic analysis is often too coarse since the region where the bounds kick
in may be out of reach experimentally.

Concerning the bounded-error case, a multiparty nonlocality experiment has
been constructed, building again on an earlier multiparty quantum communica-
tion protocol [21]. This family of experiments has η ≤ 1/k1/6 and tolerates error
1/2 − 1/ o(k1/6), where k is the number of parties [20].

4.4 Coin Tossing

Research into quantum cryptography is motivated by two observations about
quantum mechanics:

1. Nonorthogonal quantum states cannot be distinguished perfectly and parts
of certain orthogonal quantum states cannot be distinguished if the remain-
ing parts are inaccessible;

2. Measurement disturbs the quantum state. This is the so-called “collapse of
the wave function.”

The second observation hints at the possibility of detecting eavesdroppers or
other types of cheaters, whereas the first property appears to allow hiding data,
both unhampered by unproven computational assumptions. Indeed, for the task
of cooperatively establishing a random bit string between two parties in the
presence of eavesdroppers, quantum key distribution [13,41,39] achieves security
against the most general attack by an adversary that has unbounded computa-
tional power but has to obey the laws of quantum mechanics.

Initially, it was thought that these properties would admit protocols for the
cryptographic primitive “bit commitment.” In bit commitment, there are two
parties Alice and Bob; in the initial phase of the protocol, Alice has a bit b
and communicates with Bob to “commit” to the value of b without revealing
it. At a later time, Alice “unveils” her bit, allowing Bob to perform checks
against the information obtained in the initial phase. The properties sought of
bit-commitment protocols are that they are “concealing” (Bob does not learn
anything about b in the initial phase) and “binding” (Bob will catch Alice trying
to unveil 1 − b instead of b).

Unfortunately, Mayers [42] and Lo and Chau [38] proved that perfect quan-
tum bit commitment is impossible. Their impossibility result extends to “coin
tossing” [43,38], a weaker cryptographic primitive where the two parties want
to agree on a random bit whose value cannot be influenced by either of them.
Moreover, the impossibility extends even to the case of “weak coin tossing” [4],
where outcome b = 0 is favorable for Alice and outcome b = 1 favorable for Bob,
thus ruling out perfect quantum protocols for leader election. However, what
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turned out to be possible are coin-tossing protocols, where there are guarantees
on how much a cheater can bias the outcome.

Consider k parties out of which at most k′ < k are dishonest; which players
are dishonest is fixed in advance but unknown to the honest players. The players
can communicate over broadcast channels. Initially they do not share random-
ness, but they can privately flip coins; the probabilities below are with respect to
the private random coins. A coin-flipping protocol establishes among the honest
players a bit b such that

– if all players are honest, Pr[b = 0] = Pr[b = 1] = 1/2
– if up to k′ players are dishonest, then Pr[b = 0], Pr[b = 1] ≤ 1/2 + ε

ε is called the bias; a small bias implies that colluding dishonest players cannot
strongly influence the outcome of the protocol. Players may abort the protocol.

Classically, if a (weak) majority of the players is bad then no bias < 1/2 can
be achieved and hence no meaningful protocols exist [50]. For example, if we only
have two players and one of them is dishonest, then no protocols with bias < 1/2
exist. (For a minority of bad players, quite nontrivial protocols exist; see [26].)
Allowing quantum bits (qubits) to be sent instead of classical bits changes the
situation dramatically. Surprisingly, in the two-party case coin flipping with bias
< 1/2 is possible, as was first shown in [3]. The best known bias is 1/4 and
this is optimal for a special class of three-round protocols [4]; for a bias of ε at
least Ω(log log(1/ε)) rounds of communication are necessary [4]. Recently, Kitaev
(unpublished, see [35,6]) showed that in the two-party case no bias smaller than
1/

√
2 − 1/2 is possible.

In the weak version of the coin-flipping problem, we know in advance that
outcome 0 benefits Alice and outcome 1 benefits Bob. In this case, we only
need to bound the probabilities of a dishonest Alice convincing Bob that the
outcome is 0 and a dishonest Bob convincing Alice that the outcome is 1. In
the classical setting, a standard argument shows that even weak coin flipping
with a bias < 1/2 is impossible when a majority of the players is dishonest. In
the quantum setting, this scenario was first studied for two parties under the
name quantum gambling [28]. Subsequently, Spekkens and Rudolph [51] gave a
quantum protocol for two-party weak coin flipping with bias 1/

√
2 − 1/2 (i.e.,

no party can achieve the desired outcome with probability greater than 1/
√

2).
Notice that this is a better bias than in the best strong coin flipping protocol
of [4]. Kitaev’s lower bound for strong coin flipping does not apply to weak coin
flipping. Thus, weak protocols with arbitrarily small ε > 0 may be possible. The
only known lower bounds for weak coin flipping are that the protocol of [51] is
optimal for a restricted class of protocols [5] and that a protocol must use at
least Ω(log log(1/ε)) rounds of communication to achieve bias ε (shown in [4] for
strong coin flipping but the proof also applies to weak coin flipping).

Quantum coin flipping and leader election for more than two parties were
investigated by Ambainis et al. [6]: Even if there is only a single honest party
among k players, bias 1/2 − c/k1.78 can still be achieved by a quantum protocol
(for some c > 0) and there is a lower bound that for some c′ > 0, 1/2 − c′/k
cannot be achieved. Both bounds can be generalized to the situation where at
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most (1− ε)k of the players are bad, for ε > 0; in this case, bias δ < 1/2−c′′ε1.78

is achievable independent of the number of players and achieving constant bias
δ < 1/2 − c′′′ε is impossible, for constants c′′, c′′′ > 0.

5 Conclusion and Open Problems

We have surveyed some of the results in quantum distributed computing. Many
problems however remain. What is the relationship between the various models,
Q, C∗, Q∗ both in the errorless and in the bounded error setting? For the errorless
models, a positive answer to the log-rank conjecture shows that they are all
polynomially related but also this is at the moment still wide open.

We have seen that exponential gaps between classical and quantum communi-
cation complexity problems are possible, however, all of these examples entailed
promise problems. Can there also be exponential gaps for total problems in the
bounded error setting?

Techniques and protocols from quantum and classical communication com-
plexity can help to construct nonlocality experiments. It remains an open ques-
tion what the best bounds for two and more parties are for the error of the
experiment and the detector efficiency.

A question that is sheds some light on the relationship between Q, C∗, and
Q∗ is the following. Given a correlation game with two parties that each get
inputs of size n and produce outputs of size m, and use an entangled state of
a finite amount of qubits. Is there a protocol that uses only an O log(n + m))
qubit entangled state that can be used to approximate, say in terms of small total
variation distance, the correlations from the original protocol? Such a statement
is true in the classical scenario with respect to the number of shared random bits
and has a very similar prove of the fact that for any communication complexity
protocol only O(log(n)) shared random bits are needed [45]. Note that if it can
be shown that O(log(n)) entangled qubits are enough to simulate an arbitrary
communication complexity protocol on inputs of length n then C∗

2 , Q∗
2, and Q2

are all related with an additional overhead of O(log(n)) qubits of communication.
In the simultaneous message passing model there exists a O(log n) proto-

col that solves the equality problem. The equality problem is equivalent to the
problem of deciding whether x ⊕ y = 0, where x ⊕ y is the bitwise XOR of x
and y. No such protocol is known for the three party problem to decide whether
x⊕ y ⊕ z = 0. The best known quantum protocol is due to Ambainis and Shi [8]
who need O(

√
n) qubits to solve this problem. However, the best known lower

bound for this three party problem in the classical setting is Ω(
√

n) and the best
known classical upper bound is O(n2/3)

Quantum bit commitment and perfect coin tossing have been shown to be
impossible, but there are protocols for coin tossing with constant bias. The
best known impossibility bound for strong coin tossing matches the bias of the
best known protocol for weak coin tossing – it is not clear whether this is a
coincidence. Tight bounds on the achievable bias are not known in both cases;
we even do not know whether there exists a protocol with a finite number of
rounds and qubits that guarantees the optimal bias, or whether there are more
and more complex protocols whose biases converge.
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