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Parallel Computing
Moore’s law  => chip multiprocessing (CMP) => Increased Parallelism
Complex problems can be divided into smaller ones which can be then 
executed in parallel
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Sequential Computing Parallel Computing



Concurrent Access to Shared Data
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int x[N];
i := N-1; …
…  
if (i < N){

i := i+1;
x[i] := i;

}

T1 T2



Locking
• Coarse-grained or fine-

grained locking
• Locking conventions
• Vulnerability to thread 

failures and delays
• Poor support for code 

composition and reuse

=> too difficult to develop, 
debug, understand and 
maintain programs

5

lock()
i := N-1;
…
if ( i<N )

x[i]:=i;
unlock()

lock()
i := i + 1;
unlock()

T1 T2

Coarse-grained locking



Software Transactional Memory (STM)

• Low-level API for synchronizing access to shared data 
without using locks
– Alleviates the difficulty of programming
– Maintains performance

• Transactional Model
– Transaction = atomic sequence of steps executed by a 

single thread (process); protects access to shared 
(transactional) objects

• Only for static data structures
– Transactional objects and transactions defined apriori
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From STM to D(ynamic)STM

• Transactions and transactional objects can be 
created dynamically

if  (object1.value == 1)
object2.value = 2;

else
object3.value = 2;

• Well suited for dynamic-sized data structures, 
like linked lists and trees
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Transactional Object
• Container for a shared object

• Creation

List newNode = new List(v);
TMObject newTMNode = new TMObject(newNode);

• Access

List current = (List)newTMNode.open(WRITE); 
current.value = 1;
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Transaction

• Short-lived single-threaded computation that 
either commits (the changes take effect) or 
aborts (the changes are discarded)

• Linearizability = transactions appear as if they 
were executed one-at-a-time
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Linked List Example
public boolean insert (int v){

List newList = new List(v);
TMObject newNode = new TMObject(newList);
TMThread thread = (TMThread)thread.currentThread();
while(true){

thread.beginTransaction();
boolean result = true;
try{

List prevList = (List)this.first.open(WRITE);
List currList = (List)prevList.next.open(WRITE);
while (currList.value < v){…}

} catch (Denied d){}
if  (thread.commitTransaction())

return result;
}

}
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Synchronization Conflict

• Two transactions attempting to access the same 
object and at least one of them wants to write it
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Check Synchronization Conflicts

• If a conflict occurs, open() throws a Denied exception
– The transaction knows it will not commit successfully and 

will retry execution

13

public boolean insert (int v){
…
while(true){

thread.beginTransaction();
try{

List prevList = (List)this.first.open(READ);
…

} catch (Denied d){}
if  (thread.commitTransaction())

return result;
}

}



Conflict Reduction = Early Release

• Release an object opened 
in READ mode before 
commit

• Useful for shared pointer-
based data structures 
(e.g., lists, trees)

• Programmer’s job to 
ensure correctness 
(linearizability)
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open(i, READ) 

… …       
release(i)

open(i,WRITE)
open(j,READ)

… …

commit

A B



Progress Guarantee

• Wait-freedom
– Every thread makes progress

• Lock-freedom
– At least one thread makes progress

• Obstruction-freedom
– Any thread that runs by itself for long enough 

makes progress
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Obstruction-Freedom

• A transaction can abort any other transaction

• + Simpler and more efficient (in absence 
synchronization conflicts) than lock-freedom 

• - Livelocks possible
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Livelock
• Two competing processes 

constantly change state 
with respect to one another, 
none making progress

• E.g., two people meeting in 
a narrow corridor, each 
trying to be polite by 
moving aside to let the 
other pass*

*http://en.wikipedia.org/wiki/Livelock#Livelock
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Transactional Object Implementation

Transaction State Old Object New Object

Committed Meaningless Current object

Aborted Current Object Meaningless

Active Current Object Tentative new current object
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Data

Data

old object
new object
transaction

State
Transactional Object

“transaction” points to the transaction that most recently opened the object in WRITE mode



Transactional Object Access

• Avoid generating inconsistencies
• How to atomically access all three fields?
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old object
new object
transaction

Transactional Object

Data

Data

State



Atomically Access the Transactional 
Object’s Fields

• Introduce another level of indirection 
– CAS (Compare and Swap) to swing the Start object 

from one locator object to the other
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Start

TMObject

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

Data

Data

State

Data

Data

State



Open Transactional Object in WRITE Mode 
(Previous Transaction Committed)
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Data

Data

Data

Start

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

B(commit)

A

copy



Open Transactional Object in WRITE 
Mode (Previous Transaction Aborted)
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Data

Data

Data

Start

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

B(abort)

A

copy



Open Transactional Object in WRITE 
Mode (Previous Transaction Active)
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Data

DataStart

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

B(active)

A

ABORT



Open Transactional Object in READ 
Mode
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Data

DataStart oldLocator
old object
new object
transaction

B(commit)
Object Version Open

O1 V1 2

O2 V2 1

O3 V 1

1. Identify the last committed version of the 
transactional object (exactly as for WRITE)

2. Add the pair (O,V) to a thread-local read-only 
table

Read-only table



Transaction Validation

• Ensure that the user never sees an inconsistent state
• After open() determined the version

1. For each pair (O, V) verify that V is still the most recently 
committed version of the object O

2. Check that status field of transaction still ACTIVE
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Object Version Open

O1 V1 2

O2 V2 1

O3 V 1

Data

Data

old object
new object
transaction

State

Transactional ObjectStart



Transaction Commit

1. Validate entries in the read-only table
2. Change the status field of the transaction 

from ACTIVE to COMMITTED
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Object Version Open

O1 V1 2

O2 V2 1

O3 V 1

Data

Data

old object
new object
transaction

Active

Transactional ObjectStart

Committed
CAS



Contention Management

• Ensures progress
• Each thread has a Contention Manager

– Consults it to decide whether to force another 
conflicting thread to abort

• Correctness requirement for contention 
managers 
– Any active transaction can eventually abort 

another transaction (“obstruction-freedom”)
– Should avoid livelock
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Contention Manager Policies Examples

• Aggressive
– Always and immediately grants permission to abort 

any conflicting transaction
• Polite

– In case of a conflict, sleep for a time interval t 
* Idea: wait for the other transaction to finish 

– Retry and increase waiting time with each attempt 
– After a fixed number of tries, immediately abort the 

other transaction 
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Costs
• W – number of objects opened in WRITE mode
• R – number of objects opened in READ mode

• In the absence of conflicts
– (W+1) CAS operations (for each open() call and one commit)

• Synchronization conflicts
– More CAS operations to abort other transactions

• Costs of copying objects (uses simple load and store operations)
• Validating a transaction 

– Requires O(R) work

• Total overhead due to DSTM implementation
– O((R+W)R) + clone each object opened for writing once
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Experimental Setup

• Integer Set and Red-black tree

• Measure: how many operations completed in 
20 seconds, varying the number of threads

• Goal: compare performance of different 
implementation approaches
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Experimental Results
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Lessons Learned from DSTM
TMObject<Node> tmNode= new TMObject<node>(new Node());
Node rNode = tmNode.open(READ);
Node wNode = tmNode.open(WRITE);

• The programmer must not modify the object referenced by rNode
• If wNode is opened before rNode, changes to wNode are visible through 

rNode, but not if they are opened in the opposite order
• rNode and wNode references must not linger (programmer’s job)
• The Node class must provide a clone() method
• Programmers must be aware of the container based implementation:

Class Node{
Int value;
TMObject<Node> next; //not Node

}
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DSTM2

• Software transactional memory library (a 
collection of Java packages that supports 
transactional API)

• Safe, convenient and flexible API for application 
programmers

• Allows users to plug-in their own synchronization 
and recovery mechanisms (transactional 
factories)

36



Atomic Classes Comparison

DSTM
TMObject<Node> newNode= new 

TMObject<node>(new Node());
Node rNode = newNode.open(READ);
Node wNode = 

newNode.open(WRITE);

Class Node{
Int value;
TMObject<Node> next; //not 

Node
}

DSTM2
@atomic public interface INode{

int getValue();
void setValue(int value);
INode getNext();
void setNext(INode value);
…

}

Factory<INode> factory = 
dstm2.Thread.makeFactory(INode.
class);

INode newNode = factory.create(); 37

Presenter
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For each atomic class (the class defining containers for shared objects), the programmer defines a stylized atomic interface, a named collection of method signatures satisfying simple consistency conditions. The programmer then passes this 



Atomic Interface
• @atomic 

– Objects satisfying this 
interface should be safe to 
share

• Defines one or more 
properties (pairs of get 
and set) of certain type

• Property type: either 
scalar or @atomic 
interface

• May define other 
specialized methods

@atomic public interface INode{
int getValue();
void setValue(int value);
INode getNext();
void setNext(INode value);
…

}
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Transactional Factory

• Atomic interface is passed 
to a transactional factory 
constructor

• Use specific methods to 
create class implementing 
the interface

• The factory then creates 
instances of the class

Factory<INode> factory = 
dstm2.Thread.makeFactory
(INode.class);

INode newNode = factory.create();
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Atomic Interface and Transactional 
Factory

• Semantics of get and set is 
clear

• Each factory is free to 
provide its own 
implementation for the 
methods declared

@atomic public interface INode{
int getValue();
void setValue(int value);
INode getNext();
void setNext(INode value);
…

}

Factory<INode> factory = 
dstm2.Thread.makeFactory 
(INode.class);

INode newNode = 
factory.create();
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Obstruction-Free Factory
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Data

Data

Data
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Obstruction-Free Factory Variants

• Invisible reads
– At commit time, a transaction must validate itself

• Checks that the versions read are still current

• Visible reads
– Each object maintains a list of reader transactions 

descriptors
– A transaction intending to modify the object must 

first abort them
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Shadow Factory
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Transactions

DSTM
public boolean insert (int v){

…

TMThread thread = 
(TMThread)thread.currentThread();

while(true){
thread.beginTransaction();
try{

…
} catch (Denied d){}
if  (thread.commitTransaction())

return result;
}

}

DSTM2
result = Thread.doIt (new Callable<Boolean>(){

public boolean call(){
return intSet.insert(v);

}
}

public static <T> T doIt(Callable<T> xaction){
while (!Thread.stop){

beginTransaction();
try{

result=xaction.call();
}catch (AbortedException d){}
if  (commitTransaction()){

return result;
}

}
}
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DSTM2 Experimental Setup
• Linked-list and Skip List

• Configurations: obstruction-free factory (visible reads), 
obstruction-free factory with invisible reads, shadow 
factory

• 0%, 50%, 100% updates out of all operations

• Measure: transactions/second in a 20 second period

• Goal: show how DSTM2 can be used experimentally to 
evaluate the relative performance of different factories
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DSTM2 Performance

• Linked List
– The shadow factory 3-5 times higher throughput 

than the obstruction-free factories
• Slightly higher when the percentage of updates 

decreases
– Obstruction-free factories roughly the same 

results
• Skip List

– Shadow factory better for high percentage of 
updates
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Conclusions

• STM – API for low-level synchronized access to 
shared data without using locks

• DSTM – dynamic STM
– Dynamic creation of transactions and 

transactional objects
– Detect and reduce synchronization conflicts
– Contention Manager (obstruction-freedom)

• DSTM2
– Flexible API for application programmers
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