
Software Transactional Memory for
Dynamic-sized Data Structures

Maurice Herlihy, Victor Luchango, Mark
Moir, William N. Scherer III

Presented by: Irina Botan

Outline

• Introduction
• Dynamic Software Transactional Memory (DSTM)
• DSTM Implementation

– Transactions and Transactional Objects
– Contention Management

• DSTM performance
• DSTM2
• DSTM2 performance

2

Parallel Computing
Moore’s law => chip multiprocessing (CMP) => Increased Parallelism
Complex problems can be divided into smaller ones which can be then
executed in parallel

3

Sequential Computing Parallel Computing

Concurrent Access to Shared Data

4

int x[N];
i := N-1; …
…
if (i < N){

i := i+1;
x[i] := i;

}

T1 T2

Locking
• Coarse-grained or fine-

grained locking
• Locking conventions
• Vulnerability to thread

failures and delays
• Poor support for code

composition and reuse

=> too difficult to develop,
debug, understand and
maintain programs

5

lock()
i := N-1;
…
if (i<N)

x[i]:=i;
unlock()

lock()
i := i + 1;
unlock()

T1 T2

Coarse-grained locking

Software Transactional Memory (STM)

• Low-level API for synchronizing access to shared data
without using locks
– Alleviates the difficulty of programming
– Maintains performance

• Transactional Model
– Transaction = atomic sequence of steps executed by a

single thread (process); protects access to shared
(transactional) objects

• Only for static data structures
– Transactional objects and transactions defined apriori

6

From STM to D(ynamic)STM

• Transactions and transactional objects can be
created dynamically

if (object1.value == 1)
object2.value = 2;

else
object3.value = 2;

• Well suited for dynamic-sized data structures,
like linked lists and trees

7

Outline

• Introduction
• Dynamic Software Transactional Memory (DSTM)
• DSTM Implementation

– Transactions and Transactional Objects
– Contention Management

• DSTM performance
• DSTM2
• DSTM2 performance

8

Transactional Object
• Container for a shared object

• Creation

List newNode = new List(v);
TMObject newTMNode = new TMObject(newNode);

• Access

List current = (List)newTMNode.open(WRITE);
current.value = 1;

9

Transaction

• Short-lived single-threaded computation that
either commits (the changes take effect) or
aborts (the changes are discarded)

• Linearizability = transactions appear as if they
were executed one-at-a-time

10

Linked List Example
public boolean insert (int v){

List newList = new List(v);
TMObject newNode = new TMObject(newList);
TMThread thread = (TMThread)thread.currentThread();
while(true){

thread.beginTransaction();
boolean result = true;
try{

List prevList = (List)this.first.open(WRITE);
List currList = (List)prevList.next.open(WRITE);
while (currList.value < v){…}

} catch (Denied d){}
if (thread.commitTransaction())

return result;
}

}

11

Synchronization Conflict

• Two transactions attempting to access the same
object and at least one of them wants to write it

12

Check Synchronization Conflicts

• If a conflict occurs, open() throws a Denied exception
– The transaction knows it will not commit successfully and

will retry execution

13

public boolean insert (int v){
…
while(true){

thread.beginTransaction();
try{

List prevList = (List)this.first.open(READ);
…

} catch (Denied d){}
if (thread.commitTransaction())

return result;
}

}

Conflict Reduction = Early Release

• Release an object opened
in READ mode before
commit

• Useful for shared pointer-
based data structures
(e.g., lists, trees)

• Programmer’s job to
ensure correctness
(linearizability)

14

open(i, READ)

… …
release(i)

open(i,WRITE)
open(j,READ)

… …

commit

A B

Progress Guarantee

• Wait-freedom
– Every thread makes progress

• Lock-freedom
– At least one thread makes progress

• Obstruction-freedom
– Any thread that runs by itself for long enough

makes progress

15

Obstruction-Freedom

• A transaction can abort any other transaction

• + Simpler and more efficient (in absence
synchronization conflicts) than lock-freedom

• - Livelocks possible

16

Livelock
• Two competing processes

constantly change state
with respect to one another,
none making progress

• E.g., two people meeting in
a narrow corridor, each
trying to be polite by
moving aside to let the
other pass*

*http://en.wikipedia.org/wiki/Livelock#Livelock

17

Outline

• Introduction
• Dynamic Software Transactional Memory (DSTM)
• DSTM Implementation

– Transactions and Transactional Objects
– Contention Management

• DSTM performance
• DSTM2
• DSTM2 performance

18

Transactional Object Implementation

Transaction State Old Object New Object

Committed Meaningless Current object

Aborted Current Object Meaningless

Active Current Object Tentative new current object

19

Data

Data

old object
new object
transaction

State
Transactional Object

“transaction” points to the transaction that most recently opened the object in WRITE mode

Transactional Object Access

• Avoid generating inconsistencies
• How to atomically access all three fields?

20

old object
new object
transaction

Transactional Object

Data

Data

State

Atomically Access the Transactional
Object’s Fields

• Introduce another level of indirection
– CAS (Compare and Swap) to swing the Start object

from one locator object to the other

21

Start

TMObject

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

Data

Data

State

Data

Data

State

Open Transactional Object in WRITE Mode
(Previous Transaction Committed)

22

Data

Data

Data

Start

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

B(commit)

A

copy

Open Transactional Object in WRITE
Mode (Previous Transaction Aborted)

23

Data

Data

Data

Start

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

B(abort)

A

copy

Open Transactional Object in WRITE
Mode (Previous Transaction Active)

24

Data

DataStart

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

B(active)

A

ABORT

Open Transactional Object in READ
Mode

25

Data

DataStart oldLocator
old object
new object
transaction

B(commit)
Object Version Open

O1 V1 2

O2 V2 1

O3 V 1

1. Identify the last committed version of the
transactional object (exactly as for WRITE)

2. Add the pair (O,V) to a thread-local read-only
table

Read-only table

Transaction Validation

• Ensure that the user never sees an inconsistent state
• After open() determined the version

1. For each pair (O, V) verify that V is still the most recently
committed version of the object O

2. Check that status field of transaction still ACTIVE

26

Object Version Open

O1 V1 2

O2 V2 1

O3 V 1

Data

Data

old object
new object
transaction

State

Transactional ObjectStart

Transaction Commit

1. Validate entries in the read-only table
2. Change the status field of the transaction

from ACTIVE to COMMITTED

27

Object Version Open

O1 V1 2

O2 V2 1

O3 V 1

Data

Data

old object
new object
transaction

Active

Transactional ObjectStart

Committed
CAS

Contention Management

• Ensures progress
• Each thread has a Contention Manager

– Consults it to decide whether to force another
conflicting thread to abort

• Correctness requirement for contention
managers
– Any active transaction can eventually abort

another transaction (“obstruction-freedom”)
– Should avoid livelock

28

Contention Manager Policies Examples

• Aggressive
– Always and immediately grants permission to abort

any conflicting transaction
• Polite

– In case of a conflict, sleep for a time interval t
* Idea: wait for the other transaction to finish

– Retry and increase waiting time with each attempt
– After a fixed number of tries, immediately abort the

other transaction

29

Costs
• W – number of objects opened in WRITE mode
• R – number of objects opened in READ mode

• In the absence of conflicts
– (W+1) CAS operations (for each open() call and one commit)

• Synchronization conflicts
– More CAS operations to abort other transactions

• Costs of copying objects (uses simple load and store operations)
• Validating a transaction

– Requires O(R) work

• Total overhead due to DSTM implementation
– O((R+W)R) + clone each object opened for writing once

30

Outline

• Introduction
• Dynamic Software Transactional Memory (DSTM)
• DSTM Implementation

– Transactions and Transactional Objects
– Contention Management

• DSTM performance
• DSTM2
• DSTM2 performance

31

Experimental Setup

• Integer Set and Red-black tree

• Measure: how many operations completed in
20 seconds, varying the number of threads

• Goal: compare performance of different
implementation approaches

32

Experimental Results

33

Outline

• Introduction
• Dynamic Software Transactional Memory (DSTM)
• DSTM Implementation

– Transactions and Transactional Objects
– Contention Management

• DSTM performance
• DSTM2
• DSTM2 performance

34

Lessons Learned from DSTM
TMObject<Node> tmNode= new TMObject<node>(new Node());
Node rNode = tmNode.open(READ);
Node wNode = tmNode.open(WRITE);

• The programmer must not modify the object referenced by rNode
• If wNode is opened before rNode, changes to wNode are visible through

rNode, but not if they are opened in the opposite order
• rNode and wNode references must not linger (programmer’s job)
• The Node class must provide a clone() method
• Programmers must be aware of the container based implementation:

Class Node{
Int value;
TMObject<Node> next; //not Node

}

35

DSTM2

• Software transactional memory library (a
collection of Java packages that supports
transactional API)

• Safe, convenient and flexible API for application
programmers

• Allows users to plug-in their own synchronization
and recovery mechanisms (transactional
factories)

36

Atomic Classes Comparison

DSTM
TMObject<Node> newNode= new

TMObject<node>(new Node());
Node rNode = newNode.open(READ);
Node wNode =

newNode.open(WRITE);

Class Node{
Int value;
TMObject<Node> next; //not

Node
}

DSTM2
@atomic public interface INode{

int getValue();
void setValue(int value);
INode getNext();
void setNext(INode value);
…

}

Factory<INode> factory =
dstm2.Thread.makeFactory(INode.
class);

INode newNode = factory.create(); 37

Presenter
Presentation Notes
For each atomic class (the class defining containers for shared objects), the programmer defines a stylized atomic interface, a named collection of method signatures satisfying simple consistency conditions. The programmer then passes this

Atomic Interface
• @atomic

– Objects satisfying this
interface should be safe to
share

• Defines one or more
properties (pairs of get
and set) of certain type

• Property type: either
scalar or @atomic
interface

• May define other
specialized methods

@atomic public interface INode{
int getValue();
void setValue(int value);
INode getNext();
void setNext(INode value);
…

}

38

Transactional Factory

• Atomic interface is passed
to a transactional factory
constructor

• Use specific methods to
create class implementing
the interface

• The factory then creates
instances of the class

Factory<INode> factory =
dstm2.Thread.makeFactory
(INode.class);

INode newNode = factory.create();

39

Atomic Interface and Transactional
Factory

• Semantics of get and set is
clear

• Each factory is free to
provide its own
implementation for the
methods declared

@atomic public interface INode{
int getValue();
void setValue(int value);
INode getNext();
void setNext(INode value);
…

}

Factory<INode> factory =
dstm2.Thread.makeFactory
(INode.class);

INode newNode =
factory.create();

40

Obstruction-Free Factory

41

Data

Data

Data

Start

newLocator

oldLocator
old object
new object
transaction

old object
new object
transaction

B(commit)

A

copy

Obstruction-Free Factory Variants

• Invisible reads
– At commit time, a transaction must validate itself

• Checks that the versions read are still current

• Visible reads
– Each object maintains a list of reader transactions

descriptors
– A transaction intending to modify the object must

first abort them

42

Shadow Factory

43

field2
new object
field1

field3
transaction

transaction

shadow3

shadow2

shadow1

committed

field2
new object
field1

field3
transaction

transaction

shadow3

shadow2

shadow1

aborted
field2
new object
field1

field3
transaction

transaction

shadow3

shadow2

shadow1

committed

backup

restore

Transactions

DSTM
public boolean insert (int v){

…

TMThread thread =
(TMThread)thread.currentThread();

while(true){
thread.beginTransaction();
try{

…
} catch (Denied d){}
if (thread.commitTransaction())

return result;
}

}

DSTM2
result = Thread.doIt (new Callable<Boolean>(){

public boolean call(){
return intSet.insert(v);

}
}

public static <T> T doIt(Callable<T> xaction){
while (!Thread.stop){

beginTransaction();
try{

result=xaction.call();
}catch (AbortedException d){}
if (commitTransaction()){

return result;
}

}
}

44

Outline

• Introduction
• Dynamic Software Transactional Memory (DSTM)
• DSTM Implementation

– Transactions and Transactional Objects
– Contention Management

• DSTM performance
• DSTM2
• DSTM2 performance

45

DSTM2 Experimental Setup
• Linked-list and Skip List

• Configurations: obstruction-free factory (visible reads),
obstruction-free factory with invisible reads, shadow
factory

• 0%, 50%, 100% updates out of all operations

• Measure: transactions/second in a 20 second period

• Goal: show how DSTM2 can be used experimentally to
evaluate the relative performance of different factories

46

DSTM2 Performance

• Linked List
– The shadow factory 3-5 times higher throughput

than the obstruction-free factories
• Slightly higher when the percentage of updates

decreases
– Obstruction-free factories roughly the same

results
• Skip List

– Shadow factory better for high percentage of
updates

47

Conclusions

• STM – API for low-level synchronized access to
shared data without using locks

• DSTM – dynamic STM
– Dynamic creation of transactions and

transactional objects
– Detect and reduce synchronization conflicts
– Contention Manager (obstruction-freedom)

• DSTM2
– Flexible API for application programmers

48

	Software Transactional Memory for Dynamic-sized Data Structures
	Outline
	Parallel Computing
	Concurrent Access to Shared Data
	Locking
	Software Transactional Memory (STM)
	From STM to D(ynamic)STM
	Outline
	Transactional Object
	Transaction
	Linked List Example
	Synchronization Conflict
	Check Synchronization Conflicts
	Conflict Reduction = Early Release
	Progress Guarantee
	Obstruction-Freedom
	Livelock
	Outline
	Transactional Object Implementation
	Transactional Object Access
	Atomically Access the Transactional Object’s Fields
	Open Transactional Object in WRITE Mode (Previous Transaction Committed)
	Open Transactional Object in WRITE Mode (Previous Transaction Aborted)
	Open Transactional Object in WRITE Mode (Previous Transaction Active)
	Open Transactional Object in READ Mode
	Transaction Validation
	Transaction Commit
	Contention Management
	Contention Manager Policies Examples
	Costs
	Outline
	Experimental Setup
	Experimental Results
	Outline
	Lessons Learned from DSTM
	DSTM2
	Atomic Classes Comparison
	Atomic Interface
	Transactional Factory
	Atomic Interface and Transactional Factory
	Obstruction-Free Factory
	Obstruction-Free Factory Variants
	Shadow Factory
	Transactions
	Outline
	DSTM2 Experimental Setup
	DSTM2 Performance
	Conclusions

