SMALL-WORLD NAVIGABILITY



Talk about a small world...
S
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From cliché to social networks

-4
Milgram’s Experiment and The Small World Hypothesis

g

-~ Wisconsin

] 1

S
~lllin

Human society is a small-world type network characterized by short length paths

Alexandru Moga @ Seminar in Distributed Computing  3/4/2010


Presenter
Presentation Notes
Great distance in the US: socially and geographically.


From social networks to CS
B 5

At iy L 1p
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1 Models and Algorithms

‘t T1 -1 Experimental studies
()
*“QJ \\}““‘ 71 Impact in Computer Science?

4
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Small-world phenomenon
R

Six degrees of separation

“We are all linked by short chains of acquaintance”

Watts-Strogatz model
Pervasive in networks arising in nature and technology

Fundamental factor in the evolution of WWW

Kleinberg: People can find short paths very effectively

Can we put an algorithmic price on that?
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Six handshakes to the President/Six degrees of Kevin Bacon



Small world characteristics

Long-range edges
Local edges (few random shortcuts)

(many)

@

High clustering

What is a good network model that exhibits such characteristics?
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Presentation Notes
Superposition of structured subgraph (typical network structures: lattices, hierarchies, groups) with a random subgraph ~ geographical interpretation
Network is generated using some probability distribution function (related to the long-range edges)
Low network diameter (like uniform random networks)
Clustering: neighbours of x are also neighbours
What is a good network model that exhibits such characteristics?


Navigation

. ) i i Estimated distance to target (global) ]
Acquaintanceship /Friendship

Source s

[Decentralized search (local) Greedy search }

d,, = min{x’s neighbours}

Can we effectively navigate from s to t given a network model?
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Estimated distance has a global character (may not be a real distance)
Chain length has a local character (real distance)
Pr(x,y)=f(d(x,y)) for long-range edges


The Watts-Strogatz model
m

-1 Re-wired ring lattice

Long-range edges
(probability )

Local edges
(K-nearest neighbors)
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Take a regular lattice, add random links, and you get a small-world
Example K=4, beta=0.2


Kleinberg’s model

Local edges(p)
A>E:=d(AE) <p ,

/Long-range edges(q)
Pr(A>Z) ~ 1/[d(A,Z)]*

_Inverse a'h-power distribution

Lattice distance
d(A,Z) = |t-u| + [w-v]
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Two-dimensional grid network structure (n x n  square)
Set of nodes {(i,j) : i  {1,…,n}, j  {1,…,n}}
N=6, p=1,q=0



Clustering exponent «
B

-1 Family of network models with parameter «

a=0 a>0
§ -
Long-range contacts chosen independently Long-range contacts tend to
of their position (~Watts-Strogatz model) cluster in the nodes’ vecinity

Which « yields an effectively navigable network?

Expected delivery time T
»Expected number of steps to reach the destination
» Shortness (small T) of paths is defined as polylogarithmic
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Polylogarithmic: T grows slowly while N increases


Navigability in Kleinberg’s model

—
—
—
—

a

0 a|:2

Inverse-square distribution (1/d?) is the unique
distribution that allows polylogarythmic T < log?N

Generalization

For a k-dimensional lattice, paths are polylogarithmic iff a0 = k
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Alfa=2: Target area progressively closes as new nodes are added to the chain


Inverse-square distribution
i

A Last phase

At most 7
logN steps 7

/
—V\é 2
@)\( i+ Phase |

S

- ~logN phases

Initial phase
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Plausible social structures (Watts et al.)
Em

. Individuals have identities

>, World is partitioned hierarchically (cognitively)

w  Group management is easier (typically 100 individuals)

Branching factor J Similarity of
individuals
I= .0 (i

[ Group size ];_
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Plausible social structures

14
3. Network structure

W Pr(acquaintance) decreases with decreasing similarity
Choose i and a link distance with Pr(x) = ce **

Choose | that is in distance x from i

Continue until individuals have an average of z friends

-~
-~
-~
-~
-~
~
-~

o, - shows homophily
e * << 1: cliques
e * = b: uniform random graph
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Uniform random graph: everybody is equally likely to link to anybody.


Plausible social structures
s

4. Social world is multi-dimensional (H)

@ Each dimension corresponds to an independent
hierarchical division (e.g. geography, occupation)

®  Node identity: H-dimensional vector
- =1

h=1
| Yi = 4
Yi TYik < Vi i
i, j k

i J.k
5. Perceived similarity yields “social distance”

@ Minimum similarity across all dimensions
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Same nodes, different hierarchies
Graphs build according to each hierarchy (superposition of graphs)
If i and j are very similar in a hierarchy, thery are also close socially


Searchability with social distance

Searchable networks

in the H-a space

Comparison to original
Milgram experiment

Ad

13 15 1of
10}
3 o
* Individuals are basically homophilous = al ]
* Similarity is judged along more than 1 o} NH ]
dimenations (2-3) 0 1

12345678 9101112131415
L

L~6.5 (Milgram) vs. L~6.7
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Experimental setting similar to Milgram’s experiment
q= the probability of a chain reaching the target
Average z: avg no of friends in all dimensions (larger H implies fewer ties per dimension)
Upper limit of H: random walk


Experimental studies

2
-1 Real-world social networks
71 Large-scale

1 Geography and occupation are crucial

-1 Network structure alone may not be sufficient
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Geography in small-world networks

SNoweII et al.t
S

What is the importance of geography in navigation?

o1 LiveJournal online community
0 ~500.000 bloggers located in US
O Friendship-based network
01 Global routing with GEOGREEDY LiVEJOURNAL
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GEOGREEDY simulation

80% of chains
completed with avg.

13% of chains length of 16.74
completed with 0.04 |- //
avg. length of 4.12

/003 |

path length k

What is the relation between geography and friendship?
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Original experiment
Chain fails if u has no other friend v that is close to the target
Modified experiment
If d(v,t)>d(u,t), u picks a random person from the same city to continue
80% of chains completed with avg. length of 16.74
Geography seems to be enough  surface similarity to Milgram’s experiment (18% of messages completed)
13 % < completion rate < 80%



Geographic friendship probability
B

P Kleinber 2 +50.000 people
<«
B 1e-03 \
'i'--: _____ Ithaca, NY
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= P(8) < 1/87° ==
West Coast -+ .
East Coast = . S
P(3) = 1/6 == »
100 1000
distance & (km)

1e-06

prlivelournal(§) ~1 / 8%, gt~1 J [Live]ournal network exhibits large

variance in population density

What is a good interpretation of geographic friendship?
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P(delta) : proportion of pairs separated by delta/ or the probability of u,v within distance delta to be friends
Ill-approximation using Kleinberg model with pure geographic distance/network is still searchable


Rank-based friendship
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rank,(v) := |{w:d(u,w) < d{u,v}} |
Prlu > v] ~ 1/rank (v)

In a network formed by rank-based friendship,

GEOGREEDY can find short paths (polylogarithmic)
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Figure: much better approximation of population distribution
Theorem: Analytic evidence


Navigability in global social networks

SDodds et cl.!
T

71 Routing in the Livelournal community

~70%

Source Destination

geography-based non-geography-based

1 Geography and occupation are the most important
factors in establishing short chains
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Search often transitions from geography-based (global/coarse-grained) to non-geography-based (local/fine-grained)

LiveJournal: only 2 thirds were geography-based friendships.


E-mail replication experiment
I

-1 Human participants (not simulated)

1 ~100k individuals, 18 targets in 13 countries

Type of relationship % Origin of relationship % Strength of relationship %
Friend 67 Work 25 Extremely close 18
Relatives 10 School/university 22 Very close 23
Co-worker 9 Family/relation 19 Fairly close 33
Sibling 5 Mutual friend 9 Casual 22
Significant other 3 Internet 6 Not close 4
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Geography vs. occupation

Geography matters more in the early
stages of the chain (3 steps)

L N Location | Travel Family| Work | Education Friends  Cooperative  Other
1 19718 33 16 11 9 9 3
2 7,414 40 11 11 6 7 2
3 2,834 37 8 10 6 4 3
4 1,014 33 6 7 5 5 5
5 349 27 3 6 6 3 5
6 117 21 3 5 4 5 5
7 37 16 3 3 8 5 0

Occupation clearly takes over in the
later stages
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People were also asked why they considered their chosen friend as a good recipient.


Results of the study
B

-1 Without enough incentives, the small-world
hypothesis may not hold

o E.g. Target 5 (university prof.) accounted for 44% of
the completed chains =2 good reachability

-1 Network structure alone is not enough

Alexandru Moga @ Seminar in Distributed Computing  3/4/2010



Case study: Freenet
=

1 P2P system
0 Collaborating group of Internet nodes
o Overlay special-purpose network

0 Application-level routing ' |

I Freenet !
o Distributed anonymous information -
storage and retrieval

0 Unstructured system
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Case study: Freenet

File ids
Searching Route
.................. '

B’s Routing Table

Return Route Kev Pointer

E has a copy
of key 8

File caching on the return path
Typical cache replacement
policy: LRU

[ Backtracking

D’s Ruutiug Table

3

Kev

Pointer
E
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Case study: Freenet
I

1 At low load:

1 Freenet network shown to evolve into a “small-world”
(high clustering + logarithmic paths)

-1 At high load:

0 Frequent local caching actions

0 Clusters may break = small-world hypothesis might not
hold
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Case study: Freenet
B

-1 Enhanced-clustering cache replacement policy
0 Preserve key clustering in the cache

0 Each node chooses a seed s(x) randomly from the key space

Random
s(x) (shortcuat)

key
L
|||||||I|I|I |

o0 At node x (datastore full) Cmmed

keys
= key u arrives

= choose v which is farthest from the seed ey space

m Distance(u, seed) < Distance(v, seed): cache u, evict v, create entry for u

m Distance(u, seed) > Distance(v, seed): cache u, evict v, create entry for u
with probability p (randomness)
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Case study: Freenet

-1 Empirical results

Ring Topology
(300 nodes, cache size=40)

1.2

1

& 0.6
% 0.4
0.2

0

2 0.8 1
=

e

0

—+—LRU

—#— Enhanced-clustering

—4— Enhanced-clustering

with Random shortcuts

10 20 30

# of keys generated per node

-1 Analytically

2 f(dlxy) ~ 1/dlxy) = 1/15,5,
0 Expected delivery time: O(log?n)
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* Analytical evidence


Other applications

1 Crawling the WWW

mmmmm segameplaneloonz

i ARSI NE gameplanet conz
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Conclusion
22 4
A small-world network is characterized by:

High clustering of nodes
“Short” paths

Small-world phenomenon has two sides

Existential and Algorithmic

Unsupervised networks are generally small-worlds
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Take a structured network and add random links with probability depending on distance (position in the network)
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