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Abstract

The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR,
NOT, and MODm gates, where m > 1 is an arbitrary constant. We prove:

• NTIME[2n] does not have non-uniform ACC circuits of polynomial size. The size lower bound
can be slightly strengthened to quasi-polynomials and other less natural functions.

• ENP, the class of languages recognized in 2O(n) time with an NP oracle, doesn’t have non-uniform
ACC circuits of 2n

o(1)

size. The lower bound gives an exponential size-depth tradeoff: for every d
there is a δ > 0 such that ENP doesn’t have depth-d ACC circuits of size 2n

δ

.

Previously, it was not known whether EXPNP had depth-3 polynomial size circuits made out of only
MOD6 gates. The high-level strategy is to design faster algorithms for the circuit satisfiability problem
over ACC circuits, then prove that such algorithms entail the above lower bounds. The algorithm com-
bines known properties of ACC with fast rectangular matrix multiplication and dynamic programming,
while the second step requires a subtle strengthening of the author’s prior work [STOC’10].
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1 Introduction
Non-uniform computation allows the size of a program to grow with the sizes of inputs. A non-uniform

computation can be naturally represented as an infinite family of Boolean circuits, one for each possible
input length. A longstanding aim of complexity theory is to understand the power of non-uniform compu-
tation in relation to the usual uniform models which have fixed-size programs. One complication is that
non-uniform computations can recognize undecidable languages by having a large enough circuit for each
input length. Finding uniform computations that cannot be simulated by small non-uniform circuit families
is an extremely difficult venture that is related to other major problems. For instance, P 6= NP follows if one
could provide an NP problem that cannot be solved by any circuit family where the size of the nth circuit
is at most polynomial in n. Non-uniform lower bounds establish impossibility results for computation in
the physical world: it could be that P 6= NP, yet NP-complete problems can still be efficiently solved using
a “bloated” program with sufficiently many lines of code. Non-uniform circuit size lower bounds for NP
would rule out this possibility. (However, it is currently possible that all of NP has circuits of size 6n.)

In the early 1980’s, researchers began to carefully study the power of non-uniform low depth circuits.
Intuitively, such circuits correspond to extremely fast parallel computations. The initial hope was that if
some functions in NP were proved to require large, restricted circuit families, then by gradually lifting the
restrictions over time, superpolynomial size unrestricted lower bounds for NP could be attained, proving
P 6= NP. Furst, Saxe, and Sipser [FSS81] and independently Ajtai [Ajt83] showed that functions such as
the parity of n bits cannot be computed by polynomial size AC0 circuits, i.e., polynomial size circuit families
of constant depth over the usual basis of AND, OR, and NOT gates, where each AND and OR may have
arbitrarily many inputs. Yao [Yao85] improved the lower bounds to exponential size, and Håstad [Hås86]
proved essentially optimal AC0 lower bounds for parity. Around the same time, Razborov [Raz85] proved
superpolynomial lower bounds for solving clique with monotone circuits (i.e., general circuits without NOT
gates), and the bound was improved to exponential size by Alon and Boppana [AB87]. However, it was
later shown [Raz89] that the monotone techniques probably would not extend to general circuits.

Encouraged by the progress on AC0, attention turned to lower bounds for what seemed to be minor gener-
alizations. The most natural generalization was to grant AC0 the parity function for free. Razborov [Raz87]
proved an exponential lower bound for computing the majority of n bits with constant-depth circuits made up
of AND, OR, NOT, and MOD2 gates. (A MODm gate outputs 1 iff m divides the sum of its inputs.) Then
Smolensky [Smo87] proved exponential lower bounds for computing MODq with constant-depth circuits
made up of AND, OR, NOT, and MODp gates, for distinct primes p and q. Barrington [Bar89] suggested
the next step would be to prove lower bounds for the class ACC, which consists of constant-depth circuit
families over the basis AND, OR, NOT, and MODm for arbitrary constant m > 1.1 It is here that progress
on strong lower bounds began to falter (although there has been progress on further restricted cases, cf. the
Preliminaries). While it was conjectured that the majority of n bits cannot have polynomial ACC circuits,
strong ACC lower bounds remained elusive.

After some years of failing to prove a superpolynomial lower bound, the primary questions were weak-
ened. Rather than trying to find simple functions that cannot be computed with weak circuits, perhaps we
could rule out weak circuits for complicated functions. Could one prove that nondeterministic exponential
time (NEXP) doesn’t have polynomial size circuits? A series of papers starting with Babai, Fortnow, Nisan,
and Wigderson [BFNW93, KvM99, IKW02] showed that even this sort of lower bound would imply de-
randomization results: in the case of NEXP lower bounds, it would imply that Merlin-Arthur games can

1The class is also called ACC0 in the literature. However, as ACCi is hardly studied at all, for any i > 0, at the present time it
makes sense to drop the superscript.
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be non-trivially simulated with nondeterministic algorithms. This indicated that proving good circuit lower
bounds for NEXP would already require significantly new ideas.

In this paper, we address two frontier questions concerning non-uniform circuit complexity:

1. Does nondeterministic 2O(n) time have non-uniform polynomial size ACC circuits?
(Is NTIME[2O(n)] in non-uniform ACC?)

2. Does exponential time with an NP oracle have non-uniform polynomial size circuits?
(Is EXPNP ⊆ P/poly?)

Over the years, these questions have turned into notorious and somewhat embarrassing open problems,
because it seems so obvious that the answers should be no. It was open if EXPNP could be recognized with
depth-3 polynomial size circuits made out of only MOD6 gates.2 We make headway on these frontiers,
giving a strong no answer to the first question.

Theorem 1.1 NTIME[2n] does not have non-uniform ACC circuits of polynomial size.

Stronger size lower bounds hold (e.g. quasi-polynomial size) but the results are not very clean; see
Section 5.1 for details. For EXPNP, we can prove an exponential lower bound.

Theorem 1.2 (Exponential Size-Depth Tradeoff) For every d, there is a δ > 0 and a language in ENP

that fails to have non-uniform ACC circuits of depth d and size 2n
δ
.

Recall that the lowest complexity class for which we know exponential (unrestricted) circuit lower
bounds is ∆EXP

3 , the third level of the exponential hierarchy [MVW99].
Extending the approach of this paper to settle the second frontier question may be difficult, but this

prospect does not look as implausible as it did before. If polynomial unrestricted circuits could be simulated
by subexponential ACC circuits, or if one could improve just a little on the running time of algorithms for
the circuit satisfiability problem, the second question would be settled.

1.1 An Overview of the Proofs

Let us sketch how these new lower bounds are proved, giving a roadmap for the rest of the paper. In
recent work [Wil10], the author suggested a research program for proving non-uniform circuit lower bounds
for NEXP. It was shown that for many circuit classes C, sufficiently faster satisfiability algorithms for C-
circuits would entail non-uniform lower bounds for C-circuits. The objective of this paper is to carry out the
proposed research program in the case of ACC circuits.

The proof of the lower bound for ENP (Theorem 1.2) is a combination of complexity-theoretic ideas
(time hierarchies, compression by circuits, the local checkability of computation) and algorithmic ideas
(fast matrix multiplication, dynamic programming, table lookup).

1. First, we show that satisfiability algorithms for subexponential size n-input ACC circuits with running
time O(2n/nk) imply exponential size ACC lower bounds for ENP (Theorem 3.2), where k is sufficiently
large. The model of computation for the satisfiability algorithm is flexible; we may assume the multitape
Turing model or a random access machine. This step considerably strengthens results of earlier work [Wil10]
which could only show that an o(2n/3) time algorithm for ACC circuit satisfiability implies lower bounds.

2Note that slightly larger classes such as MAEXP and NEXPNP are known to not have polynomial size circuits; see the Prelim-
inaries.
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The strategy is to prove that, if there is a faster algorithm for ACC circuit satisfiability, and there are subexpo-
nential (2n

o(1)
) size ACC circuits for ENP, then every L ∈ NTIME[2n] can be accepted by a nondeterministic

algorithm in O(2nn10/nk) time. (Here, 10 is a substitute for a small universal constant.) When k > 10 this
contradicts the nondeterministic time hierarchy theorem [SFM78, Zak83], so one of the assumptions must
be false. The nondeterministic time hierarchy is fairly robust with respect to the machine model: for large
enough k, NTIMETM [2n] 6⊆ NTIMERAM [2n/nk] where NTIMETM denotes nondeterministic multitape
Turing machines and NTIMERAM denotes nondeterministic RAMs in the usual logarithmic cost model (cf.
Lemma 2.1). This implies it suffices for the underlying ACC SAT algorithm to work on a RAM (provided it
runs in O(2n/nk) time for large enough k).

Two known facts are required in the proof. First, there is a polynomial-time reduction from any L ∈
NTIME[2n] to the NEXP-complete problem SUCCINCT 3SAT such that every instance x of length n (for
sufficiently large n) is reduced to a (unrestricted, not ACC) circuit Cx of size O(n5) with at most n+5 log n
inputs (Fact 3.1). That is, the bit string obtained by evaluating Cx on its O(2nn5) possible assignments (in
lex order) encodes a 3CNF formula FCx that is satisfiable iff x ∈ L. Second, if ENP is in subexponential
ACC, then (given an input x) the lexicographically first satisfying assignment to the formula encoded by Cx
can be described by an ACC circuit W of subexponential size (Fact 3.2). That is, the bit string obtained by
evaluating W on all possible assignments encodes a satisfying assignment to the exponentially long FCx .

If Cx were an ACC circuit, then any L could be simulated in O(2nn5/nk) nondeterministic time, by
nondeterministically guessing a subexponential ACC circuit W and constructing an ACC circuit satisfiabil-
ity instance D built of Cx and W , where D is satisfiable if and only if W does not encode a satisfying
assignment to FCx (as shown in the author’s prior paper). The circuit D has at most n+ 5 log n inputs and
2n

o(1)
size, so the assumed ACC satisfiability algorithm can handle D in O(2nn5/nk) time.

The above argument doesn’t quite work, because we do not know how to produce a Cx that is an ACC
circuit (indeed, it may not be possible). An ACC SAT algorithm will not work on D, because it contains a
copy of an unrestricted Cx. However, assuming only P has subexponential ACC circuits, we show how to
guess and verify an equivalent ACC circuit C ′x in nondeterministic O(2nn10/nk) time using a faster ACC
satisfiability algorithm (Lemma 3.1). This new result makes it possible to prove lower bounds even with
weak ACC satisfiability algorithms. Furthermore, this part of the proof does not use any specific properties
of ACC, so it could potentially be applied for stronger lower bounds in the future.

2. Next we show how satisfiability of subexponential ACC circuits of depth d and n inputs can be
determined in 2n−Ω(nδ) time, for a δ > 0 that depends on d (Theorem 4.1). Given any such circuit C,
replace it with C ′ which is an OR of 2n

δ
copies of C, where the first nδ inputs of each copy are substituted

with a variable assignment. This ACC circuit C ′ has n − nδ inputs, 2O(nδ) size, and C is satisfiable if and
only if C ′ is. Applying a powerful result of Yao, Beigel-Tarui, and Allender-Gore (Lemma 4.1), C ′ can be

replaced by an equivalent depth-2 circuit C ′′ of 2n
δ2O(d)

size, which consists of an efficiently computable
symmetric function at the output gate and AND gates below it. Setting δ � 1/2O(d), and using a nearly
optimal rectangular matrix multiplication algorithm due to Coppersmith (Lemma 4.3), C ′′ can be evaluated
on all of its possible assignments in 2n−n

δ
poly(n) time (Lemma 4.2). Alternatively, this evaluation of C ′′

can also be done via simple dynamic programming. This concludes the sketch of the ENP lower bound.
The only use of the full assumption “ENP has ACC circuits” is in Fact 3.2. The lower bound for

NEXP (Theorem 1.1) applies the result (which follows from work of Impagliazzo, Kabanets, and Wigder-
son [IKW02]) that if NEXP has polynomial size (unrestricted) circuits then satisfiable instances of SUC-
CINCT 3SAT already have polynomial size (unrestricted) circuits W encoding satisfying assignments (The-
orem 5.1). But if P has ACC circuits, it is easy to see that these unrestricted circuits must have equivalent
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ACC circuits as well (Lemma 5.1). This helps extend the ENP lower bound to NEXP. However, the resulting
size lower bound is not exponential: from S(n)-size circuits for NEXP one only obtains S(S(S(n)c)c)c-size
ACC circuits encoding satisfying assignments. This allows for some “half-exponential” type improvements
in the size lower bounds against NEXP.

Perhaps the most interesting aspect of the proofs is that only the satisfiability algorithm for ACC circuits
relies on specific properties of ACC. Improved exponential algorithms for satisfiability are the only barrier
to further progress on circuit lower bounds for NEXP. In general, this paper weakens the algorithmic
assumptions necessary to prove lower bounds, and strengthens the lower bounds obtained. Let C be a class
of circuit families that is closed under composition (the composition of two circuit families from C is also a
family in C) and contains AC0. Possible C include constant-depth threshold circuits, Boolean formulas, and
unrestricted Boolean circuits. The arguments of Section 3 and Section 5 imply the following metatheorem.

Theorem 1.3 There is a k > 0 such that, if satisfiability of C-circuits with n variables and nc size can be
solved in O(2n/nk) time for every c, then NTIME[2n] doesn’t have non-uniform polysize C-circuits.

2 Preliminaries
We presume the reader has background in circuit complexity and complexity theory in general. The

textbook of Arora and Barak [AB09] covers all the necessary material; in particular, Chapter 14 gives an
excellent summary of ACC and the frontiers in circuit complexity.

On the machine model. An important point about this paper is that the choice of uniform machine model
is not crucial to the arguments. We show that if large classes have small non-uniform ACC circuits, then
NTIME[2n] ⊆ NTIME[o(2n)] (in fact, NTIME[2n] ⊆ NTIME[o(2n/nk)] for sufficiently large k), which
is a contradiction in all computational models we are aware of. Moreover, Gurevich and Shelah proved
that the nondeterministic machine models are tightly related in their time complexities. For example, let
NTIMERTM [t(n)] be the languages recognized by nondeterministic t(n) time random-access Turing ma-
chines, and let NTIMETM [t(n)] be the class for multitape Turing machines.

Theorem 2.1 (Gurevich and Shelah [GS89])⋃
c>0 NTIMERTM [n logc n] =

⋃
c>0 NTIMETM [n logc n].

As a consequence, even if we showed NTIMETM [2n] ⊆ NTIMERTM [2n/nk] for sufficiently large k,
we would still obtain the desired contradiction. (Note that such a result is not known for the deterministic
setting.) A random access Turing machine can also simulate a log-cost random access machine with only
constant factor overhead [PR81]. Hence in our proof by contradiction, we may assume that the source
algorithm we’re simulating is only a multitape TM, while the target algorithm has all the power we need to
perform typical computations from the literature.

Notation. Inside of an algorithm description, the integer n refers to the length of the input to the algorithm.
For a function f : N→ N, we use poly(f(n)) to denote a growth rate of the form cf(n)c for a constant c.

The size of a circuit refers to the number of wires in it. However, since our attention shall be restricted to
circuits with at least polynomially many gates, the distinction between the number of wires and gates does
not matter. An unrestricted circuit has gate types AND/OR/NOT, and each gate has fan-in two. (That is,
an unrestricted circuit is the generic variety used in the definition of P/poly.) All circuit size functions S
considered in this paper are assumed to be monotone nondecreasing, i.e., S(n+ 1) ≥ S(n) for all n.

We say that a generic circuit class C is a collection of circuit families that (a) contains AC0 (for every
circuit family in AC0, there is an equivalent circuit family in C) and (b) is closed under composition: if {Cn}
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and {Dn} are families in C, then for every c, the circuit family consisting of circuits which take n bits of
input, feed them to nc + c copies of circuits from Cn, and feed those outputs to the inputs of Dnc+c, are also
circuit families in C. Essentially all classes studied extensively in the literature (AC0, ACC, TC0, NC1, NC2,
P/poly, etc.) may be construed as circuit classes in this sense. For classes that allow for superpolynomial
size circuits, the polynomial “nc + c” in the above may be relaxed appropriately.

For a complexity class C, the class i.o.-C consists of languages L ⊂ Σ? such that there is a language
L′ ∈ C where L ∩ Σn = L′ ∩ Σn holds for infinitely many n.

When the expression “O(1)” appears inside of the time bound for a complexity class, this is short-
hand for the union of all classes where the O(1) is substituted by a fixed constant. For example, the class
TIME[2n

O(1)
] is shorthand for

⋃
c≥0 TIME[2n

c
].

Other Prior Work. Kannan [Kan82] showed in 1982 that for any superpolynomial constructible function
S : N → N, the class NTIME[S(n)]NP does not have polynomial size circuits. Another somewhat small
class known to not have unrestricted polynomial size circuits is MAEXP [BFT98]. Later it was shown that
the MAEXP lower bound can be improved to half-exponential size functions f which satisfy f(f(n)) ≥
2n [MVW99]. Kabanets and Impagliazzo [KI04] proved that NEXPRP either doesn’t have polynomial size
Boolean circuits (over AND, OR, NOT), or it doesn’t have polynomial size arithmetic circuits (over the
integers, with addition and multiplication gates). Note that NEXPRP ⊆ MAEXP.

A line of work initiated by Yao [Yao90] has studied ways of representing ACC circuits by certain depth-
two circuits which will play a critical role in this paper. Define a SYM+ circuit to be a depth-two circuit
which computes some symmetric function at the output gate, and computes ANDs of input variables on
the second layer. Yao showed that every ACC circuit of s size can be represented by a probabilistic SYM+

circuit of sO(logc s) size, where c depends on the depth, and the ANDs have poly(log s) fan-in. Beigel
and Tarui [BT94] showed how to remove the probabilistic condition. Allender and Gore [AG94] showed
that every subexponential uniform ACC circuit family can be simulated by subexponential uniform SYM+

circuits. This was applied to show that the Permanent does not have uniform ACC circuits of subexponential
size. Later, Allender [All99] improved the Permanent lower bound to polynomial size uniform TC0 circuits.
However, these proofs require uniformity, and the difference between uniformity and non-uniformity may
well be vast (e.g., it is clear that P 6= NEXP, but open whether NEXP ⊆ P/poly). Green et al. [GKRST95]
showed that the symmetric function can be assumed to be the specific function which returns the middle bit
of the sum of its inputs. This representation may also be used in the lower bounds of this paper.

There has also been substantial work on representing ACC in other interesting ways [BT88, AAD00,
Han06, KH09] as well as many lower bounds in restricted cases [BST90, Thé94, YP94, KP94, BS95, Cau96,
Gro98, GT00, CGPT06, CW09]. Significant work has gone into understanding the constant degree hypoth-
esis [BST90] that a certain type of low-depth ACC circuit requires exponential size to compute the AND
function. The hypothesis is still open.

All prior works on non-uniform ACC lower bounds attack the problem in a “bottom-up” way. (The
exceptions are the uniform results mentioned above [AG94, All99].) Lower bounds have been proved for
highly restricted circuits and these restrictions have been very gradually relaxed over time. In this paper,
the strategy is “top-down”: the goal is to find the smallest complexity classes for which it is still possible to
prove superpolynomial ACC lower bounds. This is in line with the overall goal of eventually proving large
circuit lower bounds for NP.

As mentioned before, this paper builds on the author’s prior work which showed that mild improvements
over exhaustive search can sometimes imply lower bounds. Let us briefly review the prior state-of-the-art
for SAT algorithms. It is known that CNF satisfiability can be solved in 2n−Ω(n/ ln(m/n))poly(m) time,
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wherem is the number of clauses and n is the number of variables [DH08, CIP06]. Recent work of Calabro,
Impagliazzo, and Paturi has shown that AC0 circuit satisfiability can be determined with a randomized
algorithm in 2n−n

1−o(1)
time on circuits with n1+o(1) gates [CIP09]. Recently, Santhanam [San10] has

applied ideas inspired by formula size lower bounds to show that for a fixed constant k, Boolean formula
satisfiability can be determined in O(2n−n/c

k
) time on formulas of size cn. Unfortunately, these upper

bounds are not yet strong enough to prove new circuit lower bounds.

How does this work get around the barriers? There are several well-known barriers to proving lower
bounds, and any proof claiming a new lower bound should try to explain a bit about how it manages to
work around them. Briefly, the approach of this paper circumvents the natural proofs barrier because of
its use of diagonalization: a proof by contradiction is given which appeals to a time hierarchy theorem,
so constructivity is violated. (Furthermore, to our knowledge there is little evidence that ACC contains
pseudorandom function generators anyway, so it’s not clear that natural proofs should be considered a barrier
for ACC.) Informally, the approach circumvents relativization and algebrization because it relies on an
efficient ACC satisfiability algorithm, which uses non-relativizing properties of ACC circuits (reduction to
a SYM+ circuit). In general, the approach of using SAT algorithms to prove lower bounds appears fruitful
for circumventing oracle-based barriers, because all known improved satisfiability algorithms break down
when oracles (or algebraic extensions thereof) are added to the instance. That is, significant improvements
over exhaustive search necessarily exploit structure in instances that black-box methods cannot see.

3 A Strengthened Connection Between SAT Algorithms and Lower Bounds
In this section, we prove that if one can achieve a very minor improvement over exhaustive search in

satisfying ACC circuits, then one can prove lower bounds for ACC. The required improvement is so minor
that we are able to achieve it, in the sequel. However, let us stress upfront that all the results in this section
hold equally well for other circuit classes as well: we only require basic properties of ACC that practically
all robust circuit classes satisfy.

Define the ACC CIRCUIT SAT problem to be: given an ACC circuit C, is there an assignment of its
inputs that makes C evaluate to 1? In recent prior work [Wil10], the author proved a relation between
algorithms for ACC CIRCUIT SAT and lower bounds for ACC circuits:3

Theorem 3.1 ([Wil10]) Let s(n) = ω(nk) for every k. If ACC CIRCUIT SAT instances with n variables
and nc size can be solved in O(2n/3/s(n)) time for every c, then ENP does not have non-uniform ACC
circuits of polynomial size.

We shall sharpen this theorem. Let S : N → N be a monotone nondecreasing function such that
S(n) ≥ n. Let C be a circuit class as defined in the Preliminaries. (C can be ACC, TC0, NC1, P/poly,
etc.) Define the C-CIRCUIT SAT problem to be: given a circuit C from class C, is there an assignment of its
inputs that makes C evaluate to 1?

Theorem 3.2 Let S(n) ≤ 2n/4. There is a c > 0 such that, if C-CIRCUIT SAT instances with at most
n+ c log n variables, depth 2d+O(1), and O(n S(2n) +S(3n)) size can be solved in O(2n/nc) time, then
ENP does not have non-uniform C circuits of depth d and S(n) size.

The constant c depends on the model of computation in which the SAT algorithm is implemented, but for
all typical models, c is not large (less than 10). For us, the important corollary is this: if ACC satisfiability

3In fact a more general result for any circuit class was proved, which implies Theorem 3.1.
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has a slightly faster algorithm on circuits that are mildly larger than S(n), then ENP does not have ACC
circuits of S(n) size. In what follows, we prove Theorem 3.2 only for ACC circuits, but the proof also
works for any other circuit class. (The reader can verify that the only two properties of ACC used are that
the class contains AC0, and the class is closed under composition of circuit families.)

To understand the difficulty behind proving Theorem 3.2, let us recall the proof of Theorem 3.1 to see
why it needed such a strong assumption. The generic proof idea in [Wil10] for results such as Theorem 3.1
is to derive a contradiction from assuming small circuits for ENP and a faster algorithm for CIRCUIT SAT.
In particular, it is shown that under the two assumptions, every language L ∈ NTIME[2n] can be recognized
in NTIME[o(2n)], which is false by the nondeterministic time hierarchy theorem [SFM78, Zak83]. The
contradiction is derived from several facts about circuits and satisfiability.

Define SUCCINCT 3SAT as the problem: given a circuit C on n inputs, let FC be the 2n-bit instance of
3-SAT obtained by evaluating C on all of its possible inputs in lexicographical order. Is FC satisfiable?

That is, given a compressed encoding of a 3-CNF formula, the task is to determine if the underlying
decompressed formula is satisfiable. For natural reasons, call FC the decompression of C, and call C the
compression of FC . The SUCCINCT 3SAT problem is a canonical NEXP-complete problem [PY86].

Fact 3.1 There is a constant c > 0 such that for every L ∈ NTIME[2n], there is a reduction from L to
SUCCINCT 3SAT which on input x of length n runs in poly(n) time and produces a circuit Cx with at
most n + c log n inputs and O(nc) size, such that x ∈ L if and only if the decompressed formula FCx of
2n · poly(n) size is satisfiable.

Fact 3.1 follows from several prior works concerned with the complexity of the Cook-Levin theo-
rem [Tou01, FLvMV05]:

Theorem 3.3 (Tourlakis [Tou01], Fortnow et al. [FLvMV05]) There is a c > 0 such that for all L ∈
NTIME[n], L reduces to 3SAT in O(n(log n)c) time. Moreover there is an algorithm (with random access
to its input) that, given an instance of L with length n and an integer i ∈ [dn(log n)c] in binary (for some d
depending on L), outputs the ith clause of the resulting 3SAT formula in O((log n)c) time.

In fact, the proofs in the above references build on even earlier work of Schnorr, Cook, Gurevich-Shelah,
and Robson [Sch78, Coo88, GS89, Rob91]. In a nutshell, all of these proofs exploit the locality of computa-
tion: every nondeterministic computation running in linear time can be represented with a nondeterministic
circuit of sizeO(n·poly(log n)) which has a highly regular and efficiently computable structure. This circuit
can be easily modeled as a 3-CNF formula using the Tseitin transformation that assigns a variable to each
circuit wire and uses 3-CNF clauses to model the input-output relationships for each gate.

The value of c in Theorem 3.3 depends on the underlying computational model; typically one can take
c to be at most 4. A standard padding argument (substituting 2n in place of n) yields Fact 3.1. In more
detail, given L ∈ NTIME[2n], we apply Theorem 3.3 to the language L′ = {x012|x| | x ∈ L}, which is in
NTIME[n]. On an input x, this generates an equivalent 3SAT instance of length O(2|x||x|c). As it is easy
to simulate random accesses to an input of the form x012|x| with a uniform poly(|x|) size circuit, one can
simulate the O((log n)c) time algorithm of Theorem 3.3 on L′, with a uniform poly(|x|c) size circuit.

Using Fact 3.1, one can then prove that every succinctly compressible satisfiable formula that is output
by the SUCCINCT 3SAT reduction has some succinctly compressible satisfying assignment.

Fact 3.2 If ENP has ACC circuits of size S(n), then there is a fixed constant c such that for every language
L ∈ NTIME[2n] and every x ∈ L of length n, there is a circuitWx of size at most S(3n) with k ≤ n+c log n
inputs such that the variable assignment zi = W (i) for all i = 1, . . . , 2k is a satisfying assignment for the
formula FCx , where Cx is the circuit obtained by the reduction in Fact 3.1.
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Proof of Fact 3.2. Consider the ENP machine:

N(x, i): Compute the SUCCINCT 3SAT reduction from x to Cx in polynomial time. Decom-
pressCx, obtaining a formula F ofO(2|x||x|c) size. Let k be the number of inputs toCx. Binary
search for the lexicographically smallest satisfying assignment A to F , by repeatedly querying:
given (F,A) where |A| ≤ 2k, is there an assignment A′ ≤ A that satisfies F ? Then output the
ith bit of A.

Note the queries can be answered in NP, and N needs O(2k) queries to the oracle. By assumption, N has
ACC circuits of size S(n). It follows that for every x ∈ L there is some satisfying assignment to F which
is encoded by a circuit of size S(|〈x, i〉|) ≤ S(3|x|), where 〈·, ·〉 is a polynomial-time computable pairing
function. �

Given these two facts, one can recognize any L ∈ NTIME[2n] with a o(2n) nondeterministic algorithm
(a contradiction), as follows. Given a string x of length n, compute the SUCCINCT 3SAT circuit Cx in
polynomial time and nondeterministically guess a S(3n) size circuit W . Now the goal is to check that W
succinctly encodes a satisfying assignment for the underlying formula FCx . To verify this condition, the
algorithm constructs a CIRCUIT SAT instance D. The circuit D has n + c log n inputs fed to O(n) copies
of Cx, so that when i is input to D, the copies altogether print the ith clause of the 3CNF formula FCx .
These copies output three variable indices of length at most n + c log n, along with sign bits (whether or
not the variables are negated in the clause). Then D feeds each index to a copy of W , which prints a bit.
FinallyD compares the sign bits with the three bits printed by the copies ofW , and outputs 0 iff the variable
assignment encoded by W satisfies the ith clause. Observe D has poly(n) + O(S(3n)) size. Running a
fast enough CIRCUIT SAT algorithm lets us determine the satisfiability of D in o(2n) time. Finally, this
algorithm for L accepts x iff D is unsatisfiable. To see that this algorithm is correct, observe there is a
size-S(3n) circuit W such that D is an unsatisfiable circuit, if and only if there is such a W encoding a
satisfying assignment for FCx , if and only if x ∈ L.

The above argument cannot be carried out directly to prove ACC circuit lower bounds from ACC CIR-
CUIT SAT algorithms, because of Fact 3.1. Given an instance x of L, the resulting circuit Cx produced in
the reduction from L to SUCCINCT 3SAT can be constructed in polynomial time, however it looks hard
(perhaps impossible) to show that this Cx can be assumed to be an ACC circuit. As Cx is a component of the
circuit D, it follows that D itself would not be an ACC circuit, so an ACC CIRCUIT SAT algorithm would
not seem to be useful for determining the satisfiability of D.

In the proof of Theorem 3.1 in the author’s prior work [Wil10], this problem was fixed by settling for a
weaker reduction from L to SUCCINCT SAT, which generates an AC0 circuit C ′x with 3n+O(log n) inputs
rather than n+O(log n). Unfortunately this constant factor makes a huge difference: to quickly determine
satisfiability of the resulting circuit D′ in o(2n) time, a 2n/3/nω(1) time algorithm for ACC CIRCUIT SAT

is needed, instead of a 2n/nω(1) algorithm. Algorithms of the former type are not known even for 3SAT;
algorithms of the latter type are much more plentiful.

While it is unlikely that these Cx circuits can be implemented in ACC, note that we already assume
that ACC is powerful in some sense: in a proof by contradiction, we may assume many functions have
small ACC circuits! Since the function computed by Cx is computable in polynomial time, then even if we
assume that only P has ACC circuits, there still exists a circuit C ′x which is ACC and equivalent to Cx, but
it is from a non-uniform family, and therefore may be arbitrarily difficult to construct. However, we can
use nondeterminism in the algorithm recognizing L in NTIME[o(2n)], so at the very least we can guess this
elusive C ′x. We also have a good algorithm for ACC CIRCUIT SAT at our disposal. By guessing two more
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ACC circuits to help us, it turns out that we can always generate a correct ACC circuit C ′x that is equivalent
to Cx in o(2n) time. We arrive at our main lemma:

Lemma 3.1 There is a fixed d > 0 with the following property. Assume P has ACC circuits of depth d′ and
size at most S(n). Further assume ACC CIRCUIT SAT on circuits with n+c log n inputs, depth 2d′+O(1),
and at most O(S(3n) + S(2n)n) size can be solved in O(2n/nc) time, for sufficiently large c > 2d.

Then for every L ∈ NTIME[2n], there is a nondeterministic algorithm A such that:

• A runs in O(2n/nc + S(3n) · poly(n)) time,

• for every x of length n,A(x) either prints reject or it prints an ACC circuit C ′x with n+d log n inputs,
depth d′, and S(n+ d log n) size, such that x ∈ L if and only if C ′x is the compression of a satisfiable
3-CNF formula of 2n · poly(n) size, and

• there is always at least one computation path of A(x) that prints the circuit C ′x.

That is, given an instance x, the algorithm A nondeterministically generates an equivalent SUCCINCT

3SAT instance C ′x which is an ACC circuit. Informally, A will guess and verify C ′x in three stages.

1. A guesses an ACC circuit D of depth d′ and size less than O(S(2n) log n) which encodes the gate
information of the circuit Cx which has knd + k size. Given a gate index j = 1, . . . , knd + k, D
produces the gate type of j, as well as the indices of gates whose outputs are the inputs for gate j.
The correctness of D can be verified in O(ndS(2n) · poly(logS(2n))) time by simply producing the
whole knd + k size circuit described by D and comparing that with Cx.

2. A guesses an ACC circuit E of depth d′ and S(n+ d log n+O(1)) ≤ S(2n) size which encodes the
evaluation of Cx on every input i: given input i and a gate index j = 1, . . . , knd + k, E produces
the output of gate j in Cx evaluated on i. A verifies that E is correct, using the fact that D is correct.
By constructing an appropriate ACC CIRCUIT SAT instance that checks for all inputs and all gates
that the claimed inputs to that gate are consistent with the output of the gate, this verification takes
O(2n/nc) time (for c chosen to be greater than 2d).

3. Then using the fact that E is correct, it is easy to verify C ′x is correct via a call to ACC CIRCUIT SAT

in O(2n/nc) time. A only needs to check if there is an i such that C ′x(i) 6= E(i, j?), where j? is the
index of the output gate. (Alternatively, we could just print the circuit E(·, j?) as a valid ACC circuit
that is equivalent to Cx(·).) If E is correct and no such i exists, then C ′x is also correct.

Proof of Lemma 3.1. We describeA in detail. On input x of length n,A guesses an ACC circuit C ′x of size
S(n+ d log n), and constructs the SUCCINCT 3SAT circuit Cx with n+ d log n inputs and at most knd + k
size (of Fact 3.1) in polynomial time, for some fixed d that is independent of L. By Fact 3.1, x ∈ L if and
only if Cx is the compression of a satisfiable formula FCx of O(2nnd) length. We must verify that C ′x and
Cx compute exactly the same function, using only the algorithm for ACC CIRCUIT SAT.

Without loss of generality, the unrestricted circuit Cx above has gate types AND, OR, NOT, and INPUT,
where every AND and OR has fan-in two. By definition an INPUT gate has no inputs, and the output value
of an INPUT gate is the appropriate input bit itself. The gates are indexed by the numbers 1, . . . , knd + k,
where the first n + d log n indices correspond to the n + d log n INPUT gates, and the (knd + k)th gate is
the output gate.

Since the map x 7→ Cx is polynomial time computable, the following function f is polynomial-time
computable:
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Given x, and a gate index j = 1, . . . , knd + k, f(x, j) outputs the gate type (AND, OR, NOT,
INPUT) of the jth gate in the circuit Cx. Furthermore, if the gate type is NOT, then f outputs
the gate index j1 in Cx whose output is the input to j; if the gate type is an AND or OR, then f
outputs the two gate indices j1 and j2 in Cx whose outputs are the two inputs of j.

Consider the decision problemDf : given x, j, and i = 1, . . . , 2d log n+O(1), decide if the ith bit of f(x, j)
is 1. The problem Df is solvable in polynomial time and hence has O(S(n+ d log n+O(log log n)))-size,
d′-depth ACC circuits, by assumption.

Let D(x, j) be an ACC circuit implementing the functionality of f . Note we may assume the size of D
is O(S(n+O(log n)) log n), by simply taking 2d log n+O(1) copies of the S(n+O(log n))-size circuit
solving the decision problemDf . (By convention, let us assume that whenD is printing the gate information
for an INPUT gate, it prints all-zeroes strings in place of j1 and j2, and when D is printing the information
for a NOT gate, it prints all-zeroes in place of j2.)

The nondeterministic algorithm A guesses D, and verifies that D is correct on the given input x in time

O(ndS(n+O(log n)) · poly(logS(n+O(log n)))) ≤ nd · S(2n) · poly(logS(2n)) ≤ O(22n/3),

by evaluating D(x, ·) on all possible j = 1, . . . , knd + k, and checking that all outputs of D correspond
with the relevant gates in Cx. If D does not output all the gates of Cx correctly, then A rejects.

Next, consider the problem:

Given x, an input i of n+d log n bits, and a gate index j = 1, . . . , knd+k, output the bit value
on the output wire of the jth gate when Cx is evaluated on i.

By assumption, this problem also has ACC circuits, since Cx can be constructed and evaluated on any input
i in polynomial time. LetE(x, i, j) be an ACC circuit of size S(n+(n+d log n)+d log n+O(1)) ≤ S(3n)
and depth d′ with this functionality.

NowA guessesE and wishes to verify its correctness on x. To do this,A constructs a circuit VALUE(i, j)
built out of D and E, where i has n + d log n bits and j = 1, . . . , knd + k. Intuitively, VALUE(i, j) will
output 0 if and only if E produces a sensible output for the jth gate of Cx evaluated on input i.

First, VALUE(i, j) feeds j to the circuitD(x, ·), producing gate indices j1, j2, and a gate type g. VALUE
then computes v1 = E(x, i, j1), v2 = E(x, i, j2) and v = E(x, i, j). (Depending on g, these j1 and j2 may
be all-zeroes, but this does not matter to us.)

If g = INPUT, then VALUE outputs 0 if and only if j ∈ {1, . . . , n+d log n} and the jth bit of i equals v.
This behavior can be implemented with an AC0 circuit of O(n logS(n)) size: an AND over all 2n choices
of a bit from input i along with a bit v, of ORs of fan-in logS(n) +O(1).

If g = NOT, then VALUE outputs 0 if and only if v1 = ¬v.
If g = AND, then VALUE outputs 0 if and only if v1 ∧ v2 = v.
If g = OR, then VALUE outputs 0 if and only if v1 ∨ v2 = v.
Note that each of the above three conditions can be implemented with a constant number of gates, given

the values g, v1, v2, and v. It follows that VALUE can be implemented as an ACC circuit.
SinceA has not rejected, D is correct, so we know that for all i, j, the gate types g and input connections

j1 and j2 are correct. Therefore VALUE(i, j) = 1 if and only if E asserts that the output of gate j in Cx(i)
equals v, and E asserts the inputs to j have values v1, v2, but the gate type g dictates that the output of j
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should be ¬v. It follows that VALUE is an unsatisfiable circuit if and only if E prints correct values for all
gates in Cx(i), over all i.

Therefore, by calling ACC circuit satisfiability on VALUE(·, ·), A determines whether E is correct. The
algorithmA rejects ifE is deemed incorrect. The circuit VALUE(i, j) has n+2d log n+O(1) inputs, depth
2d′ + O(1), and O(S(3n) + S(2n) logS(2n) + n logS(n)) ≤ O(S(3n) + S(2n)n) size. By assumption,
the assumed ACC satisfiability algorithm runs in O(2n/nc) time for c chosen to be greater than 2d.

After checking that E is a correct guess, the question of whether C ′x is equivalent to Cx can now be
verified. (Alternatively, at this point we may simply print the circuit E(·, knd + k) as a valid circuit that
is equivalent to Cx(·).) First note that if E is correct, then for all i, Cx(i) = E(x, i, knd + k). Therefore
it suffices to set up an ACC circuit EQUIV(i) which outputs 1 if and only if C ′x(i) 6= E(x, i, knd + k),
and determine if EQUIV is satisfiable using the algorithm for ACC CIRCUIT SAT. Since EQUIV(i) has
n + d log n inputs, depth d′ + O(1), and size O(S(n + O(log n))), the circuit satisfiability call runs in
O(2n/nc) time by assumption. If EQUIV is satisfiable, then A rejects.

Finally, A prints its guessed circuit C ′x if the algorithm did not reject on any of the above steps. �

Remark 1 The proof of the lemma does not really rely on specific properties of ACC at all. We only need
that the underlying circuit class C contains AC0 and is closed under composition of two circuit families. The
same goes for the proof of Theorem 3.2 below.

Remark 2 In fact the lemma shows that, given any circuit C from a P-uniform family and a C-circuit D,
we can efficiently check if C is equivalent to D using nondeterminism (under the assumptions that P has
C-circuits and there are efficient C-satisfiability algorithms).

With Lemma 3.1 in hand, the proof of Theorem 3.2 closely follows the author’s prior work (Theo-
rem 3.1), except the circuit C ′x is substituted in place of Cx. Let us give the details, using the specific
example of ACC in place of a generic circuit class C.

Reminder of Theorem 3.2 Let S(n) ≤ 2n/4. There is a c > 0 such that, if C-CIRCUIT SAT instances with
at most n+ c log n variables, depth 2d+ O(1), and O(n S(2n) + S(3n)) size can be solved in O(2n/nc)
time, then ENP does not have non-uniform C circuits of depth d and S(n) size.

Proof of Theorem 3.2. Suppose ACC CIRCUIT SAT instances with n+c log n variables, depth 2d+O(1),
and O(n S(2n) + S(3n)) size can be solved in O(2n/nc) time for a sufficiently large c. Further suppose
that ENP has non-uniform ACC circuits of depth d and S(n) size. The goal is to show that NTIME[2n] ⊆
NTIME[o(2n)], contradicting the nondeterministic time hierarchy [SFM78, Zak83].

Let L ∈ NTIME[2n]. We describe a fast nondeterministic algorithm B deciding L. As discussed earlier
(Lemma 2.1), we may assume L has a multitape Turing machine implementation in O(2n) time, and we
only need to simulate L on a RAM in O(2n/nc) time for large enough c to obtain the contradiction.

On input x of length n, B first runs the nondeterministic algorithm A of Lemma 3.1. Using the ACC
CIRCUIT SAT algorithm and the fact that P has ACC circuits, A runs in O(2n/nc + S(3n) · poly(n)) ≤
O(2n/nc) time, and for some computation path, A produces an ACC circuit C ′x of S(n + c log n) size and
n+ c log n inputs such that x ∈ L if and only if C ′x is the compression of a satisfiable formula FC′x .

Then B nondeterministically guesses a S(3n)-size circuit W . By Fact 3.2, there exists such a W that
encodes a satisfying assignment for FC′x if and only if x ∈ L.

Next, B constructs an ACC CIRCUIT SAT instance D to verify that W is correct (just as in the proof
of Theorem 3.1). The circuit D has n + c log n inputs fed to O(n) copies of C ′x, so that when i is input to
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D, the ith clause of the 3CNF formula FC′x is printed on O(n) bits of output. The O(n) bits encode three
variable indices along with sign bits for each variable. For the three variables, an assignment is computed
for them by evaluating the indices on three copies of W . Finally, D compares the sign bits with the bits
output by the copies of W , and outputs 0 iff the variable assignment encoded by W satisfies the ith clause.

Observe that D has O(n S(2n) +S(3n)) size, depth 2d+O(1), and n+ c log n inputs. By assumption,
the satisfiability of D can be determined in O(2n/nc) time, hence B decides if x ∈ L in O(2n/nc) time. �

4 A Satisfiability Algorithm for ACC Circuits
Now we present an algorithm that determines the satisfiability of ACC circuits slightly faster than the

2n runtime of exhaustive search. There are two components in the algorithm: a nice representation of ACC
circuits, and a method for evaluating this representation quickly on all of its inputs. This method can be
implemented using either fast rectangular matrix multiplication, or a dynamic programming approach.

It follows from the work of Yao [Yao90], Beigel and Tarui [BT94], and Allender and Gore [AG94] that,
given any ACC circuit of size s, one can produce a sO(logc s) size SYM+ circuit in poly(sO(logc s)) time that
has equivalent functionality, and very special properties. (For more background, see the Preliminaries.)

Lemma 4.1 There is an algorithm and function f : N → N such that given an ACC circuit of depth d and
size s, the algorithm outputs an equivalent SYM+ circuit of sO(logf(d) s) size. The algorithm takes at most
sO(logf(d) s) time.

Furthermore, given the number of ANDs in the circuit that evaluate to 1, the symmetric function itself
can be evaluated in sO(logf(d) s) time.

The function f(d) is estimated to be no more than 2O(d). Technically speaking, the above lemma is not
explicitly proved in prior work, but Allender and Gore effectively show it: they prove that given a uniform
ACC circuit (with an efficiently computable connection language), there is a similarly uniform SYM+ circuit
of the appropriate size. Their proof corresponds to an efficient, deterministic algorithm computing the
transformation, and this algorithm works equally well if it is simply given any ACC circuit as input (not
necessarily uniform). A proof of the lemma is included in Appendix A.

4.1 Rapid evaluation of an ACC circuit on all of its inputs

The other component of the ACC satisfiability algorithm is a method for rapidly evaluating a given SYM+

circuit on all of its possible satisfying assignments:

Lemma 4.2 (Evaluation Lemma) There is an algorithm that, given a SYM+ circuit of size s ≤ 2.1n and
n inputs with a symmetric function that can be evaluated in poly(s) time, runs in (2n + poly(s)) · poly(n)
time and prints a 2n-bit vector V which is the truth table of the function represented by the given circuit.
That is, V [i] = 1 iff the SYM+ circuit outputs 1 on the ith variable assignment.

That is, any SYM+ circuit can be evaluated on all 2n assignments in polynomial amortized time per
assignment. Brute force search would take 2n · poly(s) time, but the algorithm manages to use roughly
2n + poly(s) time instead.

Lemma 4.2 can be proved in two different ways; both are appealing for different reasons. The first proof
uses a powerful primitive (fast matrix multiplication) that is common in theoretical computer science, and
it is plausible that the matrix multiplication approach could be extended further. The second proof, using
dynamic programming, has the benefit that it can be completely described with few technical details. For
pedagogical purposes it is preferred.
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Proof 1: Matrix multiplication. The first way to prove Lemma 4.2 is to use a fast rectangular matrix
multiplication algorithm of Coppersmith, building on prior work of Schönhage [Sch81]. This algorithm
works in the case where the “middle” dimension of the matrices is polynomially smaller than the other two.
In this case, matrix multiplication can be done nearly optimally.4

Lemma 4.3 (Coppersmith [Cop82]) For all sufficiently largeN , multiplication of anN×N .1 matrix with
an N .1 ×N matrix can be done in O(N2 log2N) arithmetic operations.

More precisely, Coppersmith shows that there is a constantK such that one can multiply anN×N matrix
with an N × N .1 matrix in K · N2 log2N operations with a bilinear algorithm, i.e., a depth-3 arithmetic
circuit with additions at the top level, multiplications in the middle, and additions at the bottom level, where
each input wire to an addition gate may also multiply the input by a scalar. From the duality of bilinear matrix
multiplication algorithms [HM73], a bilinear algorithm for multiplying N ×N and N ×M directly implies
a bilinear algorithm for multiplying N ×M and M ×N . Furthermore, Coppersmith’s algorithm is explicit,
in that it can be executed on typical machine model (even a multitape TM) in O(N2 · poly(logN)) time,
on matrices over any field of poly(logN) elements. We give implementation details for his construction in
Appendix B. For us, the relevant corollary is the following.

Corollary 4.1 For all sufficiently large N , two 0-1 matrices of dimensions N × N .1 and N .1 × N can be
multiplied over the integers in O(N2 · poly(logN)) time.

We arrive at our first proof of Lemma 4.2.

Proof of Lemma 4.2. Suppose we are given a SYM+ circuit C ′′ of size s′′ ≤ 2.1n. Partition the inputs
of C ′′ into two sets A and B of size at most n′ = (n + 1)/2 each. Set up two matrices MA and MB of
dimensions 2n

′ × s′′ and s′′ × 2n
′

(respectively). The rows of MA are indexed by all possible assignments
to the variables in set A, while the columns of MA are indexed by the AND gates of C ′′. Similarly, the
columns of MB are indexed by variable assignments in B, while the rows of MB are indexed by the ANDs
of C ′′. Define:

MA(i, j) =

{
1 if the ith assignment of variables from A does not force the jth AND to be 0,

0 otherwise,

and

MB(j, k) =

{
1 if the kth assignment of variables from B does not force the jth AND to be 0,

0 otherwise.

Note the preparation of MA and MB takes at most 2n/2 · s′′ · poly(n) ≤ O(2n/2+.2n) time.
Multiply MA and MB , yielding a matrix N . Note that MA(i, j) ·MB(j, k) = 1 iff the ith assignment in

A and the kth assignment in B together set the jth AND of C ′′ to 1. (Given an assignment to all variables
in A and B, the AND is forced to either 1 or 0.) Hence N(i, k) equals the number of ANDs set to 1 by the
ith assignment in A and the kth assignment in B. Therefore, C ′′ is satisfiable if and only if some entry of
N makes the symmetric function of C ′′ output 1.

Since s′′ ≤ 2.1n
′
, the fast rectangular matrix multiplication of Corollary 4.1 applies, and the multiplica-

tion of MA and MB can be done in 22n′poly(n) time.
4Curiously, later work on rectangular matrix multiplication from the 90’s [Cop97, HP98] does not provide tight enough bounds:

only N2+ε for all ε > 0, rather than N2 log2 N . Note that a bound of N2 · 2(logN)o(1) already suffices for our application.
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To decide whether some entry of N makes the symmetric function output 1, initialize a bit vector T
of length s′′ + 1, setting T [i] to be the value of the symmetric function of C ′′ on each i = 0, 1, . . . , s′′.
The construction of T takes poly(s′′) time, since the symmetric function can be evaluated in poly(s′′) time.
Then for every pair i, k ∈ {1, . . . 2n′}, if v[N(i, k)] = 1 then stop and report satisfiable. If every pair has
been examined without stopping, report unsatisfiable. The for-loop over all pairs can be implemented in
22n′poly(n) ≤ 2npoly(n) time by standard table lookup or by sorting the distinct elements of N(i, k). �

Proof 2: Dynamic Programming. Since the above algorithm uses fast matrix multiplication, it is quite
possibly a “galactic algorithm” (in the sense of Lipton [Lip10]) that would never be run on a physical com-
puter, due to hidden constants. Moreover, the underlying matrix multiplication algorithm is rather technical
and messy. The evaluation lemma can also be proved using simple dynamic programming, following a
conversation with Andreas Björklund.

Proof of Lemma 4.2. Assume we are given a SYM+ circuit C ′′ with a collection of s′′ AND gates over
some variables {x1, . . . , xn}. Let Gj ⊆ [n] be the set of variable indices that are input to the jth AND gate.
Define a function f : 2[n] → N, where f(S) equals the number of j = 1, . . . , s′′ such that S = Gj . The
function f can be prepared as a lookup table in O(2n + s′′ · poly(n)) ≤ O(2n) time, by building a table
of 2n entries which are initially zero, and for each of the s′′ AND gates corresponding to a subset S, we
increment the S-th entry in the table.

Now consider the function g(T ) =
∑

S⊆T f(S) defined on all T ⊆ [n]. (Typically, g is called the zeta
transform of f .) Observe that g(T ) equals the number of AND gates set to 1 on the variable assignment
obtained by setting xi = 1 for i ∈ T , and xi = 0 for i /∈ T . Therefore the table of 2n integers of size
O(log s′′) representing the function g is equivalent to the matrix N in the previous proof. Hence if we can
compute g then we can evaluate C ′′ on all of its possible inputs.

It remains to show how to compute g efficiently. Given f , the function g can be computed in O(2n ·
poly(n)) time by a dynamic programming algorithm of Yates from 1937 (cf. [BHK09], Section 2.2). For
i = 0, . . . , n, define gi : 2[n] → N by g0(T ) = f(T ), and

gi(T ) =

{
gi−1(T ) + gi−1(T \ {i}) if i ∈ T,
gi−1(T ) otherwise.

It follows that each gi+1 can be obtained from gi in O(2npoly(n)) time. Induction shows that gi(T ) =∑
S f(S) where the sum is over all S ⊆ T subject to the condition that {j ∈ S | j > i} = {j ∈ T | j > i}.

When i = n, both of these sets are always empty, so it follows that gn = g. �

The above description is suitable for random access machines, but the algorithm can also be implemented
on a multitape Turing machine using standard ideas. (Strictly speaking, the multitape implementation is not
necessary to prove ACC lower bounds, because Lemma 2.1 shows it suffices to have a fast random-access
implementation of any L ∈ NTIMETM [2n]. However, the extension to multitape may be useful for future
work.) Details are in Appendix C.

4.2 The final algorithm

Given the evaluation lemma, the ACC satisfiability algorithm is relatively straightforward.

Theorem 4.1 For every d > 1 there is an ε ∈ (0, 1) such that satisfiability of depth-d ACC circuits with n
inputs and 2n

ε
size can be determined in 2n−Ω(nδ) time for some δ > ε that depends only on d.

15



Proof. Let `, ε be parameters to set later. Suppose we are given a depth-d ACC circuit C of s = 2n
ε

size
and n inputs. Make a circuit C ′ with s · 2` size and n− ` inputs which is obtained by producing 2` copies of
C, plugging in a different possible assignment to the first ` inputs of C in each copy, and taking the OR of
these copies. Observe C ′ is a depth-(d+ 1) ACC circuit, and C is satisfiable if and only if C ′ is satisfiable.

Applying the translation from ACC to SYM+ (Lemma 4.1), a circuit C ′′ can be produced which is
equivalent to C ′, where C ′′ consists of a symmetric gate connected to s′′ ≤ se(`

e loge s) ANDs of variables,
for some constant e that depends only on the depth d. Producing C ′′ from C ′ takes only sO(`e loge s) steps.
When s = 2n

ε
, s′′ ≤ 2en

ε(`enεe). Set ` = n1/(2e), and observe that s′′ ≤ 2n
2/3

for all sufficiently large n
and sufficiently small ε.

By the evaluation lemma (Lemma 4.2) and the fact that the symmetric function of C ′′ can be evaluated in
poly(s′′) time, C ′′ can be evaluated on all of its possible assignments in O(2n−` · poly(n)) ≤ 2n−Ω(n1/(2e))

time, hence the satisfiability of C can be determined within this time. �

Two remarks. It is worth pointing out a couple more things about the algorithm. First, the algorithm can
be generalized in multiple ways which may be useful in the future. Instead of taking an OR of all partial
assignments to a small number of variables in C, one could instead take any constant number of ANDs
and ORs of partial assignments, convert this to a SYM+ circuit, then apply the evaluation lemma. This
observation shows that any quantified Boolean formula with a constant number of quantifier blocks and
a predicate described by an ACC circuit of subexponential size can also be solved faster than exhaustive
search. Second, note that the algorithm does not give a faster way to solve satisfiability for the class SYM+

itself, because in the algorithm we need that the OR of 2` circuits from the class is still a circuit in the class.
Hence we cannot give lower bounds for SYM+ at the present time.

5 ACC Lower Bounds
Combining the results of the previous two sections, non-uniform lower bounds for ACC can be proved.

Reminder of Theorem 1.2 For every d, there is a δ > 0 and a language in ENP that fails to have non-
uniform ACC circuits of depth d and size 2n

δ
.

Proof. Theorem 4.1 states that for every d there is an ε > 0 so that satisfiability of depth-d ACC circuits
with n inputs and 2O(nε) size can be solved in 2n−Ω(nδ) time, for some δ > ε. Theorem 3.2 says there is a
c > 0 such that, if ACC CIRCUIT SAT instances with n + c log n variables, depth 2d + O(1), and at most
s = n 2O(nε) size can be solved in O(2n/nc) time, then ENP does not have non-uniform ACC circuits of
depth d and 2n

ε
size. The lower bound follows, as 2(n+c logn)−Ω((n+c logn)δ) � O(2n/nc) for every c. �

It follows that complete problems such as SMALLEST SUCCINCT 3SAT (given a circuit C and integer i,
output the ith bit of the smallest satisfying assignment to the formula FC encoded by C) require exponential
ACC circuits. The ENP lower bound can be “padded down” in a standard way to prove superpolynomial
lower bounds for a class that is very close to PNP.

Corollary 5.1 For every d, QuasiPNP = TIME[nlogO(1) n]NP does not have non-uniform ACC circuits of
depth d and polynomial size.

Proof. If there were a d such that TIME[2(logn)c ]NP had such circuits for every c, then by a padding
argument (replacing n with 2n

1/c
) it would follow that ENP has depth-d size-2O(n1/c) circuits for every c,

contradicting Theorem 1.2. �
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Note it is known that NTIME[nlogO(1) n]NP does not have polynomial size (unrestricted) circuits [Kan82].
Superpolynomial ACC lower bounds for NEXP are also provable. First we need a theorem established in
prior work: if NEXP has (unrestricted) polynomial size circuits, then every satisfiable formula output by
the SUCCINCT 3SAT reduction in Fact 3.1 has some satisfying assignment that can be represented with a
polynomial size unrestricted circuit.

More precisely, say that SUCCINCT 3SAT has succinct satisfying assignments if there is a fixed constant
c such that for every language L ∈ NTIME[2n] and every x ∈ L of length n, there is a circuit Wx of
poly(n) size with k ≤ n+ c log n inputs such that the variable assignment zi = W (i) for all i = 1, . . . , 2k

is a satisfying assignment for the formula FCx , where Cx is the circuit obtained by the SUCCINCT 3SAT
reduction in Fact 3.1. Say that Wx is a succinct satisfying assignment for Cx.

Theorem 5.1 ([Wil10]) Suppose NEXP has polynomial size circuits. Then SUCCINCT 3SAT has succinct
satisfying assignments.

Theorem 5.1 is not explicitly proved in the paper, however it follows immediately from another theorem.
Say that NEXP has universal witness circuits of polynomial size if for every L ∈ NEXP and every correct
exponential time verifier for L, there is a c > 0 such that for every x ∈ L, there is a circuit of size at
most |x|c + c which encodes a witness for x that is accepted by the verifier. (For more formal definitions,
see [Wil10].) The following directly implies Theorem 5.1:

Theorem 5.2 ([IKW02, Wil10]) If NEXP ⊆ P/poly then every language in NEXP has universal witness
circuits of polynomial size.

The proof of Theorem 5.2 follows an argument by Impagliazzo, Kabanets, and Wigderson [IKW02].
The second ingredient is a simple folklore lemma.

Lemma 5.1 (Folklore) Let C be any circuit class. If P has non-uniform C circuits of S(n)O(1) size, then
there is a c > 0 such that every T (n)-size circuit family (uniform or not) has an equivalent S(n +
O(T (n) log T (n)))c-size circuit family in C.

Proof. If P has non-uniform S(n)O(1)-size C circuits, then for some c > 0, the CIRCUIT EVAL problem
has S(n)c-size circuits. (Recall the CIRCUIT EVAL problem is: given an arbitrary Boolean circuit C
and input x, evaluate C on x and output the answer.) Let {Dn(·, ·)} be a S(n)c-size circuit family for
this problem. Now let {Cn} be an arbitrary T (n)-size circuit family. To obtain an equivalent C-circuit
family {C ′n} of S(n + O(T (n) log T (n)))c size, define C ′|x|(x) = Dn1(C|x|, x) for an appropriate length
n1 ≤ n+O(T (n) log T (n)). �

Note if S(n) and T (n) are polynomials, then S(n+O(T (n) log T (n)))c is also polynomial.

Reminder of Theorem 1.1 NTIME[2n] does not have non-uniform ACC circuits of polynomial size.

Proof. First, we claim that if NTIME[2n] has polysize ACC circuits, then every language in NEXP has
polysize ACC circuits. Let us sketch this implication, for completeness. If NTIME[2n] has polysize ACC
circuits, then the NEXP-complete problem SUCCINCT BOUNDED HALTING has polysize ACC circuits:
given a nondeterministic machine N , string x, and t written in binary, does N(x) have an accepting com-
putation path of length at most t? The reduction from any L ∈ NEXP to SUCCINCT BOUNDED HALTING

can be expressed with an AC0 circuit of size poly(n, log t). (Take any nondeterministic machine N with
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running time 2n
k

that accepts L. Given an input x, the AC0 circuit outputs the code of N as the first input of
the SUCCINCT BOUNDED HALTING instance, x as the second input, and 2|x|

k
as the third input, written in

binary. This only needs an AC0 circuit that outputs 1 followed by |x|k − 1 zeroes.) Hence every L ∈ NEXP
can be recognized by an ACC circuit family of size n`, for some ` depending on L.

By Lemma 5.1 and Theorem 5.1, it follows that SUCCINCT 3SAT has succinct satisfying assignments
that are polynomial size ACC circuits. We claim that a contradiction can be obtained by carefully examining
the proof of Theorem 1.2 (the lower bound for ENP). There, the only place requiring the full assumption
“ENP has non-uniform ACC circuits of size S(n)” is inside the proof of Theorem 3.2. In particular, the
assumption is needed in Fact 3.2, where it is shown that for every satisfiable instance of SUCCINCT 3SAT,
at least one of its satisfying assignments can be encoded in a size-S(3n) ACC circuit. (The only other part
of Theorem 3.2 where the assumption is applied is Lemma 3.1, but there it is only required that P has non-
uniform ACC circuits.) But from the above, we already have that SUCCINCT 3SAT has succinct satisfying
assignments which are ACC circuits.

Hence the ACC CIRCUIT SAT instance D constructed in Theorem 3.2 with the witness circuit W has
size polynomial in its n + c log n inputs. Finally, the Circuit SAT algorithm of Theorem 4.1 can deter-
mine satisfiability of any n + c log n input, nc size ACC circuit in O(2n−log2 n) time, for every constant c.
Therefore unsatisfiability of D can be determined in O(2n/nc) time for every constant c, and the desired
contradiction follows from the nondeterministic time hierarchy. �

It follows that problems complete under AC0 reductions for NEXP such as SUCCINCT 3SAT (given a
circuit C, does it encode a satisfiable 3-CNF formula FC?) require superpolynomial size ACC circuits.

5.1 An Extension to “Half-Exponential” Type Bounds
The NEXP lower bounds can be extended a little by studying the proof of Theorem 5.2. However, the

results are a bit ugly, so let us only sketch the arguments. A function f : N → N is said to be sub-half-
exponential if for every k, f(f(nk)k)k ≤ 2n

o(1)
. The following was conjectured by Russell Impagliazzo

(private communication), and can be proved by augmenting Theorem 5.2 with other known results.

Theorem 5.3 Let S(n) be any sub-half-exponential function such that S(n) ≥ n for all n. If NTIME[2n]
has S(n) size circuits, then all languages in NEXP have universal witness circuits of size O(S(S(nc)c)c),
for some c depending on the language.

The proof goes along the lines of Theorem 5.2, but with S(n) substituted in place of polynomials: we
assume (a) NEXP does not have universal witness circuits of S(S(nc)c)c size for any c, (b) NTIME[2n]
does have S(n) circuits, and derive a contradiction from the two. Assumption (a) implies that in time
O(2n), one can nondeterministically guess and verify the truth table of a Boolean function on n bits that
requires S(S(nc)c)c size circuits for every c, for infinitely many inputs. This is enough to partially deran-
domize MATIME[S(S(nO(1))O(1))O(1)] for infinitely many input lengths, putting the class inside of i.o.-
NTIME[2n]/n [IKW02] (recall that S(S(nO(1))O(1))O(1) ≤ 2n

o(1)
). Assumption (b) implies that NEXP has

S(nO(1))O(1) circuits, hence TIME[2S(nO(1))O(1)
] ⊆ MATIME[S(S(nO(1))O(1))O(1)] [BFNW93, MVW99].

It also follows from assumption (b) that i.o.-NTIME[2n]/n has O(S(n)) size circuits on infinitely many in-
put lengths. Putting these containments together, it follows that TIME[2S(n)O(1)

] has O(S(n)) size circuits
on infinitely many input lengths. This is false by direct diagonalization: for all large enough n there is a
function f on n variables with circuit complexity greater than S(n)2, and the lexicographically first f can
be found in 2O(S(n)3) time and simulated on a given input.

Combining Theorem 5.3 and Lemma 5.1, we immediately obtain the following implication between ACC
circuits for NTIME[2n] and ACC circuits which encode witnesses for NEXP.
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Corollary 5.2 If NTIME[2n] has S(n)-size ACC circuits, then every language in NEXP has universal wit-
ness ACC circuits of S(S(S(nc)c)c)c for some c depending on the language.

One extra application of S comes from Theorem 5.3 which produces universal witness circuits; the
other comes from Lemma 5.1 which converts those circuits to ACC. Define f : N → N to be sub-third-
exponential if for every k, f(f(f(nk)k)k)k ≤ 2n

o(1)
. Examples of sub-third-exponential functions are

f(n) = npoly(logn) and f(n) = 22poly(log logn)
.

Theorem 5.4 NTIME[2n] does not have sub-third-exponential size ACC circuits.

The argument is the same as Theorem 1.1, except we apply Corollary 5.2: if NTIME[2n] has such
circuits, then Corollary 5.2 says that NEXP has universal witness circuits which are ACC and have subex-
ponential size. This implies that SUCCINCT 3SAT instances have subexponential size ACC circuits that
encode their satisfying assignments, which is enough to establish the contradiction in Theorem 1.1.

Theorem 5.5 Let g : N → N have the property that there is a sub-third-exponential function f satisfying
g(f(n)) ≥ 2n. Then NTIME[g(n)] does not have polynomial size ACC circuits.

If such circuits did exist, then by padding, NTIME[2n] ⊆ NTIME[g(f(n))] would have ACC circuits
of size f(n)O(1) for some sub-third-exponential f , contradicting Theorem 5.4. (Raising f to a constant
power is still a sub-third-exponential function.) It follows that the polynomial size lower bound can be ex-

tended down to grotesque classes such as NTIME[222
√
log logn

] ( NTIME[2n], since f(n) = 2(logn)log logn
=

22(log logn)2

is sub-third-exponential, and g(f(n)) ≥ 2n for functions like g(n) = 222
√
log logn

.
Finally, it is also straightforward to extend the lower bounds to polysize ACC circuits of slightly non-

constant depth, as the ACC SAT algorithm still beats exhaustive search on polynomial size circuits of depth
o(log log n). The details can be worked out by perusing Theorem 4.1.

6 Conclusion
This paper demonstrates that the research program of proving circuit lower bounds via satisfiability

algorithms is a viable one. Further work will surely improve the results. Three natural next steps are:
replace ACC with TC0 circuits in the lower bounds, or replace NEXP with EXP, or extend the exponential
lower bounds from ENP to NEXP.

The results of Section 3 and Lemma 5.1 show that one only has to find a very minor improvement in
algorithms for TC0 satisfiability in order to establish non-uniform TC0 lower bounds for NEXP. The author
sees no serious impediment to the existence of such an algorithm; he can only report that the algorithms
tried so far do not work. The evaluation lemma for SYM+ circuits is key to the ACC SAT algorithm, and
it would be very interesting to find similar lemmas for TC0 or NC1. It is plausible that the characterization
of NC1 as bounded-width branching programs [Bar89] could be applied to prove an analogous evaluation
lemma for Boolean formulas, which would lead to nontrivial depth lower bounds for NEXP.

It should be possible to extend the superpolynomial lower bound for ACC down to the class QuasiNP =

NTIME[nlogO(1) n]. This paper comes fairly close to proving this result. The only step missing is a proof of
the implication: “if QuasiNP has polynomial-size ACC circuits, then there are polynomial-size ACC circuits
that encode witnesses to QuasiNP languages.” A couple lemmas rely only on P having non-uniform ACC
circuits, so they could be potentially applied in proofs of even stronger lower bounds. At any rate, the
prospects for future circuit lower bounds look very promising.
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A Appendix: Proof of Lemma 4.1

Reminder of Lemma 4.1 There is an algorithm and function f : N → N such that given an ACC circuit
of depth d = O(1) and size s, the algorithm outputs an equivalent SYM+ circuit of sO(logf(d) s) size. The
algorithm takes at most sO(logf(d) s) time.

Furthermore, given the number of ANDs in the circuit that evaluate to 1, the symmetric function itself
can be evaluated in sO(logf(d) s) time.
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There is absolutely nothing new in the proof below. The algorithm is described as a series of sO(logf(d) s)

time transformations, closely following Allender and Gore [AG94] in the appropriate places. We just need
to point out that the relevant transformations are still efficiently computable when the algorithm is given an
arbitrary input circuit.

Proof. Let C be the given circuit. Note that since C has depth d = O(1) and will remain constant depth
throughout the algorithm, we may always assume at any point in the algorithm that C is a tree (i.e., all gates
have fan-out 1).

Transformation 1. Let s be the size of C. We transform C into a probabilistic circuit C ′ that has
poly(log s) probabilistic inputs, such that C ′ has constant depth, sO(1) size, C ′ has no OR or MODm gates
for any composite m, and C ′ has AND gates of fan-in at most poly(log s). (The circuit C ′ is said to accept
an input x if it outputs 1 on the majority of settings to the probabilistic inputs.)

First, note that one can replace NOT gates by MODm gates (for anym), and one can replace the AND and
OR gates by fixed-depth probabilistic circuits with having only MODm gates and AND gates of poly(log s)
fan-in. In fact, all of the AND and OR gates can share the same set of poly(log s) probabilistic inputs.
This is a standard trick that goes back to Valiant and Vazirani [VV86] (and an alternative proof of Toda’s
theorem [KVVY93]) that can be performed in sO(1) time.

The MODm gates for composite m are eliminated as follows. Let pe11 · · · p
ek
k be the factorization of

m. Since m divides a number x iff peii divides x for all i, every MODm gate can be replaced by an AND
of MODp

ei
i

gates. (Also, since m is assumed to be a fixed constant independent of the size of C, the
factorization of m can be computed in O(1) time!) Observe that pe divides a number x iff for all i =
0, . . . , e− 1, p divides

(
x
pi

)
. Using this fact, a MODpe gate can be replaced with an constant-fan-in AND of

MODp gates of constant-fan-in ANDs, as follows. A MODpe gate with t inputs is replaced with an AND
of fan-in e, where the inputs are MODp gates. For all i = 0, . . . , e − 1, the ith MODp gate has fan-in

(
t
pi

)
,

one for every subset of the t inputs that has cardinality pi. For all j = 1, . . . ,
(
t
pi

)
, the ith MODp gate has

its jth input connected to an AND of the pi-subset of t inputs corresponding to integer j. All of this can be
computed within tO(pe) time, and hence sO(1) time.

Transformation 2. We have a probabilistic circuitC ′ with poly(log s) probabilistic inputs, constant depth,
sO(1) size, no OR or MODm gates for any composite m, and AND gates of fan-in at most poly(log s). Now
we produce a C ′′ with no probabilistic inputs and all of the above properties except that the output gate is
now a MAJORITY gate (which outputs the majority value of its inputs). This is easy to do, by enumerating
through all possible values of the poly(log s) inputs, making a new copy of C ′ for every valuation, and
taking the MAJORITY of all these copies. Certainly the new circuit C ′′ has size sO(poly(log s)) and the
transformation can be performed in this much time.

Transformation 3. Now we have a circuit C ′′ has size sO(poly(log s)) size, a MAJORITY gate at the output,
no OR or MODm gates for any composite m, and AND gates of fan-in at most poly(log s). We produce
another constant-depth C ′′′ where all these polylog fan-in AND gates are at the bottom: no MODp gates are
below them in C ′′′.

Take any AND gate g with f = poly(log s) fan-in. Without loss of generality, g has MODp gates
h1, . . . , hf as input for some fixed prime p, by inserting “dummy” MODp gates in the appropriate places,
and all MODp gates have the same fan-in f ′ ≤ sO(poly(log s)), by inserting “dummy” zeroes in the inputs.
We want to show that this AND of MODp gates can be rewritten as a MODp of ANDs.
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Let xij represent the jth input to the MODp gate hi. Allender and Gore [AG94] show that this AND of
MODp can be rewritten as:

f∧
i=1

u

v
∑
j

xij ≡ 0 mod p

}

~ =

f∑
k=1

(p− 1)k−1
∑

{i1,...,ik}⊆[f ]

∑
〈j1,1,...,j1,p−1〉∈[f ′]p−1

...
〈jk,1,...,jk,p−1〉∈[f ′]p−1

k∏
t=1

p−1∏
`=1

xit jit,` mod p, (1)

where JP K = 1 if the predicate P is true, and 0 otherwise.
The right-hand side can be represented with a MODp gate with fan-in at most

O

(
f∑
k=1

(
f

k

)
(f ′)k(p−1)

)
≤ sO(poly(log s)),

which is connected to ANDs of fan-in at most f(p− 1). The transformation takes sO(poly(log s)) time.

Transformation 4. We have a C ′′′ of sO(poly(log s)) size with AND gates of polylog fan-in connected to the
inputs, a MAJORITY at the output, and MODpi gates in between, where pi is a prime dividing m = O(1).
We now show how to expressC ′′′ as a symmetric function of sO(poly(log s)) AND gates, completing the proof.

To do this, we prove that if you have a circuit D which has a symmetric function at the output, ANDs
at the bottom, and depth-d subcircuits of MODpi’s in between, then this can be turned into an equivalent
D′ with quasi-polynomial size, a symmetric function at the top, ANDs at the bottom, and depth-(d − 1)
subcircuits of MODpi’s. That is, the topmost layer of MODpi’s can be “consumed” by choosing a different
symmetric function.

We may assume without loss of generality that all f gates with input to the symmetric function F :
[f ] → {0, 1} are MODp gates, for a fixed prime p, and all of the MODp gates have the same fan-in f ′ (by
adding dummy wires and gates where necessary). Let xij be the jth input to the ith MODp gate. Note that
the function we want to simulate is H(x1,1, . . . , xf,f ′) = F (

∑f
i=1 MODp(xi,1, . . . , xi,f ′)). We will replace

H with a symmetric function F ′ of ANDs of polylogarithmic fan-in. Then, applying Transformation 3 to
these ANDs, the resulting circuit can be converted into one which has the ANDs at the bottom and only a
quasi-polynomial increase in size.

Define

G(x1,1, . . . , xf,f ′) := F

(
f∑
i=1

MODp(xi,1, . . . , xi,f ′) mod pk

)
where k is the smallest integer exceeding logp f . Then pk > f , so it is clear that G(x1,1, . . . , xf,f ′) =
H(x1,1, . . . , xf,f ′) when all xi,j are in {0, 1}. We shall show how to implement G as a symmetric function
F ′ of ANDs.

We use the modulus amplifying polynomials of Beigel and Tarui [BT94]. Define

Pk(x) = (−1)k(x− 1)k

(
k−1∑
i=0

(
k + i− 1

i

)
xi

)
+ 1.

This polynomial has the property that for all x ≥ 0 and p ≥ 1,

x = 0 mod p =⇒ Pk(x) = 0 mod pk,
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x = 1 mod p =⇒ Pk(x) = 1 mod pk.

DefiningQk(x) = 1−Pk(xp−1) and appealing to Fermat’s little theorem, it follows thatQk(x) = 1 mod pk

if p divides x, and is equal to 0 mod pk otherwise. Therefore Qk(
∑f ′

i=1 yi) = MODp(y1, . . . , yf ′) mod pk,
and

G(x1,1, . . . , xf,f ′) = F

 f∑
i=1

Qk

 f ′∑
j=1

xi,j

 mod pk

 .

Note that each Qk(
∑f ′

j=1 xi,j) is a symmetric multivariate polynomial of degree at most k(p − 1). Hence
Qk can be expanded into a sum of at most (f · f ′)O(k(p−1)) ≤ sO(poly(log s)) terms. Each term is a product
of poly(log s) variables and a coefficient c that is represented in O(k log k) ≤ poly(log s) bits and easily
computed. The product of variables can be directly represented by an AND. Multiplication by the coefficient
c can be simulated by taking the sum of c copies of the relevant monomials (ANDs).

Therefore the sum of all f of these sums of monomials can be efficiently expressed as a single sum
modulo pk of sO(poly(log s)) AND gates, where each AND has fan-in k(p − 1) ≤ poly(log s). Finally, we
take the symmetric function F ′ to be: compute the sum v of the outputs of all the AND gates created,
then output F (v mod pk). Observe that a symmetric function composed with a sum modulo pk is still a
symmetric function.

In summary, for any constant depth circuit, all the above transformations take at most quasi-polynomial
time, increase the circuit size by only a quasi-polynomial amount, and the transformations are applied at
most a quasi-polynomial number of times. (Transformation 4 is applied a constant number of times.) More-
over, the symmetric function generated at the end of the process takes no more time to evaluate than the time
it takes to build the SYM+ circuit. In more detail, the final symmetric function has the form

F (v) = MAJORITY((· · · ((v mod pk11 ) mod pk22 ) · · · mod p
kd′
d′ ),

for some constant d′ that depends on the depth d and initial modulus m (both are constants). Here, MA-
JORITY outputs the high-order bit of its input, and each pkii is at most a constant factor larger than the size
of the final circuit. �

B Appendix: Coppersmith’s algorithm
Recall we are studying the following algorithm of Coppersmith:

Lemma B.1 (Coppersmith [Cop82]) For all sufficiently largeN , multiplication of anN×N .1 matrix with
an N .1 ×N matrix can be done in O(N2 log2N) arithmetic operations.

Prima facie, it could be that Coppersmith’s algorithm is non-uniform, making it difficult to apply. For
the sake of completeness, here we verify using standard ideas that Coppersmith’s algorithm can indeed be
implemented to run (even on a multitape TM) in O(N2 · poly(logN)) time, on matrices over any field of
poly(N) elements. (As we work with 0-1 matrices A′′ and B′′ in our application, it suffices for us to work
over a prime field of poly(N) elements.) We focus on the implementation details of his algorithm, without
going very far into its correctness. The algorithm relies on some of the older tools from the matrix multipli-
cation literature. More background on these tools can be found in the highly readable reference [Pan84].

Coppersmith’s algorithm follows a paradigm introduced by Schönhage [Sch81]. For example, suppose
we wish to multiply two matrices A′′ and B′′. First we preprocess A′′ and B′′ in some efficient way; in our
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first example, we devise highly structured matrices A,A′, B,B′ so that A′′ · B′′ = A′ · A · B · B′. The
matrices A and B are sparse “partial” matrices with particular structure in their nonzeroes, and A′ and B′

are explicit matrices of scalar constants which are independent of A′′ and B′′. Next, we recursively apply
a constant-sized matrix multiplication algorithm to multiply A and B essentially optimally. (Recall that
Strassen’s algorithm has an analogous form; such algorithms are known to be efficiently implementable on
a multitape TM.) Finally, we postprocess the resulting product C to obtain our desired product A′′ · B′′; in
the first example, this means computing A′ · C · B′. Using the explicit structure of A′ and B′, these matrix
products are also done nearly optimally. Our aim is to verify that each step of this process can be efficiently
computed, for Coppersmith’s full matrix multiplication algorithm.

Coppersmith begins withA′′ of dimensions 24M/5×
(

M
4M/5

)
24M/5 andB′′ of dimensions

(
M

4M/5

)
24M/5×

2M/5 where M ≈ logN , and obtains an O(5Mpoly(M)) algorithm for their multiplication. Later, he
symmetrizes the construction to get the algorithm for the desired dimensions. In this first construction, the
structured matricesA′ andB′ have dimensions 24M/5×2M and 2M×2M/5, respectively. Coppersmith needs
that all 24M/5 × 24M/5 submatrices of A′ and 2M/5 × 2M/5 submatrices of B′ are non-singular. Following
Schönhage, this can be accomplished by picking A′ and B′ to be rectangular Vandermonde matrices. More
precisely, the i, j entry of A′ is (αj)

i−1, where α1, α2, . . . are distinct elements of the field; B′ is defined
analogously. Such matrices have the additional advantages that they can be succinctly described (with 2M

field elements), and linear algebra with them can be done very efficiently, as described below.
The matricesA andB have dimensions 2M×3M and 3M×2M , respectively. Although these dimensions

are large, the matrices are stored in a sparse representation, and they have structure in their nonzeroes. In
more detail, A has only O(5M ) nonzeroes, B has only O(4M ) nonzeroes, and there is an optimal algorithm
for multiplying 2×3 (with 5 nonzeroes) and 3×2 matrices (with 4 nonzeroes) that can be recursively applied
to multiply A and B optimally, in O(5M · poly(M)) operations. (In particular, the 2 × 3 and 3 × 2 matrix
multiplication is an “approximate” algorithm, which can be recursively applied to larger matrices using
O(M)-degree univariate polynomials over the field; operations on such polynomials increase the overall
time by only a poly(M) factor.) These A and B are constructed by multiplying each of the

(
M

4M/5

)
24M/5

columns in A′′ and
(

M
4M/5

)
24M/5 rows in B′′ by inverses of Vandermonde matrices and their transposes (the

inverses of appropriate 24M/5×24M/5 submatrices ofA′ and 2M/5×2M/5 submatrices ofB′, respectively).
Due to the structure of inverse Vandermonde matrices and their transposes, n × n matrices of this form
can be multiplied with n-vectors in O(n · poly(log n)) operations with explicit algorithms (for references,
cf. [CKY89, GO94]).5 Hence the inverse of a submatrix of A′ can be multiplied with an arbitrary vector in
O(24M/5 · poly(M)) operations. It follows that constructing A and B takes only O(

(
M

4M/5

)
24M/5 · 24M/5 ·

poly(M)) time. Since 5M ≈
(

M
4M/5

)
44M/5 (within poly(M) factors), this quantity is O(5M · poly(M)).

By construction (using an efficient correspondence between columns of A′′ and columns of A′ with
24M/5 nonzeroes), we have A′′ · B′′ = A′ · (A · B) · B′. After A and B are constructed, the constant-sized
algorithm for 2 × 3 and 3 × 2 mentioned above can be applied in the usual recursive way to multiply the
sparse A and B in O(5M · poly(M)) time; call this matrix Z. Then using the Vandermonde structure of A′

and B′, the product Z ′ = A′ · Z can be done in o(5M · poly(M)) operations, and the final product Z ′ · B′
can be done in o(5M · poly(M)) operations. All in all, we have an algorithm for multiplying matrices of
dimensions 24M/5 ×

(
M

4M/5

)
24M/5 and

(
M

4M/5

)
24M/5 × 2M/5 that is explicit and uses O(5M · poly(M))

5In general, operations on Vandermonde matrices, their transposes, their inverses, and the transposes of inverses can be reduced
to fast multipoint computations on univariate polynomials. For example, multiplying an n× n Vandermonde matrix with a vector
is equivalent to evaluating a polynomial (with coefficients given by the vector) on the n elements that comprise the Vandermonde
matrix, which takes O(n logn) operations. This translates to O(n · poly(logn)) time on multitape TMs over small fields.
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operations. Call this ALGORITHM 1. Observe ALGORITHM 1 also works when the entries of A′′ and B′′

are themselves matrices over the field. (The running time will surely increase in proportion to the sizes of
the underlying matrices, but the bound on the number of operations on the entries remains the same.)

We can extract more algorithms from the above construction by exploiting the symmetries of bilinear
algorithms. The underlying 2 × 3 and 3 × 2 matrix multiplication algorithm with 5 products is a bilinear
algorithm, meaning that it can be expressed in the so-called trilinear form

∑
ijk

AikBkjCji + p(x) =
5∑
`=1

(
∑
ij

αijAij) · (
∑
ij

βijBij) · (
∑
ij

γijCij) (2)

where αij , βij , and γij are constant-degree polynomials in x over the field, and p(x) is a polynomial with
constant coefficient 0. Such an algorithm can be converted into one with no polynomials and minimal extra
overhead (as described in Coppersmith’s paper). Typically one thinks of Aik and Bkj as entries in the input
matrices, and Cji as indeterminates, so the LHS of (2) corresponds to a polynomial whose Cji coefficient is
the ij entry of the matrix product. Note the transpose of the third matrix C corresponds to the final matrix
product. The RHS corresponds to the special matrix multiplication algorithm with only 5 products. For
example, Strassen’s famous 7-multiplication algorithm can be expressed in the form of (2) as follows:∑

i,j,k=0,1

AikBkjCji = (A00 +A11)(B00 +B11)(C00 + C11) (3)

+(A10 +A11)B00(C01 − C11) +A00(B01 −B11)(C10 + C11)

+(A10 −A00)(B00 +B01)C11 + (A00 +A01)B11(C10 − C00)

+A11(B10 −B00)(C00 + C01) + (A01 −A11)(B10 +B11)C00.

The LHS of (2) and (3) represents the trace of the product of three matrices A, B, and C (where the ij entry
of matrix X is Xij). It is well known that every bilinear algorithm naturally expresses multiple algorithms
through this trace representation. Since

tr(ABC) = tr(BCA) = tr(CAB) = tr((ABC)T ) = tr((BCA)T ) = tr((CAB)T ),

if we think of A as a symbolic matrix and consider (2), we obtain a new algorithm for computing a matrix A
when givenB andC. Similarly, we get an algorithm for computing aB when givenA andC, and analogous
statements hold for computing AT , BT , and CT . So the aforementioned algorithm for multiplying a sparse
2×3 and sparse 3×2 yields several other algorithms. In particular (the case of computingBT from AT and
C) we obtain an algorithm for computing 4 entries in a 3× 2 matrix which is the product of a 3× 2 matrix
(with 5 nonzeroes) and a 2× 2 matrix.

Using the identity tr(ABC) = tr((BCA)T ) = tr(ATCTBT ), we can treat BT as symbolic and let
AT and CT correspond to input matrices in (2). Applying the resulting algorithm recursively, a very similar
preprocessing and postprocessing can be used to multiply

(
M

4M/5

)
24M/5×24M/5 and 24M/5×2M/5 matrices

using an algorithm that runs in O(5M · poly(M)) time over a small field.
In more detail, recall in ALGORITHM 1 the matrices A′′ and B′′ were decomposed to satisfy A′′ ·B′′ =

A′ ·A ·B ·B′. The trace identity tells us

tr(A′′B′′ · C) = tr(A′A ·BB′ · C) = tr(B ·B′CA′ ·A) = tr(AT · (A′)TCT (B′)T ·BT ).

This suggests the following algorithm for multiplying
(

M
4M/5

)
24M/5 × 24M/5 and 24M/5 × 2M/5 matrices.

GivenA′′ andC ′′ of the appropriate dimensions, preprocessC ′′ into the 2M×2M matrixD = B′·(C ′′)T ·A′,
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and use A′ as before to preprocess A′′ into a sparse 3M × 2M matrix AT having
(

M
4M/5

)
44M/5 ≈ 5M nonze-

roes. Both steps can be done efficiently using the Vandermonde structure of A′ and B′. Next, multiply AT

and DT , following the bilinear algorithm for computing a 3 × 2 (with 4 nonzeroes) from a 3 × 2 (with 5
nonzeroes) and a 2 × 2, in O(5Mpoly(M)) time. The multiplication results in a 3M × 2M matrix B with
O(4M ) nonzeroes, which can be efficiently transformed to the output matrix using the inverses of submatri-
ces of B′. (This postprocessing step is analogous to the preprocessing of B′′ in ALGORITHM 1.) Notice we
have analogous preprocessing, multiplication, and postprocessing steps, albeit the steps are “out of order”
from before. (Before, multiplication of the result matrix C by A′ and B′ occurred in postprocessing; now it
occurs in preprocessing, as C is now part of the input.) Call this construction ALGORITHM 2.

Next, we may “tensorize” the two algorithms in a standard way. This consists of dividing the input ma-
trices into blocks, executing ALGORITHM 1 on the blocks themselves, and calling ALGORITHM 2 when the
product of two blocks is needed. As both of these algorithms are explicit and efficient, their “tensorization”
is also explicit and efficient. ALGORITHM 1 multiplies 24M/5 ×

(
M

4M/5

)
24M/5 and

(
M

4M/5

)
24M/5 × 2M/5

matrices, and ALGORITHM 2 multiplies
(

M
4M/5

)
24M/5×24M/5 and 24M/5×2M/5. Hence their tensorization

multiplies matrices of dimensions(
24M/5 ·

(
M

4M/5

)
24M/5

)
×
((

M

4M/5

)
24M/5 · 24M/5

)
and

((
M

4M/5

)
24M/5 · 24M/5

)
×
(

2M/5 · 2M/5
)
,

and the algorithm runs inO(52M ·poly(M)) time. Since
(

M
4M/5

)
44M/5 ≈ 5M , this means we are multiplying

5M×5M and 5M×22M/5 inO(52Mpoly(M)) time. Call this ALGORITHM 3. This is the algorithm obtained
by Coppersmith.

Finally, using the symmetry of ALGORITHM 3 itself, we can obtain an algorithm for multiplying a
5M × 22M/5 matrix with a 22M/5 × 5M matrix in O(52Mpoly(M)) time. ALGORITHM 3 is also a bilinear
algorithm that can be interpreted as an efficient way to compute tr(ABC) where A is 5M × 5M , B is
5M × 22M/5, and C is 22M/5 × 5M . In the above version of ALGORITHM 3, we have treated A and B as
input, and C as symbolic. Treating B and C as input yields an algorithm for multiplying 5M × 22M/5 and
22M/5 × 5M in O(52Mpoly(M)) time. This algorithm also has a preprocessing step, a product of partial
matrices, then a postprocessing step, which involve multiplications with Vandermonde-style matrices, their
transposes, their inverses, and their inverse transposes. The important point is that this transformation does
not fundamentally change the algorithm: just as ALGORITHM 2 is a “reordering” of ALGORITHM 1, this
transformation of ALGORITHM 3 only reorganizes these efficiently computable operations. It follows the
final algorithm will also be efficiently computable. (Of course, it is possible in principle to describe this
algorithm directly as a preprocessing-multiplication-postprocessing procedure, but it is quite messy.) Let
N = 5M . We have arrived at the following.

Corollary B.1 For all sufficiently large N , two 0-1 matrices of dimensions N ×N .1 and N .1 ×N can be
multiplied over the integers in O(N2 · poly(logN)) time.

C Appendix: The dynamic programming algorithm on a multitape TM
Here we show how Proof 2 of the evaluation lemma (Lemma 4.2) can be implemented efficiently on a

multitape Turing machine. The main idea is to use efficient sorting on a multitape TM:

Lemma C.1 (Schnorr [Sch78]) Any list of ` items can be sorted in O(` · poly(log `)) time on a multitape
Turing machine, provided that a comparison of two items can be done in O(poly(log `)) time.
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For example, the Merge Sort algorithm can be seen to satisfy this property.
We start by initializing a 2n table representing the initial function f in the proof. Pass over a tape holding

information on the AND gates of the SYM+ circuit. For each AND gate, determine its set of inputs S, and
append S to the end of a tape, call it L. Then, treating each S as an n-bit string, sort the list of sets on
this tape in lexicographical order using Lemma C.1. The tape has s′′ elements on it, so this takes at most
s′′ ·poly(n) time. Let F be another tape which will hold the 2n table representing f . Pass along tape L from
left to right. Let T be the current set being examined on tape L, and let S be the previous set examined.
(If T is the first set on the tape, then let S be the empty set.) If T > S, then compute the total number of
subsets N between T and S in lex order in poly(n) time, via subtraction. For N times, record on tape F
that the value of f is 0 on all subsets between T and S, and record that f(T ) = 1 on tape F . If T = S, then
increment the current value of f(S) on tape F (the tape head of F is sitting on the current value of f(S),
since the previous set was S). This process produces a table for f on tape F , in O(2npoly(n)) time.

Each phase of the dynamic program constructs a new function gi based on gi−1. Suppose gi−1 is written
on a tape as a collection of pairs (T, gi−1(T )) for every T ⊆ [n], where T is represented as an n-bit string.
Let Ti be the ith bit of T , and let T−i be the (n − 1)-bit string obtained by removing the ith bit of T . To
compute gi, first sort all 2n pairs (T, gi−1(T )) according to the first key T , using the following ordering <i:

T <i T
′ iff (Ti < T ′i ) ∨ ((Ti = T ′i ) ∧ (T−i < T ′−i in lex order)).

That is, the ordering <i gives precedence to the ith bit. The sort can be done in O(2npoly(n)) time on a
multitape Turing machine using Lemma C.1. Put a marker # on the sorted list to separate those pairs with
T ’s that don’t contain i, from those which do contain i. Note that exactly 2n−1 pairs are on the left side of
#, and 2n−1 pairs are on right side. Also note that the J th set on the left-side list is exactly the J th set on
the right-side list, except in the ith position of the bit string (the left-side set has a 0, right-side has a 1).

Prepare another tape G which will hold gi. Copy all data on the sorted list over on G. Move the tape
head on G back to #, and move the tape head on the sorted list to the leftmost square. Then move the tape
head right on the sorted list, concurrently with moving the tape head right on G. Note that, as we scan over
the pair (T −{i}, gi−1(T −{i})) on the sorted list, we scan over (T, gi−1(T )) on G. Hence we can just add
the current value on the sorted list to the current value on G. These are both O(poly(n))-bit values, so the
addition takes O(poly(n)) time. When the tape head reaches the end of G, the tape G will now contain gi.
(We can remove the marker # in a final pass, if need be.)

Finally, we note that the evaluation of the symmetric function on all entries in the table of g = gn can
also be done efficiently. Sort the entries of gn in increasing order, and remove duplicates, in O(2npoly(n))
time. The resulting list has O(s′′) items, each of which can be evaluated in poly(s′′) time.
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