
Local Computation: Lower and Upper Bounds1

Fabian Kuhn1, Thomas Moscibroda2, Roger Wattenhofer3

1fabian.kuhn@usi.ch, University of Lugano, Switzerland
2moscitho@microsoft.com, Microsoft Research Asia, Beijing, China
3wattenhofer@ethz.ch, ETH Zurich, Switzerland

The question of what can be computed, and how efficiently, are at the core of computer science.

Not surprisingly, in distributed systems and networking research, an equally fundamental question
is what can be computed in a distributed fashion. More precisely, if nodes of a network must

base their decision on information in their local neighborhood only, how well can they compute

or approximate a global (optimization) problem? In this paper we give the first substantial
lower bound on such local computation for (optimization) problems including minimum vertex

cover, minimum (connected) dominating set, maximum matching, maximal independent set, and

maximal matching. In addition we present a new distributed algorithm for solving general covering
and packing linear programs. For some problems this algorithm is tight with the lower bounds, for

others it is a distributed approximation scheme. Together, our lower and upper bounds establish
the local computability and approximability of a large class of problems, characterizing how much

local information is required to solve these tasks.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—computations on discrete structures;

G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: approximation hardness, distributed algorithms, distributed
approximation, dominating set, locality, lower bounds, maximal independent set, maximal match-

ing, pseudo-local, vertex cover

1. INTRODUCTION

Many of the most fascinating systems in the world are large and complex networks,
such as the human society, the Internet, or the brain. Such systems have in common
that they are composed of a multiplicity of individual entities, so-called nodes;
human beings in society, hosts in the Internet, or neurons in the brain. Each
individual node can directly communicate only to a small number of neighboring
nodes. For instance, hosts in a computer network only have direct communication
links to a limited number of neighbors, most human communication is between
acquaintances or within the family, and neurons are directly linked with merely a
relatively small number of other neurons. On the other hand, in spite of each node
being inherently “near-sighted,” i.e., restricted to local communication, the entirety
of the system is supposed to work towards some kind of global goal, solution, or
equilibrium.

1This paper is based in part on work that has appeared in the following two preliminary versions:

What Cannot Be Computed Locally, In Proceedings of the 23rd ACM Symposium on the Principles
of Distributed Computing (PODC), St. John’s, Canada, 2004 [Kuhn et al. 2004] and The Price of

Being Near-Sighted, In Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms

(SODA), Miami, Florida, 2006 [Kuhn et al. 2006]. Notice that the key lower bound results
presented in this journal version are improved over the ones presented in the conference versions,

thus rendering many of our upper bounds tight.

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·

In this work we investigate the possibilities and limitations of local computation,
i.e., to what degree local information is sufficient to solve global tasks. Many
tasks can be solved entirely locally, for instance, how many friends of friends one
has. Clearly, only local communication is required to answer this question. Many
other tasks are inherently global, for instance, counting the total number of nodes
or determining the diameter of the system. To solve such global problems, some
information must traverse across the entire graph distances.

It is natural to ask whether there are natural tasks that are in the middle of these
two extremes; tasks that are neither completely local nor inherently global. In this
paper we answer this question affirmatively. Assume for example that the nodes
want to organize themselves, some nodes should be masters, the others will be
slaves. The rules are that no two masters shall be direct neighbors, but every slave
must have at least one master as direct neighbor. In graph theory, this problem
is known as the maximal independent set (MIS) problem. Intuitively, this problem
seems local since the rules are completely local. Consequently it might be expected
that every node can communicate with its neighbors a few times, and together they
can decide who will become master and who will become slave. However, as we
show in this paper, this intuition is misleading. Even though the problem seems
local, it cannot be solved using local information only! No matter how the system
tackles the problem, no matter what protocol or algorithm the nodes use, non-local
information is vital to solve the task. On the other hand, the problem is also not
global: Mid-range information is enough to solve the problem. As such the MIS
problem establishes an example that is neither local nor global, but in-between
these extremes. Since at first sight it looks local, we call it pseudo-local. Using
locality-preserving reductions we are able to show that there exists a whole class of
pseudo-local problems.

We show that this class of pseudo-local problems also includes many combinato-
rial optimization problems, such as minimum vertex cover, minimum dominating
set, or maximum matching. In such problems, each node must base its decision (for
example whether or not to join the dominating set) only on information about its
local neighborhood, and yet, the goal is to collectively achieve a good approximation
to the globally optimal solution. Studying such local approximation algorithms is
particularly interesting because it sheds light on the trade-off between the amount
of available local information and the resulting global optimality. Specifically, it
characterizes the amount of information needed in distributed decision making:
what can be done with the information that is available within some fixed-size
neighborhood of a node. Positive and negative results for local algorithms can thus
be interpreted as information-theoretic upper and lower bounds; they give insight
into the value of information.

We believe that studying the fundamental possibilities and limitations of local
computation is of interest to theoreticians in approximation theory, distributed
computing, and graph theory. Furthermore, our results may be of interest for a
wide range of scientific areas, for instance dynamic systems that change over time.
Our theory shows that small changes in a dynamic system may cause an inter-
mediate (or pseudo-local) “butterfly effect,” and it gives non-trivial bounds for
self-healing or self-organizing systems, such as self-assembling robots. It also estab-

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 3

lishes bounds for further application areas, initially in engineering and computing,
possibly extending to other areas studying large-scale systems, e.g., social science,
finance, neural networks, or ant colonies.

1.1 Model and Notation

Local Computations: We consider a distributed system in which distributed
decision makers at the nodes of a graph must base their computations and decisions
on the knowledge about their local neighborhoods in the graph. Formally, we are
given a graph G = (V,E), |V | = n, and a parameter k (k might depend on n or
some other property of G). At each node v ∈ V there is an independent agent
(for simplicity, we identify the agent at node v with v as well). Every node v ∈ V
has a unique identifier id(v)2 and possibly some additional input. We assume that
each node v ∈ V can learn the complete neighborhood Γk(v) up to distance k in G
(see below for a formal definition of Γk(v)). Based on this information, all nodes
need to make independent computations and need to individually decide on their
outputs without communicating with each other. Hence, the output of each node
v ∈ V can be computed as a function of it’s k-neighborhood Γk(v).
Synchronous Message Passing Model: The described graph-theoretic local

computation model is equivalent to the classic message passing model of distributed
computing. In this model, the distributed system is modeled as a point-to-point
communication network, described by an undirected graph G = (V,E), in which
each vertex v ∈ V represents a node (host, device, processor, . . .) of the network,
and an edge (u, v) ∈ E is a bidirectional communication channel that connects
the two nodes. Initially, nodes have no knowledge about the network graph; they
only know their own identifier and potential additional inputs. All nodes wake up
simultaneously and computation proceeds in synchronous rounds. In each round,
every node can send one, arbitrarily long message to each of its neighbors. Since
we consider point-to-point networks, a node may send different messages to differ-
ent neighbors in the same round. Additionally, every node is allowed to perform
local computations based on information obtained in messages of previous rounds.
Communication is reliable, i.e., every message that is sent during a communication
round is correctly received by the end of the round. An algorithm’s time complexity
is defined as the number of communication rounds until all nodes terminate.3

The above is a standard model of distributed computing and is generally known
as the LOCAL model [Peleg 2000; Linial 1992]. It is the strongest possible model
when studying the impact of locally-restricted knowledge on computability, because
it focuses entirely on the locality of distributed problems and abstracts away other
issues arising in the design of distributed algorithms (e.g., need for small messages,
fast local computations, congestion, asynchrony, packet loss, etc.). It is thus the
most fundamental model for proving lower bounds on local computation [Linial
1992]; because any lower bound is a true consequence of locality restrictions.

2All our results hold for any possible ID space including the standard case where IDs are the

numbers 1, . . . , n.
3Notice that this synchronous message passing model captures many practical systems, including
for example, Google’s Pregel system, a practically implemented computational model suitable for

computing problems in large graphs [Malewicz et al. 2010].

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 ·

Equivalence of Time Complexity and Neighborhood-Information: There
is a one-to-one correspondence between the time complexity of distributed algo-
rithms in the LOCAL model and the graph theoretic notion of neighborhood-
information. In particular, a distributed algorithm with time-complexity k (i.e.,
in which each node performs k communication rounds) is equivalent to a scenario
in which distributed decision makers at the nodes of a graph must base their deci-
sion on (complete) knowledge about their k-hop neighborhood Γk(v) only. This is
true because with unlimited sized messages, every node v ∈ V can easily collect all
IDs and interconnections of all nodes in its k-hop neighborhood in k communication
rounds. On the other hand, a node v clearly cannot obtain any information from a
node at distance k+1 or further away, because this information would require more
than k rounds to reach v. Thus, the LOCAL model relates distributed computa-
tion to the algorithmic theory of the value of information as studied for example
in [Papadimitriou and Yannakakis 1993]: the question of how much local knowledge
is required for distributed decision makers to solve a global task or approximate a
global goal is equivalent to the question of how many communication rounds are
required by a distributed algorithm to solve the task.
Notation: For nodes u, v ∈ V and a graph G = (V,E), we denote the shortest-

path distance between u and v by dG(u, v). Let Γk(v) be the k-hop neighborhood
of a node v ∈ V . Formally, we define Γk(v) := {u ∈ V : dG(u, v) ≤ k}. We also
use the shortcut Γv := Γ1(v), that is, Γv is the (inclusive) neighborhood of v. In
a local computation with k-hop neighborhood information (or equivalently, in any
distributed algorithm with time complexity k), each node has a partial view of the
graph and must base its algorithm’s outcome solely on information obtained in
Γk(v). Formally, let Tv,k be the topology seen by v after k rounds in a distributed
algorithm, i.e., Tv,k is the graph induced by the k-neighborhood of v where edges
between nodes at exactly distance k are excluded. The labeling (i.e., the assignment
of identifiers to nodes) of Tv,k is denoted by L(Tv,k). The view of a node v is the pair
Vv,k := (Tv,k,L(Tv,k)). Any deterministic distributed algorithm can be regarded
as a function mapping (Tv,k,L(Tv,k)) to the possible outputs. For randomized
algorithms, the outcome of v is also dependent on the randomness computed by
the nodes in Tv,k.

1.2 Problem Definitions

In this paper, we study several standard combinatorial optimization problems (and
their natural relaxations) that intuitively appear to be local, yet turn out to be
neither completely local nor global. Specifically, we consider the following standard
optimization problems in graphs:

—Minimum Vertex Cover (MVC): Given a graph G = (V,E), find a minimum
vertex subset S ⊆ V , such that for each edge in E, at least one of its endpoints
is in S.

—Minimum Dominating Set (MDS): Given a graph G = (V,E), find a min-
imum vertex subset S ⊆ V , such that for each node v ∈ V , either v ∈ S or at
least one neighbor of v must be in S.

—Minimum Connected Dominsting Set (MCDS): Given a graph G = (V,E),
find a minimum dominating set S ⊆ V , such that the graph G[S] induced by S

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 5

is connected.

—Maximum Matching (MaxM): Given a graph G = (V,E), find a maximum
edge subset T ⊆ E, such that no two edges in T are adjacent.

In all these cases, we consider the respective problem on the network graph, i.e., on
the graph representing the network. In addition to the above mentioned problems,
we study their natural linear programming relaxations as well as a slightly more
general class of linear programs (LP) in a distributed context. Consider an LP and
its corresponding dual LP in the following canonical forms:

min cTx

s. t. A · x ≥ b
x ≥ 0.

(P)

min bTy

s. t. AT · y ≤ c
y ≥ 0.

(D)

We call an LP in form (P) to be in primal canonical form (or just in canonical
form) and an LP in form (D) to be in dual canonical form. If all the coefficients of b,
c, and A are non-negative, primal and dual LPs in canonical forms are called cover-
ing and packing LPs, respectively. The relaxations of vertex cover and dominating
set are covering LPs, whereas the relaxation of matching is a packing LP.

While there is an obvious way to interpret graph problems such as vertex cover,
dominating set, or matching as a distributed problem, general LPs have no im-
mediate distributed meaning. We use a natural mapping of an LP to a network
graph, which was introduced in [Papadimitriou and Yannakakis 1993] and applied
in [Bartal et al. 1997]. For each primal variable xi and for each dual variable yj ,
there are nodes vpi and vdj , respectively. We denote the set of primal variables by
Vp and the set of dual variables by Vd. The network graph GLP = (Vp∪̇Vd, E) is a
bipartite graph with the edge set

E :=
{

(vpi , v
d
j) ∈ Vp × Vd

∣∣ aji 6= 0
}
,

where aji is the entry of row j and column i of A. We define np := |Vp| and
nd := |Vd|, that is, A is a (nd×np)-matrix. Further, the maximum primal and dual
degrees are denoted by ∆p and ∆d, respectively. In most real-world examples of
distributed LPs and their corresponding combinatorial optimization problems, the
network graph is closely related to the graph GLP such that any computation on
GLP can efficiently be simulated in the actual network.

In the context of local computation, each node v ∈ V has to independently
decide whether it joins a vertex cover or dominating set, which of its incident edges
should participate in a matching, or what variable its corresponding variable gets
assigned when solving an LP. Based on local knowledge, the nodes thus seek to
produce a feasible approximation to the global optimization problem. Depending
on the number of rounds nodes communicate—and thus on the amount of local
knowledge available at the nodes—, the quality of the solution that can be computed
differs. We seek to understand the trade-off between the amount of local knowledge
(or communication between nodes) and the resulting approximation to the global
problem.

In addition to these optimization problems, we also consider important binary
problems, including:

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 ·

—Maximal Independent Set (MIS): Given a graph G = (V,E), select an
inclusion-maximal vertex subset S ⊆ V , such that no two nodes in S are neigh-
bors.

—Maximal Matching (MM): Given a G = (V,E), select an inclusion-maximal
edge subset T ⊆ E, such that no two edges in T are adjacent.

For such problems, we are interested in the question, how much local information
is required such that distributed decision makers are able to compute fundamental
graph-theoretic structures, such as an MIS or an MM. Whereas the described com-
binatorial optimization problems are NP-hard and thus, unless P = NP, even with
global knowledge, algorithms can compute only approximations to the optimum,
an MIS or an MM can trivially be computed with global knowledge. The question
is thus how much local knowledge is required to solve these tasks.

1.3 Contributions

Our main results are a lower bound on the distributed approximability of the min-
imum vertex cover problem in Section 3 as well as a generic algorithm for covering
and packing LPs of the form (P) and (D) in Section 5, respectively. Both results
are accompanied by various extensions and adaptations to the other problems in-
troduced in Section 1.2. It follows from our discussion that these results imply
strong lower and upper bounds on the amount of local information required to
solve/approximate global tasks.

For the MVC lower bound, we show that for every k > 0, there exists a graph G
such that every k-round distributed algorithm for the MVC problem has approxi-
mation ratios at least

Ω
(
nc/k

2
)

and Ω
(

∆c′/k
)

for positive constants c and c′, where n and ∆ denote the number of nodes and the
highest degree of G, respectively. Choosing k appropriately, this implies that to
achieve a a constant approximation ratio, every MVC algorithm requires at least
Ω
(√

log n
)

and Ω
(

log ∆
)

rounds, respectively.4 All bounds also hold for randomized
algorithms. Using reductions that preserve the locality properties of the considered
graph, we show that the same lower bounds also hold for the distributed approxi-
mation of the minimum dominating set and maximum matching problems. Because
MVC and MaxM are covering and packing problems with constant integrality gap,
the same lower bounds are also true for general distributed covering and packing
LPs of the form (P) and (D). Furthermore, using locality-preserving reductions,
we also derive lower bounds on the amount of local information required at each
node to collectively compute important structures such as an MIS or a maximal
matching in the network graph. Finally, a simple girth argument can be used to
show that for the connected dominating set problem, even stronger lower bounds
are true. We show that in k rounds, no algorithm can have an approximation ra-
tio that is better than nc/k for some positive constant c. This implies that for a
polylogarithmic approximation ratio, Ω(log(n)/ log log(n)) rounds are needed.

4Notice that all these bounds are improved compared to the results reported in the conference
version of this paper [Kuhn et al. 2004] by factors of Θ(

√
log logn) and Θ(log log ∆), respectively.

This improvement renders some of our upper bound algorithms in Section 5 tight.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 7

We show that the above lower bound results that depend on ∆ are asymptotically
tight for the MVC and MaxM problem by giving an algorithm that obtains O(∆c/k)
approximations with k hops of information for a positive constant c. That is, a
constant approximation to MVC can be computed with every node having O(log ∆)-
hop information. Our main upper bound result is a distributed algorithm to solve
general covering and packing LPs of the form (P) and (D). We show that with k
hops of information, again for some positive constant c, a nc/k-approximation can be
computed. As a consequence, by choosing k large enough, we also get a distributed
approximation scheme for this class of problems. For ε > 0, the algorithm allows to
compute an (1 + ε)-approximation in O(log(n)/ε) rounds of communication. Using
a distributed randomized rounding scheme, good solutions to fractional covering
and packing problems can be converted into good integer solutions in many cases.
In particular, we obtain the currently best distributed dominating set algorithm,
which achieves a (1 + ε) ln ∆-approximation for MDS in O(log(n)/ε) rounds for
ε > 0. Finally, we extend the MDS result to connected dominating sets and show
that up to constant factors in approximation ratio and time complexity, we can
achieve the same time-approximation trade-off as for the MDS problem also for the
CDS problem.

2. RELATED WORK

Local Computation: Local algorithms have first been studied in the Mid-1980s
[Luby 1986; Cole and Vishkin 1986]. The basic motivation was the question whether
one can build efficient network algorithms, where each node only knows about its
immediate neighborhood. However, even today, relatively little is known about
the fundamental limitations of local computability. Similarly, little is known about
local approximability, i.e., how well combinatorial optimization problems can be
approximated if each node has to decide individually based only on knowledge
available in its neighborhood.

Linial’s seminal Ω(log∗n) time lower bound for constructing a maximal indepen-
dent set on a ring [Linial 1992] is virtually the only non-trivial lower bound for local
computation.5 Linial’s lower bound shows that the non-uniform O(log∗n) coloring
algorithm by Cole and Vishkin [Cole and Vishkin 1986] is asymptotically optimal
for the ring. It has recently been extended to other problems [Czygrinow et al. 2008;
Lenzen and Wattenhofer 2008]. On the other hand, it was later shown that there
exist non-trivial problems that can indeed be computed strictly locally. Specifically,
Naor and Stockmeyer present locally checkable labelings which can be computed in
constant time, i.e., with purely local information [Naor and Stockmeyer 1995].

There has also been significant work on (parallel) algorithms for approximating
packing and covering problems that are faster than interior-point methods that can
be applied to general LPs (e.g. [Fleischer 2000; Plotkin et al. 1995; Young 2001]).
However, these algorithms are not local as they need at least some global informa-

5There are of course numerous lower bounds and impossibility results in distributed comput-

ing [Fich and Ruppert 2003], but they apply to computational models where locality is not the
key issue. Instead, the restrictive factors are usually aspects such as bounded message size [Elkin

2004a], asynchrony, or faulty processors.

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 ·

tion to work.6 The problem of approximating positive LPs using only local infor-
mation has been introduced in [Papadimitriou and Yannakakis 1991; 1993]. The
first algorithm achieving a constant approximation for general covering and packing
problems in polylogarithmic time is described in [Bartal et al. 1997]. Distributed
(approximation) algorithms targeted for specific covering and packing problems in-
clude algorithms for the minimum dominating set problem [Dubhashi et al. 2003;
Jia et al. 2001; Rajagopalan and Vazirani 1998; Kuhn and Wattenhofer 2003] as
well as algorithms for maximal matchings and maximal independent sets [Alon
et al. 1986; Israeli and Itai 1986; Luby 1986]. We also refer to the survey in [Elkin
2004b].

While local computation was always considered an interesting and elegant re-
search question, it is currently experiencing an Indian summer because of several
new application domains, such as overlay or sensor networks. Partly driven by these
new application domains, and partly due to the lower bounds presented in this pa-
per, research in the last five years has concentrated on restricted graph topologies,
such as unit disk graphs, or bounded-growth graphs. A survey covering this more
recent work is [Suomela 2009].
Self-Organization & Fault-Tolerance: Looking at the wider picture, one

may argue that local algorithms even go back to the early 1970s when Dijkstra
introduced the concept of self-stabilization [Dijkstra 1973; 1974]. A self-stabilizing
system must survive arbitrary failures, including for instance a total wipe out of
volatile memory at all nodes. The system must self-heal and eventually converge
to a correct state from any arbitrary starting state, provided that no further faults
occur.

It seems that the world of self-stabilization (which is asynchronous, long-lived,
and full of malicious failures) has nothing in common with the world of local algo-
rithms (which is synchronous, one-shot, and free of failures). However, as shown
20 years ago, this perception is incorrect [Awerbuch and Sipser 1988; Afek et al.
1990; Awerbuch and Varghese 1991]; indeed it can easily be shown that the two
areas are related. Intuitively, this is because (i) asynchronous systems can be made
synchronous, (ii) self-stabilization concentrates on the case after the last failure,
when all parts of the system are correct again, and (iii) one-shot algorithms can
just be executed in an infinite loop. Thus, efficient self-stabilization essentially boils
down to local algorithms and hence, local algorithms are the key to understanding
fault-tolerance [Lenzen et al. 2009].

Likewise, local algorithms help to understand dynamic networks, in which the
topology of the system is constantly changing, either because of churn (nodes
constantly joining or leaving as in peer-to-peer systems), mobility (edge changes
because of mobile nodes in mobile networks), changing environmental conditions
(edge changes in wireless networks), or algorithmic dynamics (edge changes be-
cause of algorithmic decisions in overlay networks). In dynamic networks, no node
in the network is capable of keeping up-to-date global information on the network.
Instead, nodes have to perform their intended (global) task based on local infor-
mation only. In other words, all computation in these systems is inherently local!

6In general, a local algorithm provides an efficient algorithm in the PRAM model of parallel

computing, but a PRAM algorithm is not necessarily local [Wattenhofer and Wattenhofer 2004].

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 9

By using local algorithms, it is guaranteed that dynamics only affect a restricted
neighborhood. Indeed, to the best of our knowledge, local algorithms yield the best
solutions when it comes to dynamics. Dynamics also play a natural role in the area
of self-assembly (DNA computing, self-assembling robots, shape-shifting systems,
or claytronics), and as such it is not surprising that local algorithms are being con-
sidered a key to understanding self-assembling systems [Sterling 2009; Goldstein
et al. 2005].
Other Applications: Local computation has also been considered in a non-

distributed (sequential) context. One example are sublinear time algorithms, i.e.,
algorithms that cannot read the entire input, but must give (estimative) answers
based on samples only. For example, the local algorithms given in Section 5 are used
by Parnas and Ron [Parnas and Ron 2007] to design a sublinear- or even constant-
time sequential approximation algorithms. In some sense the local algorithm plays
the role of an oracle that will be queried by random sampling, see also [Nguyen and
Onak 2008].

There has recently been significant interest in the database community about
the Pregel system [Malewicz et al. 2010], a practically implemented computational
model suitable for computing problems in large graphs. All our lower bounds
directly apply to Pregel, i.e., they show how many iterations are required to solve
certain tasks; while our upper bounds provide optimal or near-optimal algorithms
in a Pregel-like message-passing system.

Finally, the term “local(ity)” is used in various different contexts in computer
science. The most common use may be locality of reference in software engineer-
ing. The basic idea is that data and variables that are frequently accessed together
should also be physically stored together in order to facilitate techniques such as
caching and pre-fetching. At first glance, our definition of locality does not seem
to be related at all with locality in software engineering. However, such a con-
clusion may be premature. One may for instance consider a multi-core system
where different threads operate on different parts of data, and sometimes share
data. Two threads should never manipulate the same data at the same time, as
this may cause inconsistencies. At runtime, threads may figure out whether they
have conflicts with other threads, however, there is no “global picture”. One may
model such a multi-thread system with a virtual graph, with threads being nodes,
and two threads having a conflict by an edge between the two nodes. Again, local
algorithms (in particular maximal independent set or vertex coloring) might help
to efficiently schedule threads in a non-conflicting way. At this stage, this is mostly
a theoretical vision [Schneider and Wattenhofer 2009], but with the rapid growth
of multi-core systems, it may get practical sooner than expected.

3. LOCAL COMPUTATION: LOWER BOUND

The proofs of our lower bounds are based on the timeless indistinguishability argu-
ment [Fischer et al. 1985; Lamport et al. 1982]. In k rounds of communication, a
network node can only gather information about nodes which are at most k hops
away and hence, only this information can be used to determine the computation’s
outcome. If we can show that within their k-hop neighborhood many nodes see
exactly the same graph topology; informally speaking, all these nodes are equally

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 ·

qualified to join the MIS, dominating set, or vertex cover. The challenge is now to
construct the graph in such a way that selecting the wrong subset of these nodes
is ruinous.

We first construct a hard graph for the MVC problem because i) it has a partic-
ularly simple combinatorial structure, and ii) it appears to be an ideal candidate
for local computation. Intuitively, a node should be able to decide whether or not
to join the vertex cover using information from its local neighborhood only; very
distant nodes appear to be superfluous for its decision. Our proof shows that this
intuition is misleading and even such a seemingly simple problem such as MVC is
not purely local; it cannot be approximated well in a constant number of commu-
nication rounds. Our hardness of distributed approximation lower bounds for MVC
holds even for randomized algorithms as well as for the fractional version of MVC.
We extend the result to other problems in Section 4.
Proof Outline: The basic idea is to construct a graph Gk = (V,E), for each

positive integer k. In Gk, there are many neighboring nodes that see exactly the
same topology in their k-hop neighborhood, that is, no distributed algorithm with
running time at most k can distinguish between these nodes. Informally speaking,
both neighbors are equally qualified to join the vertex cover. However, choosing
the wrong neighbors in Gk will be ruinous.
Gk contains a bipartite subgraph S with node set C0 ∪C1 and edges in C0 ×C1

as shown in Figure 1. Set C0 consists of n0 nodes each of which has δ0 neighbors in
C1. Each of the n0 · δ0δ1 nodes in C1 has δ1, δ1 > δ0, neighbors in C0. The goal is to
construct Gk in such a way that all nodes in v ∈ S see the same topology Tv,k within
distance k. In a globally optimal solution, all edges of S may be covered by nodes
in C1 and hence, no node in C0 needs to join the vertex cover. In a local algorithm,
however, the decision of whether or not a node joins the vertex cover depends only
on its local view, that is, the pair (Tv,k,L(Tv,k)). We show that because adjacent
nodes in S see the same Tv,k, every algorithm adds a large portion of nodes in C0

to its vertex cover in order to end up with a feasible solution. In other words, we
construct a graph in which the symmetry between two adjacent nodes cannot be
broken within k communication rounds. This yields suboptimal local decisions and
hence, a suboptimal approximation ratio. Throughout the proof, C0 and C1 denote
the two sets of the bipartite subgraph S.

The proof is organized as follows. The structure ofGk is defined in Subsection 3.1.
In Subsection 3.2, we show how Gk can be constructed without small cycles, en-
suring that each node sees a tree within distance k. Subsection 3.3 proves that
adjacent nodes in C0 and C1 have the same view Tv,k and finally, Subsection 3.4
derives the local approximability lower bounds.

3.1 The Cluster Tree

The nodes of graph Gk = (V,E) can be grouped into disjoint sets which are linked
to each other as bipartite graphs. We call these disjoint sets of nodes clusters. The
structure of Gk is defined using a directed tree CTk = (C,A) with doubly labeled
arcs ` : A → N×N. We refer to CTk as the cluster tree, because each vertex C ∈ C
represents a cluster of nodes in Gk. The size of a cluster |C| is the number of nodes
the cluster contains. An arc a = (C,D) ∈ A with `(a) = (δC , δD) denotes that the
clusters C and D are linked as a bipartite graph, such that each node u ∈ C has

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 11

12δ δ3 δ2 δ0 δ1

δ0 δ1

δ3δ2 δ1δ0

δ3δ2δ2 δ1δ0δ1

δ

Level 0

Level 1

Level 2

Level 3

3

2C

0C

S

1

C

C

Fig. 1. Cluster-Tree CT2.

δC neighbors in D and each node v ∈ D has δD neighbors in C. It follows that
|C| · δC = |D| · δD. We call a cluster leaf-cluster if it is adjacent to only one other
cluster, and we call it inner-cluster otherwise.

Definition 1. The cluster tree CTk is recursively defined as follows:

CT1 := (C1,A1), C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

`(C0, C1) := (δ0, δ1), `(C0, C2) := (δ1, δ2),

`(C1, C3) := (δ0, δ1)

Given CTk−1, we obtain CTk in two steps:

—For each inner-cluster Ci, add a new leaf-cluster C ′i with `(Ci, C
′
i) := (δk, δk+1).

—For each leaf-cluster Ci of CTk−1 with (Ci′ , Ci) ∈ A and `(Ci′ , Ci) = (δp, δp+1),
add k−1 new leaf-clusters C ′j with `(Ci, C

′
j) := (δj , δj+1) for j = 0 . . . k, j 6= p+1.

Further, we define |C0| = n0 for all CTk.

Figure 1 shows CT2. The shaded subgraph corresponds to CT1. The labels of
each arc a ∈ A are of the form `(a) = (δl, δl+1) for some l ∈ {0, . . . , k}. Further,
setting |C0| = n0 uniquely determines the size of all other clusters. In order to
simplify the upcoming study of the cluster tree, we need two additional definitions.
The level of a cluster is the distance to C0 in the cluster tree (cf. Figure 1). The
depth of a cluster C is its distance to the furthest leaf in the subtree rooted at C.
Hence, the depth of a cluster plus one equals the height of the subtree corresponding
to C. In the example of Figure 1, the depths of C0, C1, C2, and C3 are 3, 2, 1, and
1, respectively.

Note that CTk describes the general structure of Gk, i.e. it defines for each node
the number of neighbors in each cluster. However, CTk does not specify the actual
adjacencies. In the next subsection, we show that Gk can be constructed so that
each node’s local view is a tree.

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 ·

3.2 The Lower-Bound Graph

In Subsection 3.3, we will prove that the topologies seen by nodes in C0 and C1 are
identical. This task is greatly simplified if each node’s topology is a tree (rather
than a general graph) because we do not have to worry about cycles. The girth
of a graph G, denoted by g(G), is the length of the shortest cycle in G. We want
to construct Gk with girth at least 2k + 1 so that in k communication rounds, all
nodes see a tree. Given the structural complexity of Gk for large k, constructing
Gk with large girth is not a trivial task. The solution we present is based on the
construction of the graph family D(r, q) as proposed in [Lazebnik and Ustimenko
1995]. For given r and q, D(r, q) defines a bipartite graph with 2qr nodes and girth
g(D(r, q)) ≥ r + 5. In particular, we show that for appropriate r and q, we obtain
an instance of Gk by deleting some of the edges of D(r, q). In the following, we
introduce D(r, q) up to the level of detail which is necessary to understand our
results.

For an integer r ≥ 1 and a prime power q, D(r, q) defines a bipartite graph with
node set P ∪ L and edges ED ⊂ P × L. The nodes of P and L are labeled by the
r-vectors over the finite field Fq, i.e. P = L = Frq. In accordance with [Lazebnik
and Ustimenko 1995], we denote a vector p ∈ P by (p) and a vector l ∈ L by [l].
The components of (p) and [l] are written as follows (for D(r, q), the vectors are
projected onto the first r coordinates):

(p) = (p1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, p3,2, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .) (1)

[l] = [l1, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, l3,2, . . . li,i, l

′
i,i, li,i+1, li+1,i, . . .]. (2)

Note that the somewhat confusing numbering of the components of (p) and [l] is
chosen in order to simplify the following system of equations. There is an edge
between two nodes (p) and [l], exactly if the first r − 1 of the following conditions
hold (for i = 2, 3, . . .).

l1,1 − p1,1 = l1p1

l1,2 − p1,2 = l1,1p1

l2,1 − p2,1 = l1p1,1

li,i − pi,i = l1pi−1,i (3)
l′i,i − p′i,i = li,i−1p1

li,i+1 − pi,i+1 = li,ip1

li+1,i − pi+1,i = l1p
′
i,i

In [Lazebnik and Ustimenko 1995], it is shown that for odd r ≥ 3, D(r, q) has girth
at least r + 5. Further, if a node u and a coordinate of a neighbor v are fixed, the
remaining coordinates of v are uniquely determined. This is concretized in the next
lemma.

Lemma 1. For all (p) ∈ P and l1 ∈ Fq, there is exactly one [l] ∈ L such that
l1 is the first coordinate of [l] and such that (p) and [l] are connected by an edge
in D(r, q). Analogously, if [l] ∈ L and p1 ∈ Fq are fixed, the neighbor (p) of [l] is
uniquely determined.

Proof. The first r − 1 equations of (3) define a linear system for the unknown
coordinates of [l]. If the equations and variables are written in the given order,

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 13

the matrix corresponding to the resulting linear system of equations is a lower
triangular matrix with non-zero elements in the diagonal. Hence, the matrix has
full rank and by the basic laws of (finite) fields, the solution is unique. Exactly the
same argumentation holds for the second claim of the lemma.

We are now ready to construct Gk with large girth. We start with an arbitrary
instance G′k of the cluster tree which may have the minimum possible girth 4. An
elaboration of the construction of G′k is deferred to Subsection 3.4. For now, we
simply assume that G′k exists. Both Gk and G′k are bipartite graphs with odd-level
clusters in one set and even-level clusters in the other. Let m be the number of
nodes in the larger of the two partitions of G′k. We choose q to be the smallest
prime power greater than or equal to m. In both partitions V1(G′k) and V2(G′k) of
G′k, we uniquely label all nodes v with elements c(v) ∈ Fq.

As already mentioned, Gk is constructed as a subgraph of D(r, q) for appropriate
r and q. We choose q as described above and we set r = 2k−4 such that g(D(r, q)) ≥
2k + 1. Let (p) = (p1, . . .) and [l] = [l1, . . .] be two nodes of D(r, q). (p) and [l]
are connected by an edge in Gk if and only if they are connected in D(r, q) and
there is an edge between nodes u ∈ V1(G′k) and v ∈ V2(G′k) for which c(u) = p1

and c(v) = l1. Finally, nodes without incident edges are removed from Gk.

Lemma 2. The graph Gk constructed as described above is a cluster tree with the
same degrees δi as in G′k. Gk has at most 2mq2k−5 nodes and girth at least 2k+ 1.

Proof. The girth directly follows from the construction; removing edges cannot
create cycles.

For the degrees between clusters, consider two neighboring clusters C ′i ⊂ V1(G′k)
and C ′j ⊂ V2(G′k) in G′k. In Gk, each node is replaced by q2k−5 new nodes. The
clusters Ci and Cj consist of all nodes (p) and [l] which have their first coordinates
equal to the labels of the nodes in C ′i and C ′j , respectively. Let each node in C ′i have
δα neighbors in C ′j , and let each node in C ′j have δβ neighbors in C ′i. By Lemma 1,
nodes in Ci have δα neighbors in Cj and nodes in Cj have δβ neighbors in Ci, too.

Remark. In [Lazebnik et al. 1995], it has been shown that D(r, q) is discon-

nected and consists of at least qb
r+2

4 c isomorphic components which the authors
call CD(r, q). Clearly, those components are valid cluster trees as well and we
could use one of them for the analysis. As the asymptotic results remain unaffected
by this observation, we continue to use Gk as constructed above.

3.3 Equality of Views

In this subsection, we prove that two adjacent nodes in clusters C0 and C1 have
the same view, i.e., within distance k, they see exactly the same topology Tv,k.
Consider a node v ∈ Gk. Given that v’s view is a tree, we can derive its view-
tree by recursively following all neighbors of v. The proof is largely based on the
observation that corresponding subtrees occur in both node’s view-tree.

Let Ci and Cj be adjacent clusters in CTk connected by `(Ci, Cj) = (δl, δl+1),
i.e., each node in Ci has δl neighbors in Cj , and each node in Cj has δl+1 neighbors
in Ci. When traversing a node’s view-tree, we say that we enter cluster Cj (resp.,
Ci) over link δl (resp., δl+1) from cluster Ci (resp., Cj).

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 ·

Let Tu be the tree topology seen by some node u of degree d and let T1, . . . , Td
be the topologies of the subtrees of the d neighbors of u. We use the following
notation to describe the topology Tu based on T1, . . . , Td:

Tu := [T1] T2] . . .] Td] =

[
d⊎
i=1

Ti

]
.

Further, we define the following abbreviation:

d · T := T] T] . . .] T︸ ︷︷ ︸
d times

.

If T1, . . . , Td are sets of trees, [T1] . . .] Td] denotes the set of all view-trees [T1] . . .] Td]
for which Ti ∈ Ti for all i. We will also mix single trees and sets of trees, e.g., [T1] T]
is the set of all view-trees [T1] T] with T1 ∈ T1.

Definition 2. The following nomenclature refers to subtrees in the view-tree of
a node in Gk.

—Mi is the subtree seen upon entering cluster C0 over a link δi.

—B↑i,d,λ denotes the set of subtrees that are seen upon entering a cluster C ∈ C\{C0}
on level λ over a link δi from level λ− 1, where C has depth d.

—B↓i,d,λ denotes the set of subtrees that are seen upon entering a cluster C ∈ C\{C0}
on level λ over a link δi from level λ+ 1, where C has depth d.

In the following, we will frequently abuse notation and write Bi,d,λ when we mean
some tree in Bi,d,λ. The following example should clarify the various definitions.
Additionally, you may refer to the example of G3 in Figure 2.

Example 1. Consider G1. Let VC0
and VC1

denote the view-trees of nodes in
C0 and C1, respectively:

VC0
∈
[
δ0 · B↑0,1,1] δ1 · B

↑
1,0,1

]
VC1
∈
[
δ0 · B↑0,0,2] δ1 ·M1

]
B↑0,1,1 ⊆

[
δ0 · B↑0,0,2] (δ1 − 1) ·M1

]
B↑0,0,2 ⊆

[
(δ1 − 1) · B↓1,1,1

]
B↑1,0,1 ⊆ [(δ2 − 1) ·M2] M1 ∈

[
(δ0 − 1) · B↑0,1,1] δ1 · B

↑
1,0,1

]
M2 ∈

[
δ0 · B↑0,1,1] (δ1 − 1) · B↑1,0,1

]
. . .

We start the proof by giving a set of rules which describe the subtrees seen at a
given point in the view-tree. We call these rules derivation rules because they allow
us to derive the view-tree of a node by mechanically applying the matching rule for
a given subtree.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 15

δ2 δ1δ3 δ0

δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ0δ3 δ1 δ0
δ3 δ0δ2δ3δ2 δ1 δ0

δ2 δ1 δ0 δ3 δ2 δ0

δ

δ −1δ2 0δ1δ

−1δ3 1δ 0δ

−1δ2 −1δ1

2δ

−1δ3

0δ

−1δ2 −1δ1

2δ

−1δ3 −1δ4

3δ

3δ 2δ 0δ−1δ1

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

0δ−1δ2

−1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

−1δ4

3δ

0δ

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

2δ −1δ0

1δ2δ−1δ3 −1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

3δ −1δ2 0δ1δ

−1

3

3 1δ

V
C0

V
C1

Fig. 2. The Cluster Tree CT3 and the corresponding view-trees of nodes in C0 and C1. The cluster

trees CT1 and CT2 are shaded dark and light, respectively. The labels of the arcs of the cluster

tree represent the number of higher-level cluster. The labels of the reverse links are omitted. In
the view-trees, an arc labeled with δi stands for δi edges, all connecting to identical subtrees.

Lemma 3. The following derivation rules hold in Gk:

Mi ∈

(δi−1 − 1) · B↑i−1,k−i+1,1]
⊎

j∈{0,...,k}\{i−1}

δj · B↑j,k−j,1


B↑i,d,1 ⊆

[
F{i+1},d,1] Dd,1] (δi+1 − 1) ·Mi+1

]
B↓i,k−i,1 ⊆

[
F{i−1,i+1},k−i,1] Dk−i,1] δi+1 ·Mi+1] (δi−1 − 1) · B↑i−1,k−i−1,2

]
B↑i−2,k−i,2 ⊆

[
F{i−1},k−i,2] Dk−i,2] (δi−1 − 1) · B↓i−1,k−i+1,1

]
(i ≥ 2),

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 ·

where F and D are defined as

FW,d,λ :=
⊎

j∈{0,...,k−d+1}\W

δj · B↑j,d−1,λ+1

Dd,λ :=

k⊎
j=k−d+2

δj · B↑j,k−j,λ+1.

Proof. We first show the derivation rule for Mi. By Definition 2, Mi is the
subtree seen upon entering the cluster C0 over a link δi. Let us therefore first
derive a rule for the view-tree VC0

of C0 in Gk. We show by induction on k that

VC0
∈
[⊎

j∈{0,...,k} δj · B
↑
j,k−j,1

]
. It can be seen in Example 1 that the rule holds for

k = 1. For the induction step, we build CTk+1 from CTk as defined in Definition
1. C0 is an inner cluster and therefore, one new cluster with view trees of the form
B↑k+1,0,1 is added. The depth of all other subtrees increases by 1 and thus the rule
for VC0

follows. If we enter C0 over link δi, there will be only δi−1 − 1 edges left to
return to the cluster from which we had entered C0. Consequently, Mi is the same
as VC0 but with only δi−1 − 1 subtrees of the form B↑i−1,k−i+1,1.

The remaining rules follow along similar lines. Let Ci be a cluster with entry-
link δi which was first created in CTr, r < k. Note that in CTk, the depth of Ci is
d = k−r because each subtree increases its depth by one in each “round”. According
to the second building rule of Definition 1, r new neighboring clusters (subtrees)
are created in CTr+1. More precisely, a new cluster is created for all entry-links
δ0 . . . δr, except δi. We call these subtrees fixed-depth subtrees F . If the subtree
with root Ci has depth d in CTk, the fixed-depth subtrees have depth d−1. In each
CTr′ , r

′ ∈ {r + 2, . . . , k}, Ci is an inner-cluster and hence, one new neighboring
cluster with entry-link δr′ is created. We call these subtrees diminishing-depth
subtrees D. In CTk, each of these subtrees has grown to depth k − r′.

We now turn our attention to the differences between the three rules. They stem
from the exceptional treatment of level 1, as well as the predicates ↑ and ↓. In
B↑i,d,1, the link δi+1 returns to C0, but contains only δi+1−1 edges in the view-tree.

In B↓i,k−i,1, we have to consider two special cases. The first one is the link to
C0. For a cluster on level 1 with depth d and entry-link (from C0) δj , the equality
k = d + j holds and therefore, the link to C0 is δi+1 and thus, Mi+1 follows.
Secondly, because in B↓i,k−i,1 we come from a cluster C ′ on level 2 over a δi link,
there are only δi−1−1 links back to C ′ and therefore there are only δi−1−1 subtrees
of the form B↑i−1,k−i−1,2. (Note that since we entered the current cluster from a
higher level, the link leading back to where we came from is δi−1, instead of δi+1).
The depths of the subtrees in B↓i,k−i,1 follow from the above observation that the

view B↓i,k−i,1 corresponds to the subtree of a node in the cluster on level 1 that is
entered on link δi+1 from C0.

Finally in B↑i−2,k−i,2, we again have to treat the returning link δi−1 to the cluster

on level 1 specially. Consider a view-tree B↑j,d,x of depth d. All level x+ 1 subtrees
that are reached by links δj′ with j′ ≤ k − d+ 1 are fixed-depth subtrees of depth
d − 1. Because B↑i−2,k−i,2 is reached through link δi−1 from the cluster on level 1

and because i− 1 ≤ k− (k− i) = i, B↑i−2,k−i,2 is a fixed-depth subtree of its level 1

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 17

parent. Thus, we get that the depth of the δi−1−1 subtrees B↓i−1,k−i+1,1 is k−i+1.

Note that we do not give general derivation rules for all B↑i,d,x and B↓i,d,x because
they are not needed in the following proofs. Next, we define the notion of r-
equality. Intuitively, if two view-trees are r-equal, they have the same topology
within distance r.

Definition 3. Let V ⊆
[⊎d

i=1 Ti
]

and V ′ ⊆
[⊎d

i=1 T ′i
]

be sets of view-trees.

Then, V and V ′ are r-equal if there is a permutation π on {1, . . . , d} such that Ti
and T ′π(i) are(r − 1)-equal for all i ∈ {1, . . . , d}:

V r
= V ′ ⇐= Ti r−1

= T ′π(i) , ∀i ∈ {1, . . . , d}.

Further, all (sets of) subtrees are 0-equal, i.e., T 0
= T ′ for all T and T ′.

Using the notion of r-equality, we can now define what we actually have to prove.
We will show that in Gk, VC0

k
= VC1

holds. Since the girth of Gk is at least 2k + 1,
this is equivalent to showing that each node in C0 sees exactly the same topology
within distance k as its neighbor in C1. We first establish several helper lemmas.
For two collections of sub-tree sets β = T1] . . .] Td and β′ = T ′1] . . .] T ′d , we say
that β r

= β′ if Ti r= T ′i for all i ∈ [d].

Lemma 4. Let β =
⊎t
i=1 Ti and β′ =

⊎t
i=1 T ′i be collections of sub-tree sets and

let

Vv ∈

[
β]

⊎
i∈I

δi · B↑i,di,xi

]
and Vv′ ∈

[
β′]

⊎
i∈I

δi · B↑i,d′i,x′i

]
for a set of integers I and integers di, d

′
i, xi, and x′i for i ∈ I. Let r ≥ 0 be an

integer. If for all i ∈ I, di = d′i or r ≤ 1 + min {di, d′i}, it holds that

Vv1

r
= Vv2 ⇐= β r−1

= β′.

Proof. Assume that the roots of the subtree of Vv and Vv′ are in clusters C
and C ′, respectively. W.l.o.g., we assume that d′ ≤ d. Note that we have d′ ≥
1 + mini∈I min {di, d′i} and thus r ≤ d′. In the construction process of Gk, C and
C ′ have been created in steps k − d and k − d′, respectively.

By Definition 1, all subtrees with depth d∗ < d′ have grown identically in both
views Vv and Vv′ . The remaining subtrees of Vv′ were all created in step k− d′ + 1
and have depth d′ − 1. The corresponding subtrees in Vv have at least the same
depth and the same structure up to that depth. Hence paths of length at most
d′ which start at the roots of Vv and Vv, go into one of the subtrees in B↑i0,di0 ,xi0
and B↑i0,d′i0 ,x′i0

for i0 ∈ I and do not return to clusters C and C ′ must be identical.

Further, consider all paths which, after s ≤ d′ hops, return to C and C over link

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 ·

δi0+1. After these s hops, they return to the original cluster and see views

V ′v ∈

β] (δi0 − 1) · B↑i0,di0 ,xi0]
⊎

i∈I\{i0}

δi · B↑i,di,xi

 and

V ′v′ ∈

β′] (δi0 − 1) · B↑i0,d′i0 ,x′i0
]

⊎
i∈I\{i0}

δi · B↑i,d′i,x′i

 ,
differing from Vv and Vv′ only in having δi0 − 1 instead of δi0 subtrees in B↑i0,di0 ,xi0
and B↑i0,d′i0 ,x′i0

, respectively. This does not affect β and β′ and therefore,

Vv1

r
= Vv2

⇐= V ′v1

r−s
= V ′v2

∧ β r−1
= β′ , s > 1.

Note that s ≤ d′ implies s ≤ r. Thus, the same argument can be repeated until
r− s = 0 and because V ′v

0
= V ′v′ , we can conclude that Vv

r
= Vv and thus the lemma

follows.

2 Τ2 Τ1 Τ0

δ4
−1

δ1

δ1

V
C1

δ4
−1

δ1

Τ2

δ3 δ2
+ +1 δ3 δ2

+ +1

δ3 δ0
−13

−1δ2
δ1

δ0

’ ’ ’

δ

V
C

δ

0

2

Τ1 Τ0Τ

Fig. 3. The view-trees VC0
and VC1

in G3 seen upon using link δ1.

Figure 3 shows a part of the view-trees of nodes in C0 and C1 in G3. The
figure shows that the subtrees with links δ0 and δ2 cannot be matched directly to
one another because of the different placement of the −1. It turns out that this
inherent difference appears in every step of our theorem. However, the following
lemma shows that the subtrees T0 and T2 (T ′0 and T ′2) are equal up to the required
distance and hence, nodes are unable to distinguish them. It is this crucial property
of our cluster tree, which allows us to “move” the “−1” between links δi and δi+2

and enables us to derive the main theorem.

Lemma 5. For all i ∈ {2, . . . , k}, we have

Mi
k−i−1

= B↑i−2,k−i,2.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 19

Proof. By Lemma 3, we have

Mi ∈

 ⊎
j∈{0,...,k}\{i−1}

δj · B↑j,k−j,1] (δi−1 − 1) · B↑i−1,k−i+1,1



B↑i−2,k−i,2 ⊆

 ⊎
j∈{0,...,i+1}
\{i−1}

δj · B↑j,k−i−1,3]
⊎

j∈{i+2,...,k}

δj · B↑j,k−j,3] (δi−1 − 1) · B↓i−1,k−i+1,1


Consider the subtrees of the form B↑j,d,x for j 6= i− 1 in both cases. For j ≤ i+ 1,
the depths of the subtrees are k−j and k− i−1 ≤ k−j, respectively. For j > i+1,
the depths are k − j in both cases. We can therefore apply Lemma 4 to get that

Mi
k−i−1

= B↑i−2,k−i,2 ⇐= B↑i−1,k−i+1,1
k−i−2

= B↓i−1,k−i+1,1. (4)

To show that the right-hand side of (4) holds, we plug B↑i−1,k−i+1,1 and B↓i−1,k−i+1,1

into Lemma 3 and use the derivation rules:

B↑i−1,k−i+1,1 ⊆
[
F{i},k−i+1,1] Dk−i+1,1] (δi − 1) ·Mi

]
=
[
F{i−2,i},k−i+1,1] Dk−i+1,1] (δi − 1) ·Mi] δi−2 · B↑i−2,k−i,2

]
B↓i−1,k−i+1,1 ⊆

[
F{i−2,i},k−i+1,1] Dk−i+1,1] δi ·Mi] (δi−2 − 1) · B↑i−2,k−i,2

]
The two expressions are equal except for the placement of the “−1”. Therefore,
we get B↑i−1,k−i+1,1

k−i−2
= B↓i−1,k−i+1,1 if Mi

k−i−3
= B↑i−2,k−i,2. Hence, we have shown

that

Mi
k−i−1

= B↑i−2,k−i,2 ⇐= B↑i−1,k−i+1,1
k−i−2

= B↓i−1,k−i+1,1 ⇐= Mi
k−i−3

= B↑i−2,k−i,2.

This process can be continued using exactly the same rules until the requirement
becomes that either

B↑i−1,k−i+1,1
0
= B↓i−1,k−i+1,1 or Mi

0
= B↑i−2,k−i,2,

which is always true.

Finally, we are ready to prove the main theorem.

Theorem 6. Consider graph Gk. Let VC0
and VC1

be the view-trees of two
adjacent nodes in clusters C0 and C1, respectively. Then, VC0

k
= VC1

.

Proof. By the construction of Gk, the view-trees of VC0
and VC1

can be written
as

VV0
∈

 k⊎
j=0

δj · B↑j,k−j,1

 and

VV1
∈

δ1 ·M1]
⊎

j∈{0,...,k}\{1}

δj · B↑j,k−j,2

 .
Journal of the ACM, Vol. V, No. N, Month 20YY.

20 ·

It follows that VC0

k
= VC1

⇐= B↑1,k−1,1
k−1
= M1 by Lemma 4. To prove that

B↑1,k−1,1
k−1
= M1, we show that

B↑k−s,s,1
s
= Mk−s for all s ∈ {0, . . . , k − 1} . (5)

We show Equation (5) by induction on s. The statement is trivially true for s = 0
because any two trees are 0-equal. For the induction step, consider the derivation
rules for B↑k−s,s,1 and Mk−s:

B↑k−s,s,1 ⊆

k−s⊎
j=0

δj · B↑j,s−1,2]
k⊎

j=k−s+2

δj · B↑j,k−j,2] (δk−s+1 − 1) ·Mk−s+1


Mk−s ∈

 ⊎
j∈{0,...,k}\{k−s−1}

δj · B↑j,k−j,1] (δk−s−1 − 1) · B↑k−s−1,s+1,1


Consider the subtrees of the form B↑j,d,x for j 6∈ {k − s− 1, k − s+ 1} in both
expressions. For j ≤ k − s, the depths of the subtrees are s− 1 < k − j and k − j,
respectively. For j > k − s + 1, the depth is k − j in both cases. Hence, we can
apply Lemma 4 to get

B↑k−s,s,1
s
= Mk−s ⇐= (6)

a · B↑k−s−1,s+1,2] (b− 1) ·Mk−s+1
s−1
= (a− 1) · B↑k−s−1,s+1,1] b · B

↑
k−s+1,s−1,1

for a = δk−s+1 and b = δk−s−1. By Lemma 5, we have B↑k−s−1,s+1,2
s−1
= Mk−s+1 and

thus the right-hand side of (6) is true by the induction hypothesis. This concludes
the induction to show (5) and thus also the proof of the theorem.

Remark. As a side-effect, the proof of Theorem 6 highlights the fundamental
significance of the critical path P = (δ1, δ2, . . . , δk) in CTk. After following path
P , the view of a node v ∈ C0 ends up in the leaf-cluster neighboring C0 and sees
δi+1 neighbors. Following the same path, a node v′ ∈ C1 ends up in C0 and sees∑i
j=0 δj − 1 neighbors. There is no way to match these views. This inherent

inequality is the underlying reason for the way Gk is defined: It must be ensured
that the critical path is at least k hops long.

3.4 Analysis

In this subsection, we derive the lower bounds on the approximation ratio of k-
local MVC algorithms. Let OPT be an optimal solution for MVC and let ALG be
the solution computed by any algorithm. The main observation is that adjacent
nodes in the clusters C0 and C1 have the same view and therefore, every algorithm
treats nodes in both of the two clusters the same way. Consequently, ALG contains
a significant portion of the nodes of C0, whereas the optimal solution covers the
edges between C0 and C1 entirely by nodes in C1.

Lemma 7. Let ALG be the solution of any distributed (randomized) vertex cover
algorithm which runs for at most k rounds. When applied to Gk as constructed in
Subsection 3.2 in the worst case (in expectation), ALG contains at least half of the
nodes of C0.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 21

Proof. Let v0 ∈ C0 and v1 ∈ C1 be two arbitrary, adjacent nodes from C0

and C1. We first prove the lemma for deterministic algorithms. The decision
whether a given node v enters the vertex cover depends solely on the topology
Tv,k and the labeling L(Tv,k). Assume that the labeling of the graph is chosen
uniformly at random. Further, let pA0 and pA1 denote the probabilities that v0

and v1, respectively, end up in the vertex cover when a deterministic algorithm A
operates on the randomly chosen labeling. By Theorem 6, v0 and v1 see the same
topologies, that is, Tv0,k = Tv1,k. With our choice of labels, v0 and v1 also see the
same distribution on the labelings L(Tv0,k) and L(Tv1,k). Therefore it follows that
pA0 = pA1 .

We have chosen v0 and v1 such that they are neighbors in Gk. In order to obtain
a feasible vertex cover, at least one of the two nodes has to be in it. This implies
pA0 + pA1 ≥ 1 and therefore pA0 = pA1 ≥ 1/2. In other words, for all nodes in C0, the
probability to end up in the vertex cover is at least 1/2. Thus, by the linearity of
expectation, at least half of the nodes of C0 are chosen by algorithm A. Therefore,
for every deterministic algorithm A, there is at least one labeling for which at least
half of the nodes of C0 are in the vertex cover.7

The argument for randomized algorithms is now straight-forward using Yao’s
minimax principle. The expected number of nodes chosen by a randomized algo-
rithm cannot be smaller than the expected number of nodes chosen by an optimal
deterministic algorithm for an arbitrarily chosen distribution on the labels.

Lemma 7 gives a lower bound on the number of nodes chosen by any k-local
MVC algorithm. In particular, we have that E[|ALG|] ≥ |C0|/2 = n0/2. We do
not know OPT , but since the nodes of cluster C0 are not necessary to obtain a
feasible vertex cover, the optimal solution is bounded by |OPT | ≤ n − n0. In the
following, we define

δi := 2i(i−1)/2δi , ∀i ∈ {0, . . . , k + 1} (7)

for some value δ. Hence, δ0 = 1 and for all i ∈ {0, . . . , k}, we have δi+1/δi = 2iδ.

Lemma 8. If δ > 2, the number of nodes n of Gk is

n ≤ n0

(
1 +

2

δ − 2

)
.

Proof. Consider a cluster C of size |C| on some level ` and some neighbor
cluster C ′ on level `+ 1. For some i ∈ {0, . . . , k}, all nodes in C have δi neighbors
in cluster C ′ and all nodes in C ′ have δi+1 neighbors in cluster C. We therefore
have |C|/|C ′| = δi+1/δi for some i ≥ 0. Further, for every i, C can have at most
1 such neighboring cluster on level `+ 1. The total number of nodes in level `+ 1
clusters that are neighbors of C can therefore be bounded as

|C| ·
k∑
i=0

δi
δi+1

= |C| ·
k∑
i=0

1

2iδ
≤ |C| ·

∞∑
i=0

1

2iδ
=

2

δ
· |C|.

7In fact, since at most |C0| such nodes can be in the vertex cover, for at least 1/3 of the labelings,

the number exceeds |C0|/2.

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 ·

Hence, the number of nodes decreases by at least a factor of δ/2 on each level. For
δ > 2, the total number of nodes can thus be bounded by

∞∑
i=0

n0 ·
(

2

δ

)i
= n0 ·

δ

δ − 2
.

It remains to determine the relationship between δ and n0 such that Gk can be
realized as described in Subsection 3.2. There, the construction of Gk with large
girth is based on a smaller instance G′k where girth does not matter. Using (7)
(i.e., δi := 2i(i−1)/2δi), we can now tie up this loose end and describe how to obtain
G′k. Let Ci and Cj be two adjacent clusters with `(Ca, Cb) = (δi, δi+1). We require
that |Ca|/|Cb| = δi+1/δi. Hence, Ci and Cj can simply be connected by as many
complete bipartite graphs Kδi,δi+1 as necessary.

To compute the necessary cluster sizes to do this, let c` be the size of the smallest
cluster on level `. We have c0 = n′0 and c`−1/c` = δk+1/δk = 2kδ. Hence, the size
of the smallest cluster decreases by a factor 2kδ when going from some level to the
next one. The smallest cluster Cmin of G′k is on level k + 1. Because each node
in the neighboring cluster of Cmin on level k has δk neighbors in Cmin, Cmin needs
to have size at least δk. We thus choose Cmin of size ck+1 = |Cmin| = δk. From
c`−1/c` = 2kδ, we thus get

n′0 = c0 = ck+1 · 2k(k+1)δk = δk · 2k(k+1)δk = 2k(3k+1)/2δ2k ≤ (2kδ)2k.

If we assume that δ > 4, we have n ≤ 2n0, by Lemma 8. Applying the construc-
tion of Subsection 3.2, we get n ≤ n′ · 〈n′〉2k−5, where 〈n′〉 denotes the smallest
prime power larger than or equal to n′. We have 〈n′〉 < 2n′. Putting everything
together, we obtain

n ≤ (4n′0)2k−4 ≤ 24k3+4kδ4k2

. (8)

Theorem 9. For every constant ε > 0, there are graphs G, such that in k
communication rounds, every distributed algorithm for the minimum vertex cover
problem on G has approximation ratios at least

Ω
(
n

1/4−ε
k2

)
and Ω

(
∆

1−ε
k+1

)
,

where n and ∆ denote the number of nodes and the highest degree in G, respectively.

Proof. For δ ≥ 4, based on Lemmas 7 and 8, the approximation ratio of any
k-rounds algorithm is at least Ω(δ). We thus need to bound δ as a function of the
number of nodes n and the largest degree ∆ of Gk.

In the following, assume that we choose δ ≥ ak for a large enough constant
a > 1. Using Inequality (8), we then get that the number of nodes is at most

n ≤ 24k3+4ka4k3

. For any constant ε′ > 0, this is less that a4k3/(1−4ε′) = δ(1/4−ε)/k2

if the constant a is chosen large enough. Hence, the first lower bound follows. The
largest degree of Gk is ∆ = δk+1 = 2k(k+1)/2δk+1 ≤ (2a)k(k+1). Choosing a large
enough, this is at least a(k+1)/(1−ε), implying also the second lower bound.

Theorem 10. In order to obtain a constant approximation ratio, every dis-
tributed algorithm for the MVC problem requires at least Ω

(√
log n

)
and Ω (log ∆)

communication rounds.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 23

!"#"$%$&'()*(+&
,-.()&/!',0&

!"#"$%$&1-$"#23#4&
5(*&/!150&

!2+"$26&!2*78"#4&
/!!0&

!2+"$26&9#:(;(#:(#*&
5(*&/!950&

/<)273-#260&!2+"$%$&
!2*78"#4&/!2+!0&

Fig. 4. Locality Preserving Reductions. The dotted line between MVC and MaxM implies that we

do not know of a direct locality preserving reduction between the covering and packing problem,
but the respective lower bound constructions are based on a common cluster tree structure.

Proof. Follows directly from Theorem 9.

4. LOCALITY-PRESERVING REDUCTIONS

Using the MVC lower bound, we can now derive lower bounds for several of the
other classical graph problems defined in Section 1.2. Interestingly, the hardness
of distributed approximation lower bound on the MVC problem also gives raise to
local computability lower bounds for two of the most fundamental exact problems
in distributed computing: MIS and MM.

Specifically, we use the notion of locality preserving reductions to show that a
number of other problems can be reduce to MVC with regard to their local com-
putability/approximability. This implies that, like MVC, these problems fall into
the pseudo-local class of problems. Figure 4 shows the hierarchy of locality pre-
serving reductions derived in this section.

4.1 Lower Bounds for Minimum Dominating Set

In a non-distributed setting, MDS in equivalent to the general minimum set cover
problem, whereas MVC is a special case of set cover which can be approximated
much better. It is therefore not surprising that also in a distributed environment,
MDS is harder than MVC. In the following, we formalize this intuition giving a
locality-preserving reduction from MVC to MDS.

Theorem 11. For any ε > 0, there are graphs G, such that in k communi-
cation rounds, every (possibly randomized) distributed algorithm for the minimum
dominating set problem on G has approximation ratios at least

Ω
(
n

1/4−ε
k2

)
and Ω

(
∆

1−ε
k+1

)
,

where n and ∆ denote the number of nodes and the highest degree in G, respectively.

Proof. To obtain a lower bound for MDS, we consider the line graph L(Gk) of
Gk. The nodes of a line graph L(G) of G are the edges of G. Two nodes in L(G)

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 ·

are connected by an edge whenever the two corresponding edges in G are incident
to the same node. Assuming that initially each node knows all its incident edges,
a k-round computation on the line graph of G can be simulated in k round on G,
i.e., in particular Gk and L(Gk) have the same locality properties.

A dominating set of the line graph of a graph G = (V,E) is a subset E′ ⊆ E
of the edges such that for every {u, v} ∈ E, there is an edge {u′, v′} ∈ E′ such
that {u, v} ∩ {u′, v′} 6= ∅. Hence, for every edge dominating set E′, the node
set S =

⋃
{u,v}∈E′ {u, v} is a vertex cover of G of size |S| ≤ 2|E′|. In the other

direction, given a vertex cover S of G, we obtain a dominating set of E′ of L(G)
of the same size |E′| = |S| simply by adding some edge {u, v} to E′ for every node
u ∈ S. Therefore, up to a factor of at most 2 in the approximation ratio, the two
problems are equivalent and thus the claim of the theorem follows.

Remark. Using the same locality-preserving reduction as from MVC to MDS, it
can also be shown that solving the fractional version of MDS is at least as hard as
the fractional version of MVC. Since Theorem 9 also holds for fractional MVC (the
integrality gap of MVC is at most 2), Theorem 11 and Corollary 12 can equally be
stated for fractional MDS, that is, for the standard linear programming relaxation
of MDS.

Corollary 12. In order to obtain a constant approximation ratio for minimum
dominating set or fractional minimum dominating set, there are graphs on which
every distributed algorithm requires time

Ω
(√

log n
)

and Ω (log ∆) .

For polylogarithmic approximation ratios, we obtain the following lower bounds:

Ω

(√
log n

log log n

)
and Ω

(
log ∆

log log ∆

)
.

Proof. The corollary follows directly from Theorem 11.

Remark. The MDS problem on the line graph of G is also known as the minimum
edge dominating set problem of G (an edge dominating set is a set of edges that
’covers’ all edges). Hence, the above reduction shows that also the minimum edge
dominating set problem is hard to approximate locally.

4.2 Lower Bounds for Maximum Matching

While MVC and MDS are standard covering problems, the lower bound can also
be extended to packing problems. Unfortunately, we are not aware of a simple
locality-preserving reduction from MVC to a packing problem, but we can derive
the result by appropriately adjusting the cluster graph from Section 3.2. In fact, we
prove the result for the fractional maximum matching problem in which edges may
be selected fractionally, and the sum of these fractional values incident at a single
node must not exceed 1. Let E(v) denotes the set of edges incident to node v.

The basic idea of the lower bound follows along the lines of the MVC lower
bound in Section 3. The view of an edge is defined to be the union of its incident
nodes’ views. In other words, two edges (u, v) and (u′, v′) have the same view if

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 25

0
C

0
C’

Fig. 5. The structure of lower-bound graph Hk.

Vu,k ∪ Vv,k = Vu′,k ∪ Vv′,k. The idea is to construct a graph Hk which contains a
large set E′ ⊂ E of edges with equal view up to distance k. This implies that, in
expectation, the fractional values ye assigned to the edges in E′ must be equal. Hk

is constructed in such a way, however, that there are edges in E′ who are incident
to many other edges in E′, whereas the majority of edges in E′ are incident to
only a few such edges. Clearly, an optimal solution consists of mainly the latter
edges, leading to a matching with large cardinality. On the other hand, every
distributed k-local algorithm assigns equal fractional values ye to all edges in E′ in
expectation. In order to keep the feasibility at the nodes incident to many edges
in E′, this fractional value must be rather small, which leads to the sub-optimality
ultimately captured in the theorem.

The construction of Hk uses the lower-bound graph Gk of the MVC lower bound
as follows. Let Gk and G′k be two identical copies of the MVC lower-bound graph
defined in Section 3. The graph Hk takes the two copies and connects each node in
Gk to its counterpart in G′k as illustrated in Figure 5. Formally, let φ : V (Gk) →
V (G′k) be an isomorphism mapping nodes of Gk to G′k. Graph Hk consists of Gk
and G′k, as well as additional edges between nodes v ∈ Gk and w ∈ G′k if and only
if w = φ(v). C ′k denotes the set of nodes in G′k corresponding to cluster Ci in Gk.
Furthermore, we use the abbreviations S0 := C0 ∪ C ′0 and S1 := C1 ∪ C ′1.

By the construction of Hk and the structural properties proven in Theorem 6,
the following lemma follows immediately.

Lemma 13. Let v and w be two arbitrary nodes in S0 ∪ S1 of Hk. It holds that
v and w see the same topology up to distance k.

Lemma 13 implies that no distributed k-local algorithm can distinguish between
edges connecting two nodes in S0∪S1. In particular, this means that edges between
C0 and C1 cannot be distinguished from edges between C0 and C ′0. In the sequel,
let OPT be the value of the optimal solution for fractional maximum matching and
let ALG be the value of the solution computed by any algorithm.

Lemma 14. When applied to Hk, any distributed, possibly randomized algorithm
which runs for at most k rounds computes, in expectation, a solution of at most
ALG ≤ |S0|/(2δ) + (|V | − |S0|).

Proof. First, consider deterministic algorithms. The decision of which value

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 ·

ye is assigned to edge e = (v, v) depends only on the view the topologies Tu,k
and Tv,k and the labelings L(Tu,k) and L(Tv,k), which u and v can collect during
the k communication rounds. Assume that the labeling of Hk is chosen uniformly
at random. In this case, the labeling L(Tu,k) for any node u ∈ V is also chosen
uniformly at random.

All edges connecting nodes in S0 and S1 see the same topology. If the node’s
labels are distributed uniformly at random, it follows that the distribution of the
views (and therefore the distribution of the ye) is the same for all edges connecting
nodes in S0 and S1. We denote the random variables describing the distribution of
the ye by Ye. Every node u ∈ S1 has δ1 = δ neighbors in S0. Therefore, for edges e
between nodes in S0 and S1, it follows by linearity of expectation that E[Ye] ≤ 1/δ
because otherwise, there exists at least one labeling for which the computed solution
is not feasible. On the other hand, consider an edge e′ having both end-points in
S0. By Lemma 13, these edges have the same view as edges e between S0 and S1.
Hence, for y′e of e′, it must equally hold that E[Y ′e] ≤ 1/δ. Because there are |S0|/2
such edges, the expected total value contributed to the objective function by edges
between two nodes in S0 is at most |S0|/(2δ).

Next, consider all edges which do not connect two nodes in S0. Every such edge
has at least one end-point in V \S0. In order to obtain a feasible solution, the total
value of all edges incident to a set of nodes V ′, can be at most |V ′| = |V \ S0|.
This can be seen by considering the dual problem, a kind of minimum vertex cover
where some edges only have one incident node. Taking all nodes of V ′ (assigning 1
to the respective variables) yields a feasible solution for this vertex cover problem.
This concludes the proof for deterministic algorithms.

For probabilistic algorithms, we can apply an identical argument based on Yao’s
minimax principle as in the MVC lower bound (cf. Lemma 7).

Lemma 14 yields an upper bound on the objective value achieved by any k-
local fractional maximum matching algorithm. On the other hand, it is clear that
choosing all edges connecting corresponding nodes of Gk and G′k is feasible and
hence, OPT ≥ n/2 ≥ |S0|/2. Let α denote the approximation ratio achieved by any
k-local distributed algorithm, and assume—as in the MVC proof—that k+1 ≤ δ/2.
Using the relationship between n, |S0|, δ, and k proven in Lemma 8 and combining
it with the bound on ALG gives raise to the following theorem.

Theorem 15. For every ε > 0, there are graphs G, such that in k communica-
tion rounds, every (possibly randomized) distributed algorithm for the (fractional)
maximum matching problem on G has approximation ratios at least

Ω
(
n

1/4−ε
k2

)
and Ω

(
∆

1−ε
k+1

)
,

where n and ∆ denote the number of nodes and the highest degree in G, respectively.

Proof. By Lemma 14 and by Lemma 8, on Hk, the approximation ratio of any,
possibly randomized, (fractional) maximum matching algorithm is Ω(δ). Because
asymptotically, the relations between δ and the largest degree ∆ and the number
of nodes n is the same in the MVC lower bound graph Gk and in Hk, the lower
bounds follow in the same way as the lower bounds in Theorem 9.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 27

Corollary 16. In order to obtain a constant approximation ratio, every dis-
tributed algorithm for the (fractional) maximum matching problem requires at least

Ω
(√

log n
)

and Ω (log ∆)

communication rounds.

4.3 Lower Bounds for Maximal Matching

A maximal matching M of a graph G is a maximal set of edges which do not share
common end-points. Hence, a maximal matching is a set of non-adjacent edges
M of G such that all edges in E(G) \M have a common end-point with an edge
in M. The best known lower bound for the distributed computation of a maximal
matching is Ω(log∗n) which holds for rings [Linial 1992].

Theorem 17. There are graphs G on which every distributed, possibly random-
ized algorithm in expectation requires time

Ω
(√

log n
)

and Ω (log ∆)

to compute a maximal matching. This bound holds even if message size is unlimited
and nodes have unique identifiers.

Proof. It is well known that the set of all end-points of the edges of a maximal
matching form a 2-approximation for MVC. This simple 2-approximation algorithm
is commonly attributed to Gavril and Yannakakis. For deterministic algorithms, the
lower bound for the construction of a maximal matching in Theorem 17 therefore
directly follows from Theorem 10.

Generalizing this result to randomized algorithms, however, still requires some
work. The problem is that Theorem 9 lower bounds the achievable approximation
ratio by distributed algorithms whose time complexity is exactly k. That is, it
does not provide a lower bound for randomized algorithms whose time complexity
is at most k in expectation or with a certain probability. As stated in the theorem,
however, we consider distributed algorithms that always compute a feasible solution,
i.e., only the time complexity depends on randomness. In other words, Theorem
9 yields a bound on Monte Carlo type algorithms, whereas in the case of maximal
matching, we are primarily interested in Las Vegas type algorithms.

In order to generalize the theorem to randomized algorithms, we give a trans-
formation from an arbitrary distributed maximal matching algorithm AM with
expected time complexity T into a distributed vertex cover algorithm AVC with
fixed time complexity 2T + 1 and expected approximation ratio 11.

We first define an algorithm A′VC. In a first phase, A′VC simulates AM for exactly
2T rounds. Let EM ⊆ E be the set of edges selected after these rounds. In the
second phase, every node v checks whether it has at most one incident edge in EVC.
If a node has more than one incident edge in EVC, it removes all these edges from
EVC. Hence, EVC forms a feasible matching, although not necessarily a maximal
one.

It follows from Markov’s inequality that when running AM for 2T rounds, the
probability for obtaining a feasible maximal matching is at least 1/2. Therefore,
algorithm A′VC outputs a matching that is maximal with probability at least 1/2.

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 ·

Let VVC ⊆ V denote the set of all nodes incident to an edge in EVC. If EVC is a
maximal matching, VVC is a feasible vertex cover (with probability at least 1/2).
In any case, the construction of A′VC guarantees that |VVC| is at most twice the
size of an optimal vertex cover.

Algorithm AVC executes c · ln ∆ independent runs of A′VC in parallel for a suf-
ficiently large constant c. Let VVC,i be the node set VVC constructed by the ith of
the c · ln ∆ runs of Algorithm AVC. For each node u ∈ V , we define

xu := 6 · |{i : u ∈ VVC,i}|
c · ln ∆

.

Algorithm AVC computes a vertex cover S as follows. All nodes with xu ≥ 1 join
the initial set S. In one additional round, nodes that have an uncovered edge also
join S to guarantee that S is a vertex cover.

Let OPT VC be the size of an optimal vertex cover. Because for each i, |VVC,i| ≤
2OPT VC, we get

∑
u∈V xu ≤ 12 · OPT VC. For every edge {u, v}, in each run of

A′VC that ends with a vertex cover, the set {i : u ∈ VVC,i} contains at least one of
the two nodes {u, v}. Hence, if at least 1/3 of the runs of A′VC produces a vertex
cover, we have xu + xv ≥ 2 for every edge {u, v}. Thus, in this case, taking all
nodes u for which xu ≥ 1 gives a valid vertex cover of size at most

∑
u∈V xu. Let

X be the number of runs of A′VC that result in a vertex cover. Because the runs are
independent and since each of them gives a vertex cover with probability at least
1/2, we can bound the number of successful runs using a Chernoff bound:

Pr

[
X <

c ln ∆

3

]
= Pr

[
X <

(
1− 1

3

)
· c ln ∆

2

]
≤ e− c

36 ln ∆ =
1

∆c/36
.

For c ≥ 36, the probability that the nodes u with xu ≥ 1 do not form a vertex cover
is at most 1/∆. Thus, with probability at least 1− 1/∆, the algorithm computes a
vertex cover of size at most 10OPT VC. With probability at most 1/∆, the vertex
cover has size at most n ≤ ∆OPT VC. The expected size of the computed vertex
cover therefore is at most 11OPT VC. The theorem now follows from Theorem 10.

4.4 Lower Bounds for Maximal Independent Set (MIS)

As in the case of a maximal matching, the best currently known lower bound on the
distributed complexity of an MIS has been Linial’s Ω(log∗n) lower bound. Using a
locality-preserving reduction from MM to MIS, we can strengthen this lower bound
on general graphs as formalized in the following theorem.

Theorem 18. There are graphs G on which every distributed, possibly random-
ized algorithm in expectation requires time

Ω
(√

log n
)

and Ω (log ∆)

to compute a maximal independent set (MIS). This bound holds even if message
size is unlimited and nodes have unique identifiers.

Proof. For the MIS problem, we again consider the line graph L(Gk) of Gk,
i.e., the graph induced by the edges of Gk. The MM problem on a graph G is
equivalent to the MIS problem on L(G). Further, if the real network graph is G, k

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 29

communication rounds on L(G) can be simulated in k+O(1) communication rounds
on G. Therefore, the times t to compute an MIS on L(Gk) and t′ to compute an
MM on Gk can only differ by a constant, t ≥ t′ − O(1). Let n′ and ∆′ denote
the number of nodes and the maximum degree of Gk, respectively. The number of
nodes n of L(Gk) is less than n′2/2, the maximum degree ∆ of Gk is less than 2∆′.
Because n′ only appears as log n′, the power of 2 does not hurt and the theorem
holds (log n = Θ(log n′)).

4.5 Connected Dominating Set Lower Bound

In this section, we extend our lower bound to the minimum connected dominating
set problem (MCDS). First first start with a simple technical lemma that relates the
respective sizes of an optimal dominating set and an optimal connected dominating
set in a graph.

Lemma 19. Let G = (V,E) be a connected graph and let DSOPT and CDSOPT
be the sizes of optimal dominating and connected dominating sets of G. It holds
that CDSOPT < 3 ·DSOPT . Moreover, every dominating set D of G can be turned
into a connected dominating set D′ ⊇ D of size |D′| < 3|D|.

Proof. Given G and D, we define a graph GD = (VD, ED) as follows. VD = D
and there is an edge (u, v) ∈ ED between u, v ∈ D if and only if dG(u, v) ≤ 3. We
first show that GD is connected. For the sake of contradiction assume that GD is
not connected. Then there is a cut (S, T) with S ⊆ D,T = D \ S, and S, T 6= ∅
such that

∀u ∈ S,∀v ∈ T : dG(u, v) ≥ 4. (9)

Let u ∈ S and v ∈ T be such that

dG(u, v) = min
u∈S,v∈T

(dG(u, v)). (10)

By Inequality (9), there is a node w ∈ V with dG(u,w) ≥ 2 and dG(v, w) ≥ 2 on
each shortest path connecting u and v. Because of Equation (10), we have that

∀u ∈ S, ∀v ∈ T : dG(u,w) ≥ 2 ∧ dG(v, w) ≥ 2.

However this is a contradiction to the assumption that D = S ∪ T is a dominating
set of G.

We can now construct a connected dominating setD′ as follows. We first compute
a spanning tree of GD. For each edge (u, v) of the spanning tree, we add at most
two nodes such that u and v become connected. Because the number of edges of
the spanning tree is |D| − 1, this results in a connected dominating set of size at
most 3|D| − 2.

Using this lemma, we can now derive the lower bound on the local approximability
of the MCDS problem.

Theorem 20. Consider a (possibly randomized) k-round algorithm for the MCDS
problem. There are graphs for which every such algorithm computes a connected
dominating set S of size at least

|S| ≥ nΩ(1/k) · CDSOPT,

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 ·
u

v

e

u

v

v

ue

e

Fig. 6. Graph transformation used for the distributed minimum connected dominating set lower
bound

where CDSOPT denotes the size of an optimal connected dominating set.

Proof. It follows from a well-known theorem (see e.g. [Bollobas 1978]) that
there exist graphs G = (V,E) with girth g(G) ≥ (2k + 1)/3 and number of edges
|E| = n1+Ω(1/k). From any such graph G, we construct a graph G′ as follows. For
every edge e = (u, v) ∈ E, we generate additional nodes ue and ve. In G′, there
is an edge between u and ue, between ue and ve, and between v and ve. Note
that there is no edge between u and v anymore. The described transformation is
illustrated in Figure 6. We denote the set of all new nodes by W and the number
of nodes of G′ by N = |V ∪W |.

By the definition of G′, the nodes in V form a dominating set of G′. Hence,
an optimal connected dominating set on G′ has size less than 3|V | by Lemma 19.
Note that the construction described in Lemma 19 actually computes a spanning
tree T on G and adds all nodes ue, ve ∈ W to the dominating set for which (u, v)
is an edge of T . To bound the number of nodes in the connected dominating set
of a distributed algorithm, we have a closer look at the locality properties of G′.
Because g(G) ≥ (2k + 1)/3, the girth of G′ is g(G′) ≥ 2k + 1. This means that in
k communication rounds it is not possible to detect a cycle of G′. Hence, no node
can locally distinguish G′ from a tree. However, since on a tree all edges are needed
to keep a connected graph, a k-round algorithm removing an edge from G′ cannot
guarantee that the resulting topology remains connected. This means that the
connected dominating set of every k-round algorithm must contain all nodes V ∪W
of G′. The approximation ratio of every distributed k-round MCDS algorithm on
G′ is therefore bounded by

|V ∪W |
3|V |

=
n1+Ω(1/k)

3n
= nΩ(1/k) = N(1− 1

k+Ω(1))Ω(1/k) = NΩ(1/k).

5. LOCAL COMPUTATION: UPPER BOUNDS

This section is devoted to distributed algorithms with similar time-approximation
guarantees as given by the lower bounds in Section 3 for the problems introduced in
Section 1.2. In Section 5.1. we start with a simple algorithm that specifically targets

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 31

the minimum vertex cover problem and asymptotically achieves the trade-off given

by the Ω(∆
1−ε
k+1) lower bound in Theorem 9. We then describe a generic distributed

algorithm to approximate covering and packing linear programs in Section 5.2. In
Sections 5.3 and 5.4, we show how an LP solution can be turned into a solution
for vertex cover, dominating set, matching, or a related problems by randomized
rounding and how a dominating set can be extended to a connected dominating
set. Finally, we conclude this section by providing a derandomization result for the
distributed solution of fractional problems and with a general discussion on the role
of randomization and fractional relaxations in the context of local computations in
Section 5.5.

5.1 Distributed Vertex Cover Algorithm

The MVC problem appears to be an ideal starting point for studying distributed
approximation algorithms. In particular, MVC does not involve the aspect of sym-
metry breaking which is so crucial in more complex combinatorial problems. The
fractional relaxation of the MVC problem asks for a value xv ≥ 0 for every node
v ∈ V such that the sum of all xv is minimized and such that for every edge
{u, v}, xu + xv ≥ 1. A fractional solution can be turned into an integer solution
by rounding up all nodes with a fractional value at least 1/2. This increases the
approximation ratio by at most a factor of 2. Moreover, any maximal matching
is a 2-approximation for MVC and hence, the randomized parallel algorithm for
maximal matching by Israeli et al. provides a 2-approximation in time O(log n)
with high probability [Israeli and Itai 1986]. This indicates that the amount of
locality required in order to achieve a constant approximation for MVC is bounded
by O(log n).

In this section, we present a simple distributed algorithm that places an upper
bound on the achievable trade-off between time complexity and approximation
ratio for the minimum vertex cover problem. Specifically, the algorithm comes
with a parameter k, which can be any integer larger than 0. The algorithm’s time
complexity—and hence its locality—is O(k) and its approximation ratio depends
inversely on k. The larger k, the better the achieved global approximation.

Algorithm 1 is based on the classical primal-dual algorithm for the problem, cf.
[Bar-Yehuda and Even 1981; Vazirani 2001]. The algorithm simultaneously approx-
imates both MVC and its dual problem, the fractional maximum matching (FMM)
problem. Let Ev denote the set of incident edges of node v. In the FMM problem,
each edge e ∈ E is assigned a value ye such that the sum of all ye is maximized
and such that for every node v ∈ V ,

∑
e∈Ev ye ≤ 1. The algorithm concurrently

computes a feasible primal solution and an almost feasible dual solution such that
the values of the solutions are within a factor of 2 from each other. We call a node
v saturated if

∑
e∈Ev ye ≥ 1. The idea behind the algorithm for the problem is to

increase dual variables ye of edges e = {u, v} where u and v are both not saturated.
As soon as a node v becomes saturated, we set xv = 1 and thus add v to the vertex
cover. In order to obtain a low time complexity, the dual variables of many edges
have to be increased simultaneously. By increasing the dual variables by a factor
of at most ∆1/k each time, we guarantee that no dual constraint is violated by a
factor more than ∆1/k. A bound on the ratio of 2 between the computed primal

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 ·

1 for all nodes v do
2 xv ← 0
3 end
4 for all edges e = {u, v} do
5 δe ← max {deg(u),deg(v)};
6 ye ← 1/δe
7 end
8 while there are uncovered edges do
9 for all uncovered edges e do

10 ye ← ye · δ1/k
e

11 end
12 for all nodes v do
13 if

∑
e∈Ev ye ≥ 1 then

14 xv ← 1
15 end

16 end

17 end

Algorithm 1: Distributed Primal-Dual Algorithm for Vertex Cover and
Fractional Matching

and dual solutions follows in the same way as for the classical primal-dual algorithm
[Bar-Yehuda and Even 1981; Vazirani 2001]. In the following, we give a detailed
analysis of Algorithm 1.

Lemma 21. Assuming that initially each node v knows its own degree deg(u),
the time complexity of Algorithm 1 is k + 1 rounds.

Proof. We assume that the value ye of an edge e = {u, v} is maintained by
both its nodes u and v. Computing the initial value ye = 1/δe of all edges requires
1 round because all nodes need to determine the degrees of all their neighbors.

Further, each iteration of the while loop can be carried out in one communication
round. The nodes require one communication round to figure out the set of covered
adjacent edges. Afterwards, all variables can be updated in Lines 10 and 14 without
further communication.

After i iterations of the while loop, the value ye of an uncovered edge e is ye =

1/δ
(k−i)/k
e . Therefore after increasing the y-values in the kth iteration, the y-values

of uncovered edges are increased to 1 and therefore all uncovered edges are covered
by both its nodes. Hence, the algorithm terminates after at most k iterations of
the while loop.

Lemma 22. Algorithm 1 computes a feasible primal (MVC) solution and a dual
(FMM) solution that is feasible up to a factor of ∆1/k. Further, it holds that∑

v∈V
xv ≤ 2 ·

∑
e∈E

ye. (11)

Proof. Clearly, eventually all edges are covered and thus, the algorithm com-
putes a feasible primal solution. To show that the computed dual solution is feasible

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 33

up to a factor of ∆1/k consider the dual constraint
∑
e∈Ev ye ≤ 1 of some node v.

Before the first while loop, the value ye are initialized so that all dual constraints
remain satisfied. The dual value ye of edges e ∈ Ev is only increased as long as v
is not saturated. If v does not become saturated at all, its dual constraint remains
satisfied. Otherwise, v either becomes saturated initially (in which case the dual
constraint remains satisfied) or in some while-loop iteration. Let y′e be the values
at the beginning of the iteration and let ye be the values at the end of the iteration.
Because v is not saturated at the beginning of the while-loop iteration, we have∑
e∈Ev y

′
e < 1. After the iteration, it holds that∑

e∈Ev

ye ≤
∑
e∈Ev

y′e · δ1/k
e ≤

∑
e∈Ev

y′e ·∆1/k < ∆1/k.

Since afterwards, the y-values of v’s edges do not change anymore, this shows that
the dual solution is feasible up to the claimed factor.

Because xv = 0 unless v is saturated, we have xv ≤
∑
e∈Ev ye at all times during

the execution of the algorithm. We therefore get (11) by summing up over all nodes:∑
v∈V

xv ≤
∑
v∈V

∑
e∈Ev

ye = 2
∑
e∈E

ye.

This concludes the proof of the lemma.

We obtain the following theorem as a direct consequence of Lemmas 21 and 22.

Theorem 23. In k + 1 rounds of communication, Algorithm 1 achieves an ap-
proximation ratio of 2∆1/k. The algorithm is deterministic and requires O(log ∆)
and O(log ∆/ log log ∆) rounds for a constant and polylogarithmic approximation,
respectively.

Hence, the time-approximation trade-off of Algorithm 1 asymptotically matches
the lower bound of Theorem 9. The reason why Algorithm 1 does not achieve a
constant or polylogarithmic approximation ratio in a constant number of communi-
cation rounds is that it needs to “discretize” the steps of the standard primal-dual
algorithm in order to achieve the necessary parallelism. Whereas the sequential
primal-dual algorithm can the dual feasibility while increasing the dual variables
until some node gets saturated, a k-local distributed adaptation of the algorithm
must inherently increase many variables by significant amounts and in parallel.

5.2 Distributed Algorithm for Covering and Packing Linear Programs

We will now describe a generic distributed algorithm to solve covering and packing
LPs in the network setting described in Section 1.2. The algorithm is based on a
randomized technique to cover a graph with clusters of small diameter described in
[Linial and Saks 1993]. The property of covering and packing LPs allows to solve
local sub-LPs for all clusters and to combine the local solutions into an approximate
global one.

Assume that we are given a primal-dual pair of covering and packing LPs of the
canonical form (P) and (D) and the corresponding network graphGLP = (Vp∪̇Vd, E)
as defined in Section 1.2. We first describe how the local sub-LPs look like. Let
Y = {y1, . . . , ynd} be the set of variables of (D). Each local primal-dual sub-LP

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 ·

pair is defined by a subset S ⊆ Vd of the dual nodes Vd and thus by a subset
YS ⊆ Y of the dual variables. There is a one-to-one correspondence between the
inequalities of (P) and the variables of (D). Let PS be the LP that is obtained from
(P) by restricting to the inequalities corresponding to the dual variables in YS . The
primal variables involved in PS are exactly the ones held by primal nodes Vp that
are neighbors of some node in S. The local LP DS is the dual LP of PS . The
variables of We first prove crucial basic properties of such a pair of local sub-LPs.

Lemma 24. Assume that we are given a pair of LPs PS and DS that are con-
structed from (P) and (D) as described above. If (P) and (D) are both feasible, PS
and DS are both feasible. Further, any solution to DS (with dual variables in Y \YS
set to 0) is a feasible solution of (D).

Proof. Clearly PS is feasible as every feasible solution for (P) directly gives a
feasible solution for PS (by just ignoring all variables that do not occur in PS).
Because PS is a minimization problem and since (P) and (D) are covering and
packing LPs, all coefficients in the objective function (the vector c) are non-negative,
PS is also bounded (its objective function is always at least 0). Hence, also the dual
LP DS must be feasible.

Assume that we are given a feasible solution for DS which is extended to a solu-
tion for (D) by setting variables in Y \YS to 0. Inequalities in (D) that correspond
to columns of variables occurring in PS are satisfied by the feasibility of the solution
for DS . In all other inequalities of (D), all variables are set to 0 and thus, feasibility
follows from the fact that c ≥ 0.

Note that by construction, a feasible solution for PS gives a solution for (P)
which satisfies all the inequalities corresponding to variables YS and for which the
left-hand sides of all other inequalities are at least 0 because all coefficients and
variables are non-negative. We next show how to obtain local sub-LPs PS and DS

that can be solved efficiently.
In [Linial and Saks 1993], Linial and Saks presented a randomized distributed

algorithm for a weak-diameter network decomposition. We use their algorithm to
decompose the linear program into sub-programs which can be solved locally in
the LOCAL model. Assume that we are given a network graph G = (V, E) with
n = |V| nodes. The basic building block of the algorithm in [Linial and Saks 1993]
is a randomized algorithm LS(p,R) which computes a subset S ⊆ V such that each
node u ∈ S has a leader `(u) ∈ V and the following properties hold for arbitrary
parameters p ∈ [0, 1] and R ≥ 1:

(1) ∀u ∈ S : dG(u, `(u)) ≤ R, where dG(u, v) is the shortest path distance between
two nodes u, v ∈ V.

(2) ∀u, v ∈ S : `(u) 6= `(v) =⇒ (u, v) 6∈ E .

(3) S can be computed in O(R) rounds.

(4) ∀u ∈ V : Pr[u ∈ S] ≥ p(1− pR)n−1.

Hence, Algorithm LS(p,R) computes a set of clusters of nodes such that nodes
belonging to different clusters are at distance at least 2 and such that every node u
that belongs to some cluster is at distance at most R from its cluster center `(u).
Note that Algorithm LS(p,R) does bound the distance between nodes of the same

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 35

cluster in the graph induced by the nodes of the cluster. It merely bounds their
distance in G. The maximal G-distance between any two nodes of a cluster is called
the weak diameter of the cluster.

Based on the graph GLP, we define the graph G = (V, E) on which we invoke
Algorithm LS(p,R):

V := Vd, E :=

{
{u, v} ∈

(
Vs
2

)∣∣∣∣d(u, v) ≤ 4

}
, (12)

where d(u, v) denotes the distance between u and v in GLP. Hence, the nodes of G
are all nodes corresponding to dual variables in GLP. As discussed, there is a one-
to-one correspondence between nodes in Vd and inequalities in the linear program
(P). Two nodes u, v ∈ Vd are connected by an edge in E iff the corresponding
inequalities contain variables that occur together in some inequality. We apply
Algorithm LS(p,R) several times on graph G to obtain different locally solvable
sub-LPs that can then be combined into an approximate solution for (P) and (D).
The details are given by Algorithm 2.

1 Run ` independent instances of LS(p,R) on G in parallel:

2 yields node sets S1, . . . ,S` ⊆ V = Vd;

3 Solve local LPs PS1 , DS1 , . . . , PS` , DS` ;

4 Interpret as solutions for (P) and (D):
x1,1, . . . , x1,np , y1,1, . . . , y1,nd , . . . x`,1, . . . , x`,np , y`,1, . . . , y`,nd ;

5 forall the i ∈ {1, . . . , np} do xi ←
∑`
t=1 xt,i;

6 forall the i ∈ {1, . . . , nd} do yi ←
∑`
t=1 yt,i;

7 forall the i ∈ {1, . . . , np} do xi ← xi/minvdj∈Γvp
i

(Ax)j/bj ;

8 forall the i ∈ {1, . . . , nd} do yi ← yi/`;

9 return x and y

Algorithm 2: Algorithm for Covering and Packing linear programs with
parameters: `, p, and R

We first analyze the time complexity of Algorithm 2.

Lemma 25. Algorithm 2 can be executed in O(R) rounds. It computes feasible
solutions for (P) and (D).

Proof. Algorithm 2 consists of the following main steps. First, ` independent
instances of Algorithm LS(p,R) are executed. Then, for each collection of clusters
resulting from these executions, a local LP is solved and the local LPs are combined
to solutions of (P) and (D). Finally, each resulting dual variable is divided by ` and
each primal variable is divided by an amount that keeps the primal solution feasible.

As the ` instances of Algorithm LS(p,R) are independent, they can be executed
in parallel and thus the time complexity for the first step is O(R). Note that since
neighbors in G are at distance at most 4, each round on G can be simulated in 4
rounds on GLP.

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 ·

For the second step, consider the set of nodes Si ⊆ Vd computed by the ith

instance of LS(p,R). Two nodes that are in different connected components of
the sub-graph G[Si] of G induced by Si are at distance at least 5. Hence, the
corresponding dual variables and also the primal variables corresponding to their
GLP-neighbors in Vp cannot occur together in an inequality of (D) and (P), respec-
tively. Hence, the local sub-LP induced by Si can be solved by individually solving
the sub-LPs induced by every connected component of G[Si]. As every connected
component of G[Si] has a leader node that is at distance at most R from all nodes of
the connected component, all information from the sub-LP corresponding to G[Si]
can be sent to this leader and the sub-LP can be solved there locally. Hence, the
second step of the algorithm can also be executed in O(R) rounds.

For the third step, note that the values by which the primal variables xi are di-
vided can be computed locally (by only exchanging information with direct neigh-
bors in GLP). Finally, the computed dual solution is feasible because it is the
average of the dual solutions of all sub-LP and because each dual sub-LP is feasible
for (D) by Lemma 24. Line 7 of Algorithm 2 guarantees that the computed primal
solution is a feasible solution for (P).

Theorem 26. Let ε ∈ (0, 1), α > 1, and β > 0 be parameters. We choose

p = n
−α/R
d and define q := p · (1−nd ·pR). If we choose ` ≥ 2(1+β)

ε2q lnnd, Algorithm

2 computes 1
q(1−ε) approximations for (P) and (D) in O(R) time with probability

at least 1− 1/nβd .

Proof. The time complexity follows directly from Lemma 25. Because by
Lemma 25, the computed solutions for (P) and (D) are both feasible, the approx-
imation ratio of the algorithm is bounded by the ratio of the objective functions
of the solutions for (P) and (D). Both solutions are computed as the sum of the
solutions of all local sub-LPs in Lines 5 and 6 of the algorithm that are then divided
by appropriate factors in Lines 7 and 8. By LP duality (of the sub-LPs), we have
cTx = bT y after Line 6. Hence, the approximation ratio is upper bounded be the
ratio between the factor ` by which the dual variables are divided and the minimal
value by which the primal variables are divided. The approximation is therefore
upper bounded by

`

minvpi ∈Vp minvdj∈Γvp
i

(Ax)j/bj
=

`

minvdj∈Vd(Ax)j/bj
(13)

for x after Line 6. To obtain a lower bound on the value of the above equation,
assume that for every vdj ∈ Vd, the number of local sub-LPs PSt for which (Axt)j ≥
bj is at least `′ ≤ `. Hence, `′ is a lower bound on the number of times each
inequality of (P) is satisfied, combined over all sub-LPs. Because bj ≥ 0 for all j
and because all coefficients of A and the variables x are non-negative, we then have
(Ax)j/bj ≥ `′ for all j. By Equation (13). it then following that the computed
solutions for (P) and (D) are at most by a factor `/`′ worse than the optimal
solutions.

We get a bound on the minimum number of times each inequality of (P) is
satisfied by a local sub-LP by using the properties of Algorithm LS(p,R) and a
Chernoff bound. From [Linial and Saks 1993], we have that for each t ∈ {1, . . . , `}
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 37

and vdi ∈ Vd, the probability that vdi ∈ St is at least

p(1− pR)nd−1 =
pR

=
1

n
α/R
d

·
(

1− 1

nαd

)nd−1 (α>1)

≥ 1

n
α/R
d

·
(

1− 1

nα−1
d

)
= q.

Therefore, for every vdj ∈ Vd, the probability Pj that jth inequality of (P) is
satisfied less than (1− ε)q` times is at most

Pj < e−
ε2

2 q` ≤ e−(1+β) lnnd =
1

nd
· 1

nβ
. (14)

The theorem now follows by a union bound over all nd inequalities of (P).

Corollary 27. In k rounds, Algorithm 2 with high probability computes an
O(nc/k)-approximation for covering and packing LPs for some constant c > 0. An
(1 + ε)-approximation can be computed in time O(log(n)/ε).

5.3 Randomized Rounding

We next show how to use the algorithm of the last section to solve the MDS problem
or another combinatorial covering or packing problem. Hence, we show how to
turn a fractional covering or packing solution into an integer one by a distributed
rounding algorithm. In particular, we give an algorithm for integer covering and
packing problems of the forms

min cTx′

s. t. A · x′ ≥ b
x′i ∈ N.

(PI)

min bTy′

s. t. AT · y′ ≤ c
y′i ∈ N.

(DI)

with matrix elements aij ∈ {0, 1}. LPs (P) and (D) are the fractional relaxations
of (PI) and (DI). Not that we denote the solution vectors for the integer program
by x′ and y′ whereas the solution vectors for the corresponding LPs are called x
and y.

We start with covering problems (problems of the form of (P)). Because the aij
and the xi are restricted to integer values, w.l.o.g. we can round up all bj to the next
integer value. After solving/approximating the LP, each primal node vpi executes
Algorithm 3. The value of the parameter λ will be determined later.

1 if xi ≥ 1(λ ln ∆p) then
2 x′i ← dxie
3 else
4 pi ← xi · λ ln ∆p;
5 x′i ← 1 with probability pi and x′i ← 0 otherwise

6 end

Algorithm 3: Distributed Randomized Rounding: Covering Problems

The expected value of the objective function is E[cTx′] ≤ λ ln ∆p · cTx. Yet
regardless of how we choose λ, there remains a non-zero probability that the ob-
tained integer solution is not feasible. To overcome this, we have to increase some
of the x′i. Assume that the jth constraint is not satisfied. Let aj be the row vector

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 ·

representing the jth row of the matrix A and let b′j := bj − aix′ be the missing

weight to make the jth row feasible. Further, let ijmin be the index of the minimum
ci for which aji = 1. We set x′ijmin

:= x′ijmin
+ b′j . Applied to all non-satisfied

primal constraints, this gives a feasible solution for the considered integer covering
problem.

Theorem 28. Consider an integer covering problem (PI) with aij = {0, 1} and
bj ∈ N. Furthermore, let x be an α-approximate solution for the LP relaxation (P)
of (PI). The above described algorithm computes an O(α log ∆p)-approximation x′

for (PI) in a constant number of rounds.

Proof. As stated above, the expected approximation ratio of the first part of
the algorithm is λ ln ∆p. In order to bound the additional weight of the second part,
where x′ijmin

is increased by b′j , we define dual variables ỹj := b′jcijmin
/bj . For each

unsatisfied primal constraint, the increase cijmin
b′j of the primal objective function

is equal to the increase bj ỹj of the dual objective function. If the jth constraint is
not satisfied, we have b′j ≥ 1. Therefore, E[ỹj] ≤ qjcijmin

, where qj is the probability

that the jth primal inequality is not fulfilled.

In order to get an upper bound on the probability qj , we have to look at the
sum of the x′i before the randomized rounding step in Line 5 of the algorithm. Let
βj := bi − aix′ be the missing weight in row j before Line 5. Because the x-values
correspond to a feasible solution for the LP, the sum of the pi involved in row j is at
least βjλ ln ∆p. For the following analysis, we assume that ln ∆p ≥ 1. If ln ∆p < 1,
applying only the last step of the described algorithm gives a simple distributed
2-approximation for the considered integer program. Using a Chernoff bound, we
can bound qj as

qj < e
− 1

2βjλ ln ∆p(1− 1
λ ln ∆p

)2

≤
(

1

∆p

) 1
2λ(1− 1

λ)2

≤ 1

∆p
.

In the second inequality, we use that βj ≥ 1. For the last inequality, we have to
choose λ such that λ(1− 1/λ)2/2 ≥ 1 (i.e., λ ≥ 2 +

√
3). Thus, the expected value

of ỹj is E[ỹj] ≤ cijmin
/∆p. Hence, by definition of cijmin

, in expectation the ỹ-values
form a feasible solution for (D). Therefore, the expected increase of the objective
function cTx′ in the last step after the randomized rounding is upper-bounded by
the objective function of an optimal solution for (P).

Combining Algorithms 2 and 3, we obtain an O(log ∆)-approximation for MDS
in O(log n) rounds.

We now turn our attention to integer packing problems. We have an integer
program of the form of (DI) where all aij ∈ {0, 1} and where y′ ∈ Nn. We can
w.l.o.g. assume that the cj are integers because rounding down each cj to the next
integer has no influence on the feasible region. Each dual node vdi applies Algorithm
4.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 39

1 if yi ≥ 1 then
2 y′i ← byic
3 else
4 pi ← 1/(2e∆d);
5 y′i ← 1 with probability pi and y′i ← 0 otherwise

6 end
7 if y′i ∈ ‘non-satisfied constraint’ then
8 y′i ← byic
9 end

Algorithm 4: Distributed Randomized Riding: Packing Problems

Clearly, the yields a feasible solution for the problem. The approximation ratio
of the algorithm is given by the next theorem.

Theorem 29. Let (DI) be an integer covering problem with aij = {0, 1} and
cj ∈ N. Furthermore, let y be an α-approximate solution for the LP relaxation of
(DI). Algorithm 4 computes an O(α∆d)-approximation y′ for (DI) in a constant
number of rounds.

Proof. After Line 6, the expected value of the objective function is bTy′ ≥
bTy/(2e∆d). We will now show that a non-zero y′i stays non-zero with constant

probability in Line 8. Let qj be the probability that the jth constraint of the
integer program is not satisfied given that y′i has been set to 1 in Line 5. For
convenience, we define Y ′j :=

∑
i aijy

′
i. If cj ≥ 2, we apply a Chernoff bound to

obtain

qj = Pr[Y ′j > cj
∣∣ y′i = 1] ≤ Pr[Y ′j > cj − 1]

<

(
ee∆d−1

(e∆c)e∆d

)cj/(2e∆d)

<
1

∆d
.

If cj = 1, we get

qj ≤ 1− Pr[Y ′j = 0] = 1−
∏

vdi ∈Γ(vpj)

(1− pi)

≤ 1−
(

1− 1

2e∆d

)
=

1

2e∆d
.

The probability that all dual constraints containing y′i are satisfied is lower-bounded
by the product of the probabilities for each constraint [Srinivasan 1995]. Therefore,
under the natural assumption that ∆d ≥ 2:

Pr[y′i = 1 after Line 8] ≥
(

1− 1

∆d

)∆d

≥ 1

4
.

Thus the expected value of the objective function of the integer program (DI) is

E[bTy′] ≥ 8e∆d · bTy.

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 ·

5.4 Connecting a Dominating Set

An important applications of dominating sets in networks is to obtain clusterings
in ad hoc or sensor networks. In particular, clustering helps to improve information
dissemination and routing algorithms in such networks. However, for this purpose,
one usually needs clusters to be connected to each other and thus a connected
dominating set as underlying structure. Lemma 19 in Section 4.5 shows that every
dominating set D can be extended to a connected dominating set D′ of size |D′| <
3|D|. In the following, we described a simple distributed strategy to convert any
dominating set into a connected dominating set that is only slightly larger. A
similar strategy is also used in [Dubhashi et al. 2003].

Assume that we are given a dominating set D of the network graph G. As in
the proof of Lemma 19, we define a graph GD as follows. The node set of GD is D
and there is an edge between u, v ∈ D iff their distance in G is at most 3. We have
seen that GD is connected and thus, any spanning tree of GDinduces a connected
dominating set of size O(D). Unfortunately, for a local, distributed algorithm, it is
not possible to compute a spanning tree of GD. Nevertheless, a similar approach
also works for distributed algorithms. Instead of computing a spanning tree of GD,
it is sufficient to compute any sparse spanning subgraph of GD. If the number of
edges of the subgraph of GD is linear in the number of nodes |D| of GD, we obtain
a connected dominating set S′ which is only by a constant factor larger than D.

We therefore need to solve the following problem. Given a graph G = (V,E)
with |V | = n, we want to compute a spanning subgraph G′ of G with a minimal
number of edges. For an arbitrary k ≥ 1, the following Algorithm 5 shows how to
compute such a spanning subgraph in k rounds. For the algorithm, we assume that
all edges e = (u, v) of G have a unique weight we and that there is a total order on
all edge weights. If there are no natural edge weights, a weight for (u, v) can for
example be constructed by taking the ordered pair of the IDs of the nodes u and
v. Two weights can be compared using lexicographic order.

1 G′ ← G;
2 forall the u ∈ V do u collects complete k-neighborhood;
3 forall the e ∈ E do
4 if weight we of e is largest in any cycle of length ≤ 2k then
5 remove e from G
6 end

7 end

Algorithm 5: Computing a sparse connected subgraph

The following lemma shows that Algorithm 5 indeed computes a sparse connected
subgraph G′ of G.

Lemma 30. For every n-node connected graph G = (V,E) and every k, Algo-
rithm 5 computes a spanning subgraph G′ = (V,E′) of G for which the number of
edges is bounded by |E′| ≤ n1+O(1/k).

Proof. We first prove that the produced G′ is connected. For the sake of con-
tradiction, assume that G′ is not connected. Then, there must be a cut (S, T) with
S ⊆ V , T = V \ S, and S, T 6= ∅ such that S × T ∩ E′ = ∅. However, since G is
connected, there must be an edge e ∈ S × T ∩ E crossing the given cut. Let e be

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 41

the edge with minimal weight among all edges crossing the cut. Edge e can only
be removed by Algorithm 5 if it has the largest weight of all edges in some cycle.
However, all cycles containing e also contain another edge e′ crossing the (S, T)-cut.
By definition of e, we′ > we and therefore, e is not deleted by the algorithm.

Let us now look at the number of edges of G′. Because in every cycle of length at
most 2k at least one edge is removed by Algorithm 5, G′ has girth g(G′) ≥ 2k + 1.
It is well-known that therefore, G′ has at most |V |1+O(1/k) edges (see e.g. [Bollobas
1978]).

We can therefore formulate a k-round MCDS algorithm consisting of the following
three phases. First, a fractional dominating set is computed using Algorithm 2.
Second, we use the randomized rounding scheme given by Algorithm 3 to obtain a
dominating set D. Finally, Algorithm 5 is applied to GD. For each edge (u, v) of
the produced spanning subgraph of GD, we add the nodes (at most 2) of a shortest
path connecting u and v in G to D. Note that a k-round algorithm on GD needs
at most 3k rounds when executed on G. The achieved approximation ratio is given
by the following theorem.

Theorem 31. In O(k) rounds, the above described MCDS algorithm computes
a connected dominating set of expected size

O
(

CDSOPT · nO(1/k) · log ∆
)
.

Proof. Given the dominating set D, by Lemma 30, the number of nodes of the
connected dominating set D′ can be bounded by

|D′| ≤ 3|D|1+O(1/k) ≤ 3|D|nO(1/k)

and therefore

E[|D′|] ≤ 3 E[|D|]nO(1/k). (15)

Using Theorems 26 and 28, it follows that the expected size of the dominating set
D is

E[|D|] ∈ O
(
DSOPTn

O(1/k) log ∆
)
.

Plugging this into Inequality (15) completes the proof.

5.5 Role of Randomization and Distributed Derandomization

Randomization plays a crucial role in distributed algorithms. For many problems
such as computing a MIS, there are simple and efficient randomized algorithms.
For the same problems, the best deterministic algorithms are much more compli-
cated and usually significantly slower. The most important use of randomization in
distributed algorithms is breaking symmetries. We have seen that in certain cases,
LP relaxation can be used to “avoid” symmetry breaking. The question is whether
the use of randomness can also be avoided in such cases? In the following, we show
that this indeed is the case, i.e., we show that in the LOCAL model any distributed
randomized algorithm for solving a linear program can be derandomized.

Assume that we are given a randomized distributed k-round algorithm A which
computes a solution for an arbitrary linear program P . We assume that A explicitly
solves P such that w.l.o.g. we can assume that each variable xi of P is associated

Journal of the ACM, Vol. V, No. N, Month 20YY.

42 ·

with a node v which computes xi. We also assume that A always terminates with
a feasible solution. The following theorem shows that A can be derandomized.

Theorem 32. Algorithm A can be transformed into a deterministic k-round al-
gorithm A′ for solving P . The objective value of the solution produced by A′ is
equal to the expected objective value of the solution computed by A.

Proof. We first show that for the node computing the value of variable xi, it is
possible to deterministically compute the expected value E[xi]. We have seen that
in the LOCAL model every deterministic k-round algorithm can be formulated as
follows. First, every node collects all information up to distance k. Then, each
node computes its output based on this information. The same technique can also
be applied for randomized algorithms. First, every node computes all its random
bits. Collecting the k-neighborhood then also includes collecting the random bits
of all nodes in the k-neighborhood. However, instead of computing xi as a function
of the collected information (including the random bits), we can also compute E[xi]
without even knowing the random bits.

In algorithm A′, the value of each variable is now set to the computed expected
value. By linearity of expectation, the objective value of A′’s solution is equal to
the expected objective value of the solution of A. It remains to prove that the
computed solution is feasible. For the sake of contradiction, assume that this is not
the case. Then, there must be an inequality of P which is not satisfied. By linearity
of expectation, this implies that this inequality is not satisfied in expectation for the
randomized algorithm A. Therefore, there is a non-zero probability that A does
not fulfill the given inequality, a contradiction to the assumption that A always
computes a feasible solution.

Theorem 32 implies that the algorithm of Section 5.2 could be derandomized to
deterministically compute an (1 + ε)-approximation for (P) and (D) in O(log(n)/ε)
rounds. It also means that in principle every distributed dominating set algorithm
(e.g., [Jia et al. 2001; Rajagopalan and Vazirani 1998] could be turned into a deter-
ministic fractional dominating set algorithm with the same approximation ratio).
Hence, when solving integer linear programs in the LOCAL model, randomization
is only needed to break symmetries. Note that this is really a property of the
LOCAL model and only true as long as there is no bound on message sizes and lo-
cal computations. The technique described in Theorem 32 can drastically increase
message sizes and local computations of a randomized distributed algorithm.

6. CONCLUSIONS & FUTURE WORK

Lower Bounds: Distributed systems is an area in computer science with a strong
lower bound culture. This is no coincidence as lower bounds can be proved using in-
distinguishability arguments, i.e. that some nodes in the system cannot distinguish
two configurations, and therefore must make “wrong” decisions.

Indistinguishability arguments have also been used in locality. In his seminal
paper, Linial proved an Ω(log∗n) lower bound for coloring the drosophila mela-
nogaster of distributed computing, the ring topology [Linial 1992]. However, one
cannot prove local inapproximability bounds on the ring or other highly symmetric
topologies, as they allow for straight-forward purely local, constant approximation

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 43

solutions. Take for instance the minimum vertex cover problem (MVC): In any δ-
regular graph, the algorithm which includes all nodes in the vertex cover is already
a 2-approximation. Each node will cover at most δ edges, the graph has nδ/2 edges,
and therefore at least n/2 nodes need to be in a vertex cover.

On the other extreme, asymmetric graphs often enjoy constant-time algorithms,
too. In a tree, choosing all inner nodes yields a 2-approximation MVC. Similar
trade-offs exist for node degrees. If the maximum node degree is low (constant),
we can tolerate to choose all nodes, and have by definition a good (constant) ap-
proximation. If there are nodes with high degree, the diameter of the graph will
be small, and a few communication rounds suffice to inform all nodes of the entire
graph. Thus, our lower bound construction in Section 3 requires the construction of
a “fractal”, self-recursive graph that is neither too symmetric nor too asymmetric,
and has a variety of node degrees! To the best of our knowledge, not many graphs
with these “non-properties” are known in computer science, where symmetry and
regularity are often the key to a solution.

Upper Bounds: It is interesting to compare the lower and upper bounds for
the various problems. The MVC algorithm presented in Section 5.1 achieves an
O(∆1/k) approximation in k communication rounds, and hence, the lower and upper
bounds achieved in Theorems 9 and 23 are tight. In particular, any distributed
algorithm requires at least Ω(log ∆)-hop and Ω(log ∆/ log log ∆)-hop neighborhood
information in order to achieve a constant and polylogarithmic approximation ratio
to the MVC problem, respectively, which is exactly what our algorithm achieves.

Our bounds are not equally tight when expressed as a function of n, rather than
∆. In particular, the remaining gap between our upper and lower bounds can
be as large as Θ(

√
log n/ log log n) for polylogarithmic and Θ(

√
log n) for constant

approximations, respectively. The additional square-root in the lower bounds when
formulated as a function of n follows inevitably from the high-girth construction of
Gk: In order to derive a lower-bound graph as described in Sections 3.1 and 3.2,
there must be many “bad” nodes that have the same view as a few neighboring
“good” nodes. If each bad node has a degree of δbad (in Gk, this degree is δbad ∈
Θ(n1/k)) and if we want to have girth at least k, the graph must contain at least
n ≥ δkbad nodes. Taking all good nodes and applying Algorithm 1 of Section 5.1

to the set of bad nodes, we obtain an approximation ratio of α ∈ O(δ
1/k
bad) in k

communication rounds. Combining this with the bound on the number of nodes in
the graph, it follows that there is no hope for a better lower bound than Ω(n1/k2

)
with this technique. From this it follows that if we want to improve the lower
bound (i.e., by getting rid of its square-root), we either need an entirely different
proof technique, or we must handle graphs with low girth in which nodes do not
see trees in their k-hop neighborhood, which would necessitate arguing about views
containing cycles.

Future Work: We believe that the study of local computation and local approx-
imation is relevant far beyond distributed computing, and there remain numerous
directions for future research. Clearly, it is interesting to study the locality of other
network coordination problems that appear to be pseudo-local, including for ex-
ample the maximum domatic partition problem [Feige et al. 2003], the maximum
unique coverage problem [Demaine et al. 2006], or—of course—various coloring

Journal of the ACM, Vol. V, No. N, Month 20YY.

44 ·

problems [Kuhn and Wattenhofer 2006].
Beyond these specific open problems, the most intriguing distant goal of this

line of research is to divide distributed problems into complexity classes accord-
ing to the problems’ local nature. The existence of locality-preserving reductions
and the fact that several of the problems discussed in this paper exhibit similar
characteristics with regard to local computability/approximability raises the hope
for something like a locality hierarchy of combinatorial optimization problems. It
would be particularly interesting to establish ties between such a distributed hi-
erarchy of complexity classes and the classic complexity classes originating in the
Turing model of computation [Lenzen et al. 2008].

Besides classifying computational problems, studying local computation may also
help in gaining a more profound understanding of the relative strengths of the un-
derlying network graph models themselves. It was shown in [Schneider and Wat-
tenhofer 2008], for example, that a MIS can be computed in unit disk graphs (as
well as generalizations thereof) in time O(log∗n), which—in view of Linial’s lower
bound on the ring—is asymptotically optimal. Hence, in terms of local computabil-
ity, the vast family of unit disk graphs are equally hard as a simple ring network.
On the other hand, our lower bounds prove that general graphs are strictly harder,
thus separating these network topologies.

REFERENCES

Afek, Y., Kutten, S., and Yung, M. 1990. Memory-efficient self stabilizing protocols for general

networks. In WDAG, J. van Leeuwen and N. Santoro, Eds. Lecture Notes in Computer Science,
vol. 486. Springer, 15–28.

Alon, N., Babai, L., and Itai, A. 1986. A Fast and Simple Randomized Parallel Algorithm for

the Maximal Independent Set Problem. Journal of Algorithms 7, 4, 567–583.

Awerbuch, B. and Sipser, M. 1988. Dynamic networks are as fast as static networks. 206–219.

Awerbuch, B. and Varghese, G. 1991. Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. 258–267.

Bar-Yehuda, R. and Even, S. 1981. A linear-time approximatino algorithm for the weighted

vertex cover problem. Journal of Algorithms 2, 198–203.

Bartal, Y., Byers, J. W., and Raz, D. 1997. Global Optimization Using Local Information with
Applications to Flow Control. In Proc. of the 38 th Symposium on Foundations of Computer

Science (FOCS). 303–312.

Bollobas, B. 1978. Extremal Graph Theory. Academic Press.

Cole, R. and Vishkin, U. 1986. Deterministic Coin Tossing with Applications to Optimal Parallel

List Ranking. Information and Control 70, 1, 32–53.

Czygrinow, A., Hańćkowiak, M., and Wawrzyniak, W. 2008. Fast distributed approximations

in planar graphs. Vol. 5218. 78–92.

Demaine, E. D., Feige, U., Hajiaghayi, M. T., and Salavatipour, M. R. 2006. Combination

Can Be Hard: Approximability of the Unique Coverage Problem. In Proc. of the 17th ACM-
SIAM Symposium on Discrete Algorithm (SODA). 162–171.

Dijkstra, E. W. 1973. Self-stabilization in spite of distributed control. Manuscript EWD391.

Dijkstra, E. W. 1974. Self-stabilizing systems in spite of distributed control. Commun.

ACM 17, 11, 643–644.

Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., and Srinivasan, A. 2003. Fast
Distributed Algorithms for (Weakly) Connected Dominating Sets and Linear-Size Skeletons. In

Proc. of the ACM-SIAM Symposium on Discrete Algorithms (SODA). 717–724.

Elkin, M. 2004a. An Unconditional Lower Bound on the Hardness of Approximation of Dis-
tributed Minimum Spanning Tree Problem. In Proc. of the 36 th ACM Symposium on Theory
of Computing (STOC). 331–340.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 45

Elkin, M. 2004b. Distributed Approximation - A Survey. ACM SIGACT News - Distributed

Computing Column 35, 4.

Feige, U., Halldórsson, M. M., Kortsarz, G., and Srinivasan, A. 2003. Approximating the

Domatic Number. SIAM Journal on Computing 32, 1, 172–195.

Fich, F. and Ruppert, E. 2003. Hundreds of Impossibility Results for Distributed Computing.
Distributed Computing 16, 2-3, 121–163.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. 1985. Impossibility of Distributed Consensus

With One Faulty Process. Journal of the ACM 32, 2, 374–382.

Fleischer, L. 2000. Approximating Fractional Multicommodity Flow Independent of the Number
of Commodities. SIAM Journal on Discrete Mathematics 13, 4, 505–520.

Goldstein, S. C., Campbell, J. D., and Mowry, T. C. 2005. Programmable matter. Com-

puter 38, 6, 99–101.

Israeli, A. and Itai, A. 1986. A Fast and Simple Randomized Parallel Algorithm for Maximal

Matching. Information Processing Letters 22, 77–80.

Jia, L., Rajaraman, R., and Suel, R. 2001. An Efficient Distributed Algorithm for Constructing
Small Dominating Sets. In Proc. of the 20 th ACM Symposium on Principles of Distributed

Computing (PODC). 33–42.

Kuhn, F., Moscibroda, T., and Wattenhofer, R. 2004. What Cannot be Computed Locally!
In Proc. of the 23 rd ACM Symposium on the Principles of Distributed Computing (PODC).

300–309.

Kuhn, F., Moscibroda, T., and Wattenhofer, R. 2006. The Price of Being Near-Sighted. In

Proc. of the 17 th ACM-SIAM Symposium on Discrete Algorithms (SODA).

Kuhn, F. and Wattenhofer, R. 2003. Constant-Time Distributed Dominating Set Approxi-

mation. In Proc. of the 22nd Annual ACM Symp. on Principles of Distributed Computing

(PODC). 25–32.

Kuhn, F. and Wattenhofer, R. 2006. On the Complexity of Distributed Graph Coloring. In

Proc. of the 25 th ACM Symposium on Principles of Distributed Computing (PODC).

Lamport, L., Shostak, R., and Pease, M. 1982. The Byzantine Generals Problem. ACM Trans.
Program. Lang. Syst. 4, 3, 382–401.

Lazebnik, F. and Ustimenko, V. A. 1995. Explicit Construction of Graphs with an Arbitrary

Large Girth and of Large Size. Discrete Applied Mathematics 60, 1-3, 275–284.

Lazebnik, F., Ustimenko, V. A., and Woldar, A. J. 1995. A New Series of Dense Graphs of
High Girth. Bulletin of the American Mathematical Society (N.S.) 32, 1, 73–79.

Lenzen, C., Oswald, Y. A., and Wattenhofer, R. 2008. What can be approximated locally?

In 20th ACM Symposium on Parallelism in Algorithms and Architecture (SPAA), Munich,
Germany.

Lenzen, C., Suomela, J., and Wattenhofer, R. 2009. Local Algorithms: Self-Stabilization on
Speed. In 11th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), Lyon, France.

Lenzen, C. and Wattenhofer, R. 2008. Leveraging Linial’s locality limit. Vol. 5218. 394–407.

Linial, N. 1992. Locality in Distributed Graph Algorithms. SIAM Journal on Computing 21, 1,
193–201.

Linial, N. and Saks, M. 1993. Low Diameter Graph Decompositions. Combinatorica 13, 4,
441–454.

Luby, M. 1986. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
Journal on Computing 15, 1036–1053.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and Cza-
jkowski, G. 2010. Pregel: A System for Large-Scale Graph Processing. In Proceedings of the
International Conference on Management of Data (SIGMOD).

Naor, M. and Stockmeyer, L. 1995. What Can Be Computed Locally? SIAM Journal on

Computing 24, 6, 1259–1277.

Nguyen, H. N. and Onak, K. 2008. Constant-time approximation algorithms via local improve-
ments. 327–336.

Journal of the ACM, Vol. V, No. N, Month 20YY.

46 ·

Papadimitriou, C. H. and Yannakakis, M. 1991. On the Value of Information in Distributed De-

cision Making. In Proc. of the 10 th ACM Symposium on Principles of Distributed Computing
(PODC). 61–64.

Papadimitriou, C. H. and Yannakakis, M. 1993. Linear Programming Without the Matrix. In

Proc. of the 25 th ACM Symposium on Theory of Computing (STOC). 121–129.

Parnas, M. and Ron, D. 2007. Approximating the minimum vertex cover in sublinear time and
a connection to distributed algorithms. Theor. Comput. Sci. 381, 1-3, 183–196.

Peleg, D. 2000. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on

Discrete Mathematics and Applications.

Plotkin, S., Shmoys, D., and Tardos, E. 1995. Fast Approximation Algorithms for Fractional

Packing and Covering Problems. Mathematics of Operations Research 20, 257–301.

Rajagopalan, S. and Vazirani, V. 1998. Primal-Dual RNC Approximation Algorithms for Set

Cover and Covering Integer Programs. SIAM Journal on Computing 28, 525–540.

Schneider, J. and Wattenhofer, R. 2008. A Log-Star Distributed Maximal Independent Set

Algorithm for Growth-Bounded Graphs. In 27th ACM Symposium on Principles of Distributed
Computing (PODC), Toronto, Canada.

Schneider, J. and Wattenhofer, R. 2009. Bounds On Contention Management Algorithms.

In 20th International Symposium on Algorithms and Computation (ISAAC), Honolulu, USA.

Srinivasan, A. 1995. Improved approximations of packing and covering problems. In Proc. of
the 27th ACM Symposium on Theory of Computing (STOC). 268–276.

Sterling, A. 2009. Memory consistency conditions for self-assembly programming.

CoRR abs/0909.2704.

Suomela, J. 2009. Survey of local algorithms. Manuscript.

Vazirani, V. V. 2001. Approximation Algorithms. Springer, Berlin.

Wattenhofer, M. and Wattenhofer, R. 2004. Distributed Weighted Matching. In Proc. of
the 18 th Annual Conference on Distributed Computing (DISC). 335–348.

Young, N. 2001. Sequential and Parallel Algorithms for Mixed Packing and Covering. In Proc.

of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS). 538–546.

Journal of the ACM, Vol. V, No. N, Month 20YY.

