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Abstract. Many applications in sensor networks demand for energy and
time optimal routing of data towards a sink. In this work we present
mechanisms to set up energy and time efficient TDMA schedules for a
given routing tree under very strict limitations: Nodes have only a con-
stant size memory and must agree on a schedule using only a minimum
of communication for set up: Each node is only allowed to send a single
message to each of its neighbors.

We propose and analyze solutions in two different interference models.
We show that, despite these tight restrictions, it is possible to compute
energy optimal schedules which are almost time optimal and time opti-
mal schedules which are almost energy optimal in the total interference
model and we describe a 4-approximative algorithm in the k-local inter-
ference model.

We also show how to extend these mechanisms to settings with packet
loss, while still guaranteeing bounds on energy consumption.

1 Introduction

Data-harvesting applications in sensor networks gather bulk data from the data
field and collect them at a central repository or sink. Examples are data archiving
or surveillance applications that periodically sample snapshots at high rates,
storing or analyzing them centrally outside the network [1]. Another class are
scenarios in which network nodes store measured data until from time to time
a user requires access to the data stored in a large number of nodes [2]. In low-
power networks, these applications demand highly optimized communication
management to keep the network operable for as long as possible.

This paper considers sensor networks where sensor nodes are distributed over
a geographic area and measure values in regular time intervals. At certain times,
the stored data must be routed through the network and collected at a central
location, the sink, usually along a routing tree rooted at the sink. Since the
radio communication dominates the energy consumption, minimizing the cost of
wireless communication is crucial to maximize the lifetime of a sensor network.
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Power consumption in this scenario can be reduced in several ways. First
by compressing the data, second by improving the routing tree to prevent that
single nodes are overly burdened, and third by avoiding all unnecessary power
consumption of the radio. Although these three issues are not fully independent,
it makes sense to analyze them separately. Data reduction is an application-
specific problem that is largely orthogonal to the other two problems. The con-
struction of routing trees is subject to many other practical restrictions such as
link quality in real-life networks. We will thus focus on the problem of avoiding
all unnecessary power consumption by the radio for a fixed routing tree provided
by some arbitrary protocol.

If communication patterns are known in advance, schedule-based (“TDMA”)
protocols outperform contention-based (“CSMA”) protocols, because they do
not waste energy due to idle listening and collisions. Their drawback however is
an increased protocol overhead for schedule set-up. Therefore, we develop and
analyze efficient, schedule-based protocols that require only a minimum of set-up
communication.

The problem addressed in this paper can be summarized as follows: Given a
routing tree in which all nodes store data that is to be collected at a sink, we
allow each node to pass only one packet to each of its neighbors in that tree. Is
it possible to agree on an energy-optimal TDMA schedule, i. e., a schedule that
allows to transport all stored packets to the sink and in which all nodes know
exactly when to send and when to listen? Is it possible to agree on a schedule of
minimum length?

We will contribute to this problem by providing lower bounds and algorithms
for two reasonable interference models. In the total interference model, we as-
sume that at any time, only one single transmission is allowed throughout the
whole network. We will provide two transmission schedules that comply with
the above restrictions, the first being time-optimal at the price of adding a small
protocol overhead to routed packets, the second being energy-optimal, but not
time-optimal. We also provide a third transmission schedule for routing trees
that is both, energy- and time-optimal, at increased set-up costs. Furthermore,
we prove that in this interference model, an energy- and time-optimal transmis-
sion schedule cannot route single data packets with minimum delay. We conjec-
ture that it is impossible to set up an energy- and time-optimal schedule under
our restrictions at all.

In the k-local interference model we assume that transmissions do only inter-
fere with transmissions within some constant neighborhood. We will show how
to set up a transmission schedule that is energy-optimal and constant-factor
time-approximative for the given tree.

This paper is organized as follows: In the remainder of this section, we will
discuss related work and give a formal problem definition. In Section 2, we cover
the problem of finding schedules for a routing tree with total interference. In
Section 3, we do the same for local interference models. Section 4 discusses a
method to handle the problem of unreliable links. We conclude in Section 5.
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1.1 Related Work and Overview

There is a plethora of algorithms for finding topologies (or routing information)
for the data gathering problem in sensor networks. There are several goals for
optimization, for example throughput, latency, reliability, security and energy
consumption, the last one being the most important in sensor networks. Almost
all of these different approaches, however, construct one or sometimes several
routing trees.

There has been previous work on minimzing the time for data gathering. In
[3] a problem similar to ours is studied, a 4-approximation algorithm is given
and NP-hardness of the problem shown. A problem with variable release times
is studied in [4]. Unlike this previous work, however, we focus on distributed
algorithms and take set-up cost into account. Also, we do not concentrate so
much on time optimality but on energy optimality.

There are two main kinds of medium access methods: contention based
(“CSMA”) protocols and scheduled (“TDMA”) protocols (see [5] for a partial
overview of MAC protocols for sensor networks). There are also a few hybrid
forms. The strength of contention based protocols include simplicity, low protocol
overhead and flexibility, but they suffer from energy waste caused by collisions,
overhearing and idle listening. TDMA-based protocols do not have any of these
drawbacks (at least in theory) but they require more communication to establish
the scheme, time synchronization is usually more of an issue and they are less
flexible in case of topology changes.

One of the very few contention-based MAC protocols that take advantage of
the tree topologies present in data-archiving systems is [6]. The wakeup times
of nodes are staggered on paths towards the sink, which reduces latency. Mea-
sures are employed to reduce interference among packets travelling along the
same paths. Additionally, special “More-to-Send” packets are used to further
synchronize wakeup times and thus increase throughput. However, this protocol
is designed for very low data rates. It is not energy-optimal and there are no
special mechanisms to reduce congestion and ensure fairness.

Flexible Power Scheduling (FPS) is described in [7]. In FPS parents are respon-
sible for assigning time slots to their children. FPS reduces contention but does
not guarantee collision-free communication. Therefore, an underlying MAC layer
is still required. Fairness among children in different branches is not ensured.

MPS (Multi-Flow Power Scheduling) and HPS (Hybrid Power Scheduling) are
enhancements on FPS introduced in [8]. MPS is closely related to our k-layer
interference protocol in Section 3, but performance is only evaluated experimen-
tally and there is no theoretical analysis of the protocols. Also, the interference
model is not described explicitely.

The authors of [2] address the problem of congestion, fairness and robustness
during the transport of high volumes of sampled data. They use the total in-
terference model (cf. Section 2). Their approach is based on a slot distribution
scheme. Nodes that have no more packets to send can pass their slots back to
their parent. Every second slot that a node receives from its children is passed
on to its parent. This aims at distributing slots more fairly: Nodes with high
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loads get more slots. In [9] further refinement of slot distribution strategies are
developed. But even with these refinements, the channel usage is still fairly low
and decreases with growing network size. In the same paper, there is another
scheme (similar to ours in Section 2) which, however, leads to unlimited buffer
size and the control message overhead is not analyzed.

DOZER ([10]) is an approach that tries to solve the problems of medium
access, tree construction and scheduling together. The authors employ a local
TDMA scheme which reduces requirements on clock synchronization but does
not ensure fairness. Collisions are reduced by letting schedules of interfering
node pairs “drift apart” through randomization. This approach is designed for
scenarios with very low data rates but causes problems when there are higher
volumes of data to deliver.

In contrast to these approaches, we focus on detailed theoretical analysis of
throughput and protocol overhead. Our approaches are also designed for arbi-
trarily large networks and high data load.

1.2 Problem Definition and Network Model

Throughout this work, we assume that we are running a sensor network with
one node serving as a sink that is connected to some infrastructure or monitor.
The task now is to set-up a transmission schedule that collects sensor data from
all nodes at the sink without aggregation. This task naturally divides into the
following subtasks or stages:

Topology stage: decide on a topology to collect data. We assume that the result-
ing topology is a tree routed at the sink.
Set-up stage: perform the communication necessary to agree on a schedule that
guarantees delivery of all sensor data to the sink and complies with an interfer-
ence model.
Collection stage: run the schedule as long as data is to be collected.

Energy consumption is our primary concern. We want to minimize it during both
the set-up stage and the collection stage. Energy use during the collection stage
can be minimized if each node knows exactly in which slots to listen and when
to send and if there is no idle listening or failed transmission. Nodes that are
neither sending nor trying to receive can go into sleep mode or at least turn off
their radio, dramatically reducing the energy consumption. We concentrate on
solutions which achieve this with a minimalistic kind of set-up communication:
Just one convergecast and one broadcast. It is impossible to let all nodes know
about the schedule’s length, let alone a first point in time to transmit or receive
with less communication.

More formally, we restrict solutions to the following model:

1. Each node v in the network must transmit a (possibly individual) number
of own data packets, σ (v) to the sink.

2. Within the network, a spanning tree T , rooted at the sink r is provided by
some standard protocol, i. e., every node knows its parent and a list of its
children.
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3. During the set-up stage, every node can send at most one packet of size
O(log N) bits to each of its neighbors in T , N being the number of packets
in the network. We assume that during this stage a different medium access
scheme is used to establish parameters for the TDMA-based scheme of the
collection stage.

4. Each node (except for the sink) has only a limited, constant amount of
memory for buffering packets and storing information about the slots to be
active.

As a secondary criterion, we want to minimize the length of the schedule, i. e.,
the time until all packets have been delivered.

1.3 Definitions and Notation

We will denote a node’s distance from the sink in T by h(·) and the height of
the tree by h. We will talk of children, descendants, parents and ancestors in
the usual sense. We will refer to the set of a node v’s descendants including v
as D(v) := {w | w is descendant of v} ∪ {v}. The set of children of v is denoted
by C(v). We will assume that there is a fixed ordering among the children of
every node. A child v is said to be left of w if it preceeds w in this order. We
will also refer to the pre- and postorder number of nodes as pre(v) and post(v)
(with respect to these orderings) in the usual sense. As defined above, let σ (v)
denote the number of own packets a node has to deliver. We will assume that
every node (except the sink, for which we assume σ (r) = 0) has at least one
data packet. We will shortcut

∑
v∈V ′ σ (v) by σ (V ′) and σ (V ) with N . We will

also write π (V ′) :=
∑

v∈V ′ h(v)σ (v) for the number of transmissions a set of
nodes causes and π̄ (v) := π (D(v)).

2 Scheduling a Tree with Total Interference

This section covers the case of total interference. That is, no two nodes are ever
allowed to transmit in the same time slot.

2.1 Infeasibility

We conjecture that it is not possible to find a scheme that achieves optimal time
and energy using only one concast and convergecast in the total interference
model under the assumptions given in section 1.2. We have no proof for this
claim, but if we restrict ourselves to certain kinds of schedules, it follows quite
easily:

Proposition 1. Let σ (v) ≡ 1, every node can store at most one packet (at the
beginning every node’s memory is filled with its own packet), during the set-
up stage only one convergecast and one broadcast of (log N)-sized messages is
allowed and no additional information can be attached to the packets during the
collection stage.

Under these restriction it is not possible to compute and run a time-optimal
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schedule in which each packet is immediately passed to the sink once it has started
from its originating node.

Proof. Let r be the sink node. During the set-up stage, r has only received
|C(v)|c log N bits for some constant c. For every packet arriving at r during the
collection stage, the height of the originating node can be determined by the
time since the arrival of the previous packet. As r is only allowed to be awake
when packets arrive, it must know the times of arrival in advance. This is equiv-
alent to knowing the heights {h1, h2, . . . , hn} of the packets in advance. There
are, however, an exponential1 number of such sequences, each one requiring a
different schedule at r. But these cannot be identifed by the C(v)c log N bits.

Most of the assumptions can be relaxed without invalidating Proposition 1, but
it is not apparent if different kinds of schedules (which, for example, buffer
incoming packets) could achieve more. The rest of the paper will show what is
possible if some of the assumptions are relaxed.

2.2 An Optimal Scheme with Increased Packet Size

In our first approach we will achieve a time and energy optimal scheme by
allowing slightly increased packet size during the collection stage.

We will proceed as follows: The packets are transported to the sink in pre-
order. Each packet is immediately passed down to the sink once it has started.

1

3,6,10,14

5,9,13

18

r

8,16

8 12

2,4,7,11,
15,17,19

Fig. 1. Example schedule, num-
bers denote slots for sending

A node v never has to wake up before all nodes
which are further left than v but not descen-
dants of v have transmitted their packets to
the sink. Let’s call the first time slot in which
v has to transmit a packet T (v). We have

T (v) = T (parent(v)) + π (parent(v)) (1)

if v is the leftmost child of its parent. Else, we
have

T (v) = T (sl(v)) + π̄ (sl(v)) . (2)

The σ (v) packets of v are then transmit-
ted in time slots T (v), T (v) + h(v), . . . until
T (v) + (σ (v) − 1)h(v). After transmitting its
own packets, the next time to wake up for v is
when its leftmost child w transmits its packet.

The ancestors of v also have to have infor-
mation about when to receive these packets on their way to the sink. A node w
on the path from v to the sink r has to receive in slot T (v) + h(v) − h(w) − 1
and has to send in slot T (v)+ h(v)− h(w) (and so on. . . ). Therefore, v attaches

1 Exponential in n, even disregarding isomorphisms and order.
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to the payload P of the message an information t about the next time slot it is
going to send in.

t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T (v) + h(v)k if P is the kth packet of v and it has packets left
T (c) + 1 if the next packet belongs to a child c of v

t′ + 1 if P is from a descendant of v and t′ �= 0
0 if t′ = 0 and no children of v are left

(3)

After all descendants of v have transmitted their packets, v can sleep for the rest
of the protocol.

In summary, each node v has to compute

1. the number of packets σ (D(c)) in the subtree of each of its children ci

(counted during the convergecast),
2. its own height h(v) (determined during the broadcast),
3. the weighted sizes of the subtrees π̄ (ci) (computed from h(v) and information

collected during the convergecast),
4. its own starting time slot T (v) and the starting slots of all of its children

(computed via Equations (1) and (2)).

Theorem 1. There is a scheme that produces an optimum length schedule of
length π̄ (r). In this scheme, every node receives 1 + C(v) packets and transmits
1 + C(v) packets of size log(N) in the set-up stage.

Every node receives and sends Θ (σ (D(v)) log(h)) additional bits during the
collection stage. In total, an additional Θ(nΔ·log(N)+π̄ (r) log h) bits are trans-
mitted and received (with Δ := maxv C(v)). A node needs additional memory of
O(Δ log(nh maxw∈V σ (w))) .

Remark 1. The amount of additional data can be reduced to Θ(D(v) log h) (or
O(n log h)) bits per node. The total amount of additional data can be reduced
to

∑
v h(v) log h ≤ nh log h bits.

Summarizing, we have described a time- and energy-optimal scheme at the price
of increasing each packet by log(h) bits.

2.3 Variants

In the previous section we saw how an optimal (shortest) schedule can be con-
structed with relatively little (but unbounded) message overhead. With slight
modifications (which include adding a memory buffer for one packet at every
node), a similar scheme as in the previous section can be constructed for pos-
torder. In this section we will propose two different ways of cheating to get a
time optimal schedule.

Our first proposal needs more energy in the set-up stage and more than
constant memory:



50 B. Katz, S. Mecke, and D. Wagner

Proposition 2. It is sufficient to send (and store) h log N bits per edge once:
the number of nodes in every layer below that edge. If we use level order, we can
compute t from this information.

Finding a scheme for level order seems a little bit more involved. If, however,
every node v knows the number of nodes in lower levels and for each level � ≥ h(v)
the number of nodes in level � to the left of v, in v’s subtree and to the right
of v, then it can easily compute the slots in which it has to send or receive.
However, this requires additional memory per node in the order of Θ(h log N)
and the same amount additional communication per edge.

The second approach is a scheme which fulfills all the requirements on com-
munication and memory but at the cost of time optimality:

Proposition 3. If all nodes have the same number σ of packets, we can ar-
range an energy optimal schedule with length Nh (h is the tree height) and time
approximation factor

√
n.

Proof. This schedule works as follows: As before we process packets in preorder
and immediately hand them down to the sink. The only difference being that
T (v) = σh · (pre(v) − 1) + h − h(v) + 1. The packets of v are then transmitted
in slots T (v), T (v) + h, . . . , T (v) + (σ − 1)h. If v actually has height h(v) < h,
there are h − h(v) − 1 unused slots.

The approximation ratio of the length of this scheme is Θ(
√

n): For a fixed
height h the worst case is a “flower” with one path of length h and all other
nodes at height 1. The approximation ratio is σnh/|SOPT| = nh/(h · (h− 1)/2+
(n − h) · 1) ≤ c

√
n.

Remark 2. For “well-behaved”, geometric graphs in the plane with height Θ(
√

n)
and O(�) nodes in every level � (like a regular, geometric grid), the schedule has
length Θ(σn

√
n) which is within a constant factor of the optimum.

3 Scheduling with Local Interference

In this section, we assume that a transmission (u, v) is successful if and only if
u is the only active sender in v’s k-hop neighborhood for some constant k. We
call this interference model k-local interference. This model is a reasonable, yet
a cautious approximation of interference in dense networks, in which euclidian
distance and hop-distance closely correlate.

Quite typically, routing trees for data aggregation in sensor networks are set
up using some kind of request flooding, i. e., the routes between a node and
the sink are shortest paths (in hops). This is not only a very lightweight, robust
protocol, but also guarantees that data travels on short routes, which reduces the
risk of packet loss. In such trees, a transmission (u, v) is always successful if u is
the only active sender among all nodes with |h(v)−h(u)| ≤ k. This follows from
the triangle inequality. We call this property of a rooted tree k-layer bounded
interference. We will propose a protocol, coined k-LS, to set up a schedule that
is energy optimal and time approximative within a constant factor.
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Fig. 2. Slot assignment (a) and result (b) of the first phase of k-LS for k = 3 and
σ ≡ 1. Edges are active at time t if t is in the given range and matches the modulo for
the sender’s level of the tree.

Theorem 2. In the k-local interference model, there is a scheme for trees with
k-layer bounded interference yielding an energy optimal schedule that is time
approximative within a factor of k+2

�(k+1)/2� ≤ 4.

Proof. The key idea of k-LS is to set up two schedule phases that are performed
successively. In the first phase data is “pipelined” towards the sink ending in a
state where no nodes having a height of more than k+2 have any packets left. In
more detail, the sink’s neighbors pass packets to the sink every k+2 slots starting
with the first slot and sending one after another. Whenever a node transmits a
packet, it receives a packet in the next slot from one of its children as long as
their children have more packets. Every node v passes σ (D(v) \ Vk+2) packets,
i. e., as many packets as there are in its subtree in heights more than k + 2. In
the second phase data is collected from the remaining nodes using essentially
the same technique as in Proposition 2. For the following formal description,
we will shortcut the set of nodes with height less than or equal to some h with
Vh := {u ∈ V | h(u) ≤ h}.

During the convergecast phase each node v learns how many packets to relay
from nodes with heights h(v) + 1, . . . , h(v) + k + 2 and from more distant levels.
Obvioulsy, (k + 3)ldN bits, i. e. a message size of O(log N) during the concast
phase is sufficient to achieve this. In the broadcast phase, each node v learns
its height h(v) and some starting slots to be described later. Given its height,
it knows how many packets to relay that do not originate at nodes u ∈ Vk+2,
i. e. σ (D(v) \ Vk+2) and, if h(v) ≤ k + 2, how many nodes to relay from each
of the levels h(v) + 1 to k + 2. For the first, the pipelining phase, every node is
additionally assigned a starting slot T (v) as follows: The sink assigns itself the
(imaginary) starting slot T (r) = 0, and using messages of at most 2ldN bits,
each node v assigns start slots T (v)+ 1 +

∑
0<j<i σ (D(cj) \ Vk+2) to each of its

children ci. For the second phase, nodes in Vk+2 additionally receive the starting
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slots according to the scheme proposed in Proposition 2 restricted to nodes in
Vk+2 plus an offset of (k + 2) ·σ (V \ Vk+2), which is known to the sink after the
convergecast. In the pipelining phase, each node v but the sink now transmits
in slots T (v) + i(k + 2) for i = 0, . . . , σ (D(v) \ Vk+2). It receives a packet in the
following slot the first

∑
c∈C(v) σ (D(c) \ Vk+2) times. This process is depicted in

Fig. 2 for k = 3 and σ ≡ 1. Quite obviously, this part of the schedule has length
(k + 2) · σ (V \ Vk+2) + 1. Nevertheless, for the analysis, we can assume a length
of only (k + 2) · σ (V \ Vk+2) since the last transmission of this part can safely
overlap with the first transmission of the second part. After completion, no node
with height more than k + 2 neighborhood has any packets left and each node v
in Vk+2 has exacly σ (v) packets stored. Now, the rest of the packets is collected
optimally as described in Proposition 2, i. e. in π (Vk+2) slots.

It is easy to see that the resulting schedule is energy optimal for the given
tree. To show the approximation factor of (k + 2)/	(k + 1)/2
, we observe that
for l := 	(k + 1)/2
, no two nodes in Vl can transmit at the same time. Thus,
each packet originating at a node with height of more than l accounts for at least
those l slots where it is the only one transmitted by a node with height of l or
less in an optimal schedule. Similarly, every packet originating at a node v ∈ Vl

accounts for at least h(v) slots. Hence, an optimal schedule has at least length

|SOPT| ≥ lσ (V \ Vl) + π (Vl)
= lσ (V \ Vk+2) + lσ (Vk+2 \ Vl) + π (Vl)

(4)

The schedule produced by k-LS in turn uses

|Sk-LS| = (k + 2)σ (V \ Vk+2) + π (Vk+2)
= (k + 2)σ (V \ Vk+2) + π (Vk+2 \ Vl) + π (Vl)

(5)

The claim now follows from the fact that π (Vk+2 \ Vl) ≤ (k + 2)σ (Vk+2 \ Vl).

Applying very similar arguments as above, we can observe that first, k-LS pro-
duces a time optimal schedule if the first (k + 2) levels of T form a single path,
and second, that if T is a hop-shortest path tree in the sink’s l-hop neigborhood,
the produced schedule is time approximative not only for an optimal schedule
of T , but for an optimal schedule of any spanning tree. For the sake of brevity,
we omit the proof.

Corollary 1. The schedule produced by k-LS is time optimal for the given tree
if Vk+2 is a path and time approximative within a factor of k+2

�(k+1)/2� among all
schedules of all spanning trees of G if h(v) = dG(v, r) for all v with dG(v, r) ≤ l,
i. e. if T is a hop-shortest path tree in the l-hop neighborhood of r.

All these results can very naturally be extended to a relaxed local interfer-
ence model, the ki/ko-local interference model, in which a transmission (u, v) is
successful if u is the only active sender in v’s ko-neighborhood, but might be
successful if u is the only active sender in the ki-neighborhood of v. Then, the
approximation ratio from Theorem 2 becomes ko+2

�(ki+1)/2� .
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4 Making Schedules Robust

In this section, we will analyze an approach to make the above schemes robust
to link failures using logarithmic sized additional memory per node. To allow for
more sophisticated solutions than blindly repeating transmissions, which would
not lead to a robust scheme anyway, we will assume some sort of ACK to acknowl-
edge successful transmissions and a known lower bound on reception probability
α (u) (including the feedback) for every link (u, v) ∈ T . We further assume
reception probabilities to be independent for every transmission. We will first
analyze a generic approach and then discuss individual issues of the proposed
schemes.

For the generic approach, we will assume a non-robust schedule in which no
node receives twice in a row without sending in between like all of the above. We
further assume that we we have a mechanism to allocate t(u) ≥ �2/α (u)� suc-
cessive slots for every scheduled transmission (u, v) in the non-robust schedule.
We will discuss later how to do this for the individual protocols. The basic idea
now is to run the non-robust schedule, with t(u) slots reserved for every trans-
mission (u, v). We will show that as long as every node only uses the t(u) slots
allocated for a single transmission in the non-robust schedule for at most one
first transmission attempt (and arbitrarily many retransmissions), with high
probability all packets are delivered if nodes are able to buffer a logarithmic
number of packets and if the schedule budgets for a slightly more than σ (u)
packets for every node, namely σ′ (v) := σ (v) + σ̂ (v). More specifically, let
every node v have a buffer of size of (|C(v)| + 1)b for b := 3 log4 N packets,
and let σ̂ (v) := (25

32 ln 4 + 5
2 (|C(v)| + 1))b. We propose a robust transmission

protocol (RTP) where a node u uses the t(u) slots reserved for a transmission
(u, v) in the non-robust schedule as follows: First, if all packets in the sender’s
buffer are marked as “pending”, it pushes a “fresh” own packet to the buffer
if there are any. Second, if there are unmarked packets in the buffer, it then
marks one of them as “pending”. Third, it tries to transmit as many pending
packets as possible, removing successfully transmitted packets from the buffer.
The receiver v simply adds new packets to its buffer if they have not been
received before2.

Proposition 4. With high probability, RTP delivers all packets.

Before we prove this claim, we prove the following lemma:

Lemma 1. With high probability, no buffer of any node v ever contains more
than b packets marked as pending or more than |C(v)|b unmarked packets.

Proof (Lemma 1). First, we observe that in a transmission phase, the number
of nodes marked as pending at the sender can increase by at most 1, if all t(u)
transmission attempts fail and decreases by at least one if two or more trans-
mission attempts are successful. Since the number of transmission attempts is

2 Which can happen due to lost ACKs.
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higher than 2/α (u), the probability that the number of pending packets de-
screases, p−, is more than four times the probability that this number increases,
p+, unless there were no pending packets at the begin of the transmission phase.
Modeling the buffer utilization by marked packets as a finite markov chain, we
get a probability of less than (p+/p−)b to be in a state where the buffer contains
more than b marked packets by steady state analysis. The probability to reach
such a state in any node in any transmission phase is thus less than

1 −
(
1 − (1/4)b

)N2

= 1 − (
1 − 1/N3

)N2

< 1/N

On the other hand it is easy to see that also the number of unmarked packets in
a node v’s buffer can never exceed |C(v)|b: Looking at a node v and its children
C(v), we observe that the sum of packets marked as pending in the buffers
of the children and the unmarked packets in the buffer of v can only increase
during a transmission phase of a child and the next transmission phase of v (no
node receives twice in a row) if v had no unmarked packet in its buffer prior
to the transmission phase and the transmissions all failed. But since with high
probability, the first number stays below b for all children, i. e. the sum of marked
packets in the children’s buffers does whp. not exceed |C(v)|b, the sum of marked
packets at the children plus the number of unmarked packets at v cannot exceed
|C(v)|b, which proves the claim.

Proof (Proposition 4). Before the additional σ̂ (v) transmission phases start,
every node had enough transmission phases to shift all its own packets to the
buffer. From Lemma 1, we know that whp., the buffer sizes are sufficient. It
remains to show that the additional σ̂ (v) transmission phases are sufficient for
every node to get rid of the packets left in the buffer, i. e. at most (C(v) + 1)b
packets. As argued above, in every transmission phase, with probability p >
4/5, at least one packet is transmitted. Thus, Hoeffding’s inequality gives us
the following upper bound on the probability that for a single node, less than
(|C(v)| + 1)b of the σ̂ (v) calls are successful:

Psnf ≤ exp
(

−2(σ̂ (v) p − (|C(v)| + 1)b)2

σ̂ (v)

)

< exp
(

16(|C(v)| + 1)
5

b − 32
25

σ̂ (v)
)

With b and σ̂ (v) as above, we get Psnf < 1/N3, and a probability of less than
Pfail < 1 − (1 − 1/N3)|V | < 1/N that any node has any packets left when the
schedule ends.

Note that while retransmissions of failed transmissions are inevitable, the pro-
posed scheme does waste some energy for the following reasons: First, every
node accounts for additional O(log N) packets, and second, nodes do have to
transmit at least once during a transmission phase even if they do not have any
packet marked as pending. Both effects increase the energy consumption only
by small constant factors if every node has a payload of at least σ (v) > σ̂ (v),
i. e. σ (v) ∈ Ω(log N). If, in this case, the number of time slots t(v) can be set
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to exactly �2/α (v)� for every v, the total number of time slots 2t(v)σ (D(v))
reserved for v’s transmission attempts is at most six times the expected number
of necessary transmission attempts σ (D(v)) /α (v).

Adapting this approach to the proposed schedulings, however, can incur ad-
ditional costs. This adaption is easy if there is some reasonable lower bound
on reception probability, i. e., if there is some small constant c > 1 for which
maxv∈V α (v) < c minv∈V α (v). Then, every scheme can be made robust by
choosing t ≡ �2/ minv∈V α (v)�. Schemes in the total interference model can also
be made robust by treating a link (v, parent(v)) with reception probability α (v)
as if it was a path of length t(v) = �2/α (v)�. In this case, the height of the tree
changes accordingly.

For the time-optimal scheduling scheme in the total interference model, ro-
bustness can cause higher costs: Since packets contain additional routing data,
missing packets can sometimes only be compensated for by idle listening when
waiting for the next packet. On the other hand, buffer sizes and packet count
increase can be lowered for some of the proposed solutions: If a protocol guaran-
tees that a node does not receive packets from children alternatingly, which does
hold for all protocols but the level-order schemes, then the |C(v)| can safely be
replaced by 1 in the definition of b and σ̂ (v).

5 Conclusion and Open Problems

We have analyzed the performance of different TDMA schemes for two interfer-
ence models. Under the total interference model we have analyzed a scheme that
optimizes the number of transmissions and the time to complete at the cost of
increasing the packet size. We described another scheme which does not need to
change the packet size but which is not time optimal. We have conjectured that
there is no scheme which is time and energy optimal at the same time. The proof
of this conjecture remains an open problem. It is also an open question if there
are energy optimal schedules with better approximation guarantees (concerning
time to complete) than Θ(

√
n).

For the k-layer interference model we have proposed a scheme which is energy
optimal and is a good approximation with respect to time till completion. Finally,
we have shown how our schemes can be improved in order to integrate robustness
mechanisms.

Our analysis has shown some lower bounds on the performance of TDMA
schemes for data harvesting. It remains to evaluate the practical performance of
our algorithm compared to other approaches under more realistic conditions.
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