
Bounding the Locality of Distributed Routing Algorithms

[Extended Abstract]

Prosenjit Bose
School of Computer Science

Carleton University
Ottawa, Canada

jit@scs.carleton.ca

Paz Carmi
Dept. of Computer Science

Ben-Gurion Univ. of the Negev
Beer-Sheva, Israel

carmip@cs.bgu.ac.il

Stephane Durocher
Dept. of Computer Science

University of Manitoba
Winnipeg, Canada

durocher@cs.umanitoba.ca

ABSTRACT
We examine bounds on the locality of routing. A local rout-
ing algorithm makes a sequence of distributed forwarding
decisions, each of which is made using only local informa-
tion. Specifically, in addition to knowing the node for which
a message is destined, an intermediate node might also know
a) the subgraph corresponding to all network nodes within
k hops of itself, for some value of k, b) the node from which
the message originated, and c) which of its neighbours last
forwarded the message. Our objective is to determine which
of these parameters are necessary and/or sufficient to permit
local routing as k varies on a network modelled by a con-
nected undirected graph. In particular, we establish tight
bounds on k for the feasibility of deterministic k-local rout-
ing for various combinations of these parameters, as well as
corresponding bounds on dilation (the worst-case ratio of
actual route length to shortest path length).

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and De-
sign; F.2.2 [Theory of Computation]: Analysis of Algo-
rithms and Problem Complexity—Nonnumerical Algorithms
and Problems; G.2.2 [Mathematics of Computing]: Dis-
crete Mathematics—Graph Theory

General Terms
Algorithms, Theory

Keywords
distributed algorithms, local routing, dilation

1. INTRODUCTION

Local Routing. Unicast communication in a network is
achieved by a routing algorithm that computes a sequence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’09, August 10–12, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-396-9/09/08 ...$5.00.

of forwarding decisions that determine the route followed by
a message (e.g., a packet) as it travels to its destination. In
many settings, centralized routing algorithms or, more gen-
erally, routing algorithms that require complete knowledge
of the network topology are impractical; reasons include that
the network is too large, that the topology of the entire
graph is unknown, or that the network changes dynamically
[13]. Alternatively, a local routing algorithm makes a series
of distributed forwarding decisions, computed at each of the
intermediate nodes along the route. When a node receives
a message, it selects a port (i.e., one of its neighbours) to
which to forward the message using only local information.
In particular, each node is only aware of the subset of the
network consisting of nodes within k hops from itself, for
some k. Consequently, the route cannot be precomputed
entirely in general. Furthermore, message overhead and lo-
cal memory are often limited [11]. In particular, a network
node cannot be expected to maintain a history of messages
that have passed through it (i.e., the network is memory-
less). Similarly, the message overhead cannot store the set
of nodes visited by the message (i.e., the routing algorithm
is stateless).

Although a straightforward flooding algorithm is possible,
such a strategy has obvious drawbacks, including high traffic
loads [13], cyclic behaviour (if the network is memoryless),
and requiring knowledge of an upper bound on the diameter
of the network to ensure both termination and successful
delivery. In this paper we consider single-path deterministic
routing algorithms.

We represent a network by a connected, unweighted, undi-
rected graph G = (V,E) with unique vertex labels. A net-
work node (graph vertex) is identified by its label. In some
networks, a node’s label may provide information about its
neighbourhood in the network (e.g., a grid graph node can
be labelled by its grid coordinates). In general, suppose
that the vertex labelling is independent of the graph; that
is, a node’s label does not encode additional information
about the topology of the graph or the node’s neighbour-
hood. Equivalently, we consider routing algorithms that
succeed on any permutation of the vertex labels of G. We
assume that every node knows its own label as well as the
labels of its neighbours. A message also requires a desti-
nation node, identified by the node’s label. Some or all of
the following additional information may be available to an
intermediate node u to compute the next node to which a
message should be forwarded:

1. origin-awareness: knowledge of the node from which
the message originated,

250

T (n) origin-aware origin-oblivious

predecessor-aware n/4 n/3
predecessor-oblivious n/2 n/2

Table 1: Main result: there exists a k-local routing
algorithm when k ≥ T (n), but no k-local routing al-
gorithm exists when k < T (n), where n denotes the
number of network nodes.

2. predecessor-awareness: knowledge of the incoming
edge (port) along which the message was forwarded to
u (equivalently, the neighbour of u that last forwarded
the message), and

3. k-locality: knowledge of the k-neighbourhood of u
(i.e., the subgraph of G consisting of all paths rooted
at u with length at most k).

Our objective is to determine which of these parameters
are necessary and/or sufficient to permit local routing as
k varies.

Overview of Results. We identify tight bounds on the
value of the locality parameter k for the feasibility of k-
local routing in each of the four combinations of constraints:
predecessor-aware or predecessor-oblivious, and origin-aware
or origin-oblivious. In each case, let T (n) denote the corre-
sponding threshold. That is, for every k < T (n), every k-
local routing algorithm is defeated by some connected graph
on n vertices. Similarly, for every k ≥ T (n), there exists
a k-local routing algorithm that succeeds on all connected
graphs on n vertices. Our main result is the identification of
the values of T (n); see Table 1. In addition, we establish a
lower bound of S(k) = 2−3k/n on the worst-case dilation of
any k-local routing algorithm and show this bound is tight
for three of the four combinations of constraints.

2. MODELLING LOCAL ROUTING
In this section we formalize our model for local routing.

k-Local Routing Functions. Given a graph G = (V,E),
we employ standard graph-theoretic notation, where for each
vertex v ∈ V , Adj(v) = {u | {u, v} ∈ E} denotes the set of
vertices adjacent to v and deg(v) = |Adj(v)| denotes its de-
gree. Let dist(u, v) denote the (unweighted) graph distance
between vertices u and v.

The k-neighbourhood of a vertex v ∈ V , denoted Gk(v),
is the subgraph of G that contains all paths rooted at v
with length at most k. A routing algorithm is origin-aware,
predecessor-aware, and k-local if it can be defined as a func-
tion f(s, t, u, v,Gk(u)), where

• s ∈ V is the origin node,

• t ∈ V is the destination node,

• the message is currently at node u ∈ V ,

• node u received the message from its neighbour v ∈
Adj(u),

• Gk(u) is the k-neighbourhood of node u, and

• f(s, t, u, v,Gk(u)) returns the neighbour of u to which
the message should be forwarded (i.e., the port to
which node u must forward the packet).

B1

B2

B3

B4

k

u

Figure 1: In this example, G8(u) consists of four local
components, corresponding to the four connected
components of G8(u)\{u}. B1, B3, and B4 are frontier
components but B2 is not. B1 and B3 are constrained
frontier components but B2 and B4 are not.

Say v = ∅ if the message has not yet been forwarded (i.e,
the message leaves node s for the first time). Every k-
local routing algorithm A has a corresponding routing func-
tion f . A sequence of calls to function f returns a se-
quence of forwarding decisions that corresponds to a walk
through G originating at s (i.e., the route). We consider
two constraints on k-local routing algorithms: an origin-
oblivious k-local routing algorithm is not provided the pa-
rameter s, and a predecessor-oblivious k-local routing algo-
rithm is not provided the parameter v. To simplify notation
for predecessor-aware algorithms, let fu(v) denote the local
routing function at node u for a given s, t, u, and Gk(u),
where fu(v) = f(s, t, u, v,Gk(u)). That is, fu(v) returns
the neighbour of u to which the message is forwarded as a
function of the neighbour v from which it is received.

Naturally, not all routing functions can be implemented
efficiently as local routing algorithms. The routing func-
tion model allows stronger negative results to be established
for a more general class of routing algorithms, regardless of
implementation concerns. With respect to positive results,
the routing algorithms we present can be implemented effi-
ciently locally; implementation details are not the focus of
this paper.

Let C denote a connected component of Gk(u) \ {u}. We
refer to C as a local component of u. If v ∈ C ∩Adj(u), then
we say C is rooted at v (C can have multiple roots). If C
contains a vertex v such that dist(u, v) = k, then (relative
to u) C is a frontier component, v is a frontier vertex, and a
shortest path from u to v is a frontier path. In other words,
C extends to the limit of u’s knowledge: node v may have
neighbours outside C, but this information is not known
locally at u. If C is a frontier component of u and every
frontier path in C passes through some vertex w, then C
is a constrained frontier component and w is a constraint
vertex. See Figure 1.

Evaluating Routing Algorithms. A routing algorithm
A defined by a routing function f succeeds (synonymously,

251

guarantees delivery) if for all graphs G and all origin-destina-
tion pairs (s, t) in G, the sequence of values returned by f
corresponds to a walk from s to t in G. Otherwise, A is de-
feated by some graph G and some pair (s, t) in G. A routing
algorithmA has dilation bounded by δ if for all graphs G and
all origin-destination pairs (s, t) in G, rA(s, t)/ dist(s, t) ≤ δ,
where rA(s, t) denotes the length of the route from s to t re-
turned by A.

3. RELATED WORK
In position-based routing, network nodes are embedded

in some space (typically R2 or R3) and each node knows its
spatial coordinates (i.e., nodes are location-aware). Position-
based routing is also known as geo-routing, geographic rout-
ing, or geometric routing. Many recent results related to
local routing are position based. We briefly describe some
of these related results and discuss the interdependence be-
tween position-based and position-oblivious routing.

Greedy routing [7] (forward the message to the neighbour
closest to the destination), compass routing [11] (forward the
message along the edge that forms the smallest angle with
the line segment to the destination), and greedy-compass
routing [1] (apply greedy routing to the two edges adjacent
to the line segment to the destination) are three well-known
position-based routing algorithms, each of which succeeds
on specific classes of graphs but is defeated by some planar
graph [2]. All three algorithms are predecessor-oblivious,
origin-oblivious, and 1-local.

To show that a routing algorithm fails on some class of
graphs G, it suffices to identify a graph in G on which the
algorithm cycles infinitely without reaching the destination.
Stronger negative results are those that apply to all rout-
ing algorithms, showing that no routing algorithm succeeds
on a given class of graphs. Bose et al. [1] show that ev-
ery position-based, predecessor-oblivious, origin-oblivious,
1-local routing algorithm is defeated by some convex sub-
division.

Face routing [11] was one of the first position-based 1-
local routing algorithm discovered to succeed on more gen-
eral classes of graphs embedded in the plane. In brief, face
routing forwards the message in a clockwise direction along
the edges of a face, and along the sequence of faces that in-
tersect the line segment between the origin and destination
nodes. Forward progress is guaranteed by storing a parame-
ter such as the furthest intersection of the line segment with
a visited face. As such, face routing is not stateless since it
requires Θ(log n) bits to be stored with the message. Face
routing succeeds on planar graphs [11], on unit disc graphs
[3], and on d-quasi unit disc graphs for any d ∈ [1/

√
2, 1]

[12]. See [3] and [12] for definitions of unit disc graphs and
quasi unit disc graphs, respectively. Fraser considers a gen-
eralization of face routing to graphs embedded on tori [9].

Although our discussion focuses on deterministic routing
algorithms, we briefly note that randomized solutions permit
k-local routing on more general classes of graphs. Flury and
Watterhofer consider the problem of randomized local rout-
ing on unit ball graphs [8] and show that any randomized
position-based local routing algorithm has expected route
length Ω(l3), where l denotes the length of the shortest path.

Durocher et al. [6] show that for every fixed k, every origin-
aware, predecessor-aware, k-local routing algorithm fails on
some unit ball graph. The proof has two parts. First, the
corresponding position-oblivious result is proven: for every

fixed k, every origin-aware, predecessor-aware, k-local rout-
ing algorithm fails on some graph. Next, a k-local reduction
from (unembedded) graphs to unit ball graphs is used to
show that if some (possibly position-based) k-local routing
algorithm succeeds on unit ball graphs, then some (position-
oblivious) k-local routing algorithm succeeds on all graphs.
This interdependence between position-based and position-
oblivious routing algorithms motivates the question of ex-
ploring the boundary between feasibility and impossibility
of local routing algorithms as a function of the local infor-
mation available. In this paper we consider the position-
oblivious case.

4. WHEN LOCAL ROUTING IS IMPOSSI-
BLE: NEGATIVE RESULTS

In this section we present negative results: every k-local
routing algorithm fails on some graph when the degree of
locality k is less than the given bound. For each com-
bination of origin-awareness/obliviousness and predecessor-
awareness/obliviousness, we demonstrate a counter-example
consisting of a set of graphs such that any k-local routing
algorithm fails on at least one of the graphs in the set.

4.1 Properties of Local Routing Functions
The proofs of Theorems 3 through 6 refer to Lemma 1 and

Corollary 2, which generalize an observation of Durocher et
al. [6] showing that if a k-local routing algorithm guarantees
delivery, then each local routing function corresponds to a
circular permutation (under certain conditions). Recall that
a circular permutation of n distinct elements is an ordering
of these elements in a cycle.

Lemma 1. Let u denote a node such that

1. deg(u) ≥ 2,

2. for all {a, b} ⊆ Adj(u), a and b belong to different
frontier components of u, and

3. neither the origin node s nor the destination node t is
in Gk(u).

If A is an origin-aware, predecessor-aware, k-local routing
algorithm that guarantees delivery, then the local routing
function of A at u is a circular permutation of Adj(u).

Proof. Choose any k ≥ 1, any node u, and any k-
neighbourhood Gk(u) such that Properties 1 through 3 hold.
Suppose A is any k-local routing algorithm that guarantees
delivery and that the local routing function fu is not a cir-
cular permutation.

Case 1. Suppose fu is not a permutation. That is, fu is
not surjective. Therefore, there exists some v ∈ Adj(u) such
that for all w ∈ Adj(u), fu(w) 6= v. Let B1 denote the local
component of u that contains v and let B2 denote any other
local component of u. By Property 2, each local component
of u extends to the frontier of Gk(u). Let G denote a graph
that contains Gk(u) such that node t has degree one and
is the only node adjacent to B1 outside Gk(u). Similarly,
let node s have degree one such that it is the only node
adjacent to B2 outside Gk(u). See Figure 2. Since for all
w ∈ Adj(u), fu(w) 6= v, the message will never enter B1

and, consequently, will never reach t. Therefore, algorithm
A fails on graph G, deriving a contradiction.

252

B2

B1
s

t

k

v u

Figure 2: Gk(u) consists of frontier components, each
of which is rooted at a unique neighbour of u. This
example illustrates the graph constructed in Case 1
for a given Gk(u) when k = 8.

Case 2. Suppose fu is a permutation but not a derange-
ment (a derangement is a complete permutation). There-
fore, fu(v) = v for some v ∈ Adj(u). Let G be a graph
as defined in Case 1, with the exception that nodes s and
t are interchanged. It follows that the message will never
enter any local component other than B1 and, consequently,
will never reach t. Therefore, algorithm A fails on graph G,
deriving a contradiction.

Case 3. Suppose fu is a derangement but not a circular
permutation. Therefore, fu cannot be expressed as a single
permutation cycle. Let (a1 . . . ak) and (b1 . . . bj) denote any
two permutation cycles of fu. Observe that {a1, . . . ak} and
{b1, . . . , bj} are disjoint subsets of Adj(u). Let G be a graph
as defined in Case 1, with the exception that node s is adja-
cent to a local component B1 rooted at a node in {a1, . . . ak}
and t is adjacent to a local component B2 rooted at a node in
{b1, . . . , bj}. It follows that the message will never enter B2

and, consequently, will never reach t. Therefore, algorithm
A fails on graph G, deriving a contradiction.

All three cases derive a contradiction and our assumption
must be false. Therefore, the local routing function fu must
be a circular permutation.

In other words, without additional information on which
to base a local routing decision, an intermediate node u must
try all possibilities and sequentially forward the message to
each of its neighbours. When node u has degree two, only
one circular permutation is possible: a message received
from one neighbour of u must be forwarded to the oppo-
site neighbour. If node u has degree j, then (j− 1)! circular
permutations are possible. If routing algorithm A is origin
oblivious, then Lemma 1 gives:

Corollary 2. Let u denote a node such that

1. deg(u) ≥ 2,
2. for all {a, b} ⊆ Adj(u), a and b belong to different

frontier components of u, and
3. the destination node t is not in Gk(u).

If A is an origin-oblivious, predecessor-aware, k-local rout-
ing algorithm that guarantees delivery, then the local routing
function of A at u is a circular permutation on Adj(u).

routing strategy circular permutation succeeds fails

1 (P1P2P3P4) G1, G3 G2

2 (P1P2P4P3) G1, G2 G3

3 (P1P3P2P4) G2, G3 G1

4 (P1P3P4P2) G1, G2 G3

5 (P1P4P2P3) G2, G3 G1

6 (P1P4P3P2) G1, G3 G2

Table 2: Each routing strategy corresponds to a cir-
cular permutation of the neighbours of u.

Proof. Given any node u, any k ≥ 1, and any k-neigh-
bourhood Gk(u), if Properties 1 through 3 hold (as defined
in Lemma 1), then the local routing function fu is a circu-
lar permutation by Lemma 1. Since A is origin oblivious,
function fu remains constant for any given Gk(u) and t, re-
gardless of s. In particular, fu is a circular permutation
regardless of whether or not s is contained in Gk(u). The
result follows.

Theorems 3 through 6 establish lower bounds correspond-
ing to each of the four combinations of k-local routing algo-
rithms: origin-aware/oblivious and predecessor-aware/obli-
vious.

4.2 Predecessor Aware and Origin Aware

Theorem 3. For every k < b(n + 1)/4c, every origin-
aware, predecessor-aware, k-local routing algorithm fails on
some connected graph.

Proof. Choose any k < b(n+ 1)/4c, k ∈ Z+. Therefore,
k ∈ {1, . . . , r}, where r = b(n − 3)/4c. Let G1, G2, and
G3 denote the graphs illustrated in Figure 3, such that each
path P1 through P4 consists of r vertices that are labelled
consistently relative to node u in all three graphs. In each
graph, Gk(u) is a tree consisting of four paths of length k
rooted at u, none of which contain s nor t. In addition to the
4r nodes in paths P1 through P4, each graph includes nodes
u, s, and t. Depending on the value of n mod 4, between
zero and three extra nodes remain; these are added between
s and P1 to bring the total number of nodes to n. Any suc-
cessful routing algorithm must pass the message across P1 to
node u. Since u has degree four, its local routing function is
one of six possible circular permutations by Lemma 1. The
remaining nodes have degree at most two. Therefore, when
the message is passed to a node on a path that does not
contain s nor t, by Lemma 1, the message must continue
forward until it returns again to u. As shown in Table 2, for
each of the six possible routing strategies, the message never
enters the path containing t in at least one of the graphs G1,
G2, or G3. That is, for every routing strategy A, there exists
a graph on which A fails.

4.3 Predecessor Aware and Origin Oblivious
Using an argument similar to the proof of Theorem 3, we

now show that the lower bound on the locality parameter k
increases to b(n + 1)/3c for origin-oblivious k-local routing
algorithms:

Theorem 4. For every k < b(n + 1)/3c, every origin-
oblivious, predecessor-aware, k-local routing algorithm fails
on some connected graph.

253

P2

P4

P1

P3

G1

P2

P4

P1

P3

P2

P4

P1

P3

G2

P2

P4

P1

P3

G3

cs
a

d

u
c

b

t

a

b

d

u
c s t

a

c

b

d

u
s

a

b

u

t

d

r

r

r

r

Figure 3: The k-neighbourhood Gk(u) is identical in graphs G1, G2, and G3. In this example, suppose
n mod 4 = 0. Consequently, one extra node is added between s and P1 such that the total number of nodes is
n.

P1

P3

P2

G2

P1

P3

P2

G3

P1

P3

P2

G1

P1

P3

P2

s

ca

b

t

s

a

b

t

c

s

c

b

a

t

s

ca

b

r

r

r

Figure 4: The k-neighbourhood Gk(s) is identical in graphs G1, G2, and G3. In this example, suppose n mod 3 =
0. Consequently, one extra node is added next to t such that the total number of nodes is n.

Proof. Choose any k < b(n+ 1)/3c, k ∈ Z+. Therefore,
k ∈ {1, . . . , r}, where r = b(n − 2)/3c}. Let G1, G2, and
G3 denote the graphs illustrated in Figure 4, such that each
path P1 through P3 consists of r vertices that are labelled
consistently relative to node s in all three graphs. In each
graph, Gk(s) is a tree consisting of three paths of length k
rooted at s, none of which contain t. In addition to the 3r
nodes in paths P1 through P3, each graph includes nodes
s and t. Depending on the value of n mod 3, between zero
and two extra nodes remain; these are added between t and
the corresponding path Pi nearest to t to bring the total
number of nodes to n. Since node s has degree three, its local
routing function is one of two possible circular permutations
by Corollary 2. A routing strategy must specify the direction
in which a message initially leaves node s (three directions
are possible). The remaining nodes have degree at most two.
Therefore, when the message is passed to a node on a path
that does not contain t, by Corollary 2, the message must
continue forward until it returns again to node s. As shown
in Table 3, for each of the six possible routing strategies,
the message never enters the path containing t in at least
one of the graphs G1, G2, or G3. That is, for every routing
strategy A, there exists a graph on which A fails.

4.4 Predecessor Oblivious and Origin Aware
When knowledge of the predecessor node is withheld, the

lower bound on the locality parameter k increases to bn/2c
for predecessor-oblivious k-local routing algorithms:

Theorem 5. For every k < bn/2c, every origin-aware,

b

r r

sa b t

r r

sat

G2

G1

Figure 5: illustration in support of Theorem 5

predecessor-oblivious, k-local routing algorithm fails on some
connected graph.

Proof. Choose any k < bn/2c, k ∈ Z+. Therefore, k ∈
{1, . . . , r}, where r = bn/2c − 1. Let G1 denote a path of
n vertices with the origin node s located at the (r + 1)st
vertex and the destination node t located at the far end.
Let G2 denote the analogous graph upon moving node t to
the opposite end of the path. Let the remaining nodes be
labelled consistently relative to node s in both graphs. See
Figure 5. The k-neighbourhood Gk(s) is identical in G1 and
G2. If algorithm A sends the message right at s, then A
fails on graph G2 since it must eventually send the message
left, at which point its behaviour becomes cyclic. Similarly,
if algorithm A sends the message left at s, then it fails on
graph G1.

254

routing strategy circular permutation initial direction succeeds fails

1 (P1P2P3) toward a G1, G3 G2

2 (P1P2P3) toward b G1, G2 G3

3 (P1P2P3) toward c G2, G3 G1

4 (P1P3P2) toward a G1, G2 G3

5 (P1P3P2) toward b G2, G3 G1

6 (P1P3P2) toward c G1, G3 G2

Table 3: Each routing strategy corresponds to a circular permutation of the neighbours of u paired with an
initial direction.

4.5 Predecessor Oblivious and Origin Oblivious
Finally, if we further constrain the knowledge available to

intermediate nodes, then the lower bound on the locality
parameter k does not increase:

Theorem 6. For every k < bn/2c, every origin-oblivious,
predecessor-oblivious, k-local routing algorithm fails on some
connected graph.

Proof. The lower bound of bn/2c follows by Theorem 5.

4.6 Dilation
We now consider lower bounds on dilation for k-local rout-

ing algorithms.

Theorem 7. For any k < n/2, no k-local routing algo-
rithm can guarantee dilation less than

2n− 3k − 1

k + 1
. (1)

Proof. Choose any n and any k < n/2. Let P denote the
set of paths of length n with vertex set {s, t, v1, . . . , vn−2}.
Choose any k-local routing A that succeeds on all paths in
P . Suppose the origin and destination nodes are labelled s
and t, respectively. Let dP (i) = max{dist(s, v) | v ∈ Vi},
where Vi denotes the set of vertices of P to which algorithm
A has passed the message during the first i steps. Thus,
dP (i) ≤ i. Choose any i ∈ {0, . . . , n − 2k − 2}. Observe
that there exist paths P1 and P2 in P such that for all v ∈
Vi, a) Gk(v) is identical in P1 and P2, b) Gk(v) has two
frontier components, neither of which contains t, and c) t
lies at opposite endpoints of paths P1 and P2 relative to s.
The nodes of Vi correspond to a subpath containing at most
i+1 nodes; each endpoint of the subpath has an unexplored
frontier component (k nodes each) and node t remains out
of sight. Summing these gives i+ 1 + 2k + 1 ≤ n nodes.

When the message reaches the corresponding node at dis-
tance dP1(i) = dP2(i), A sends the message in the same
direction in P1 and P2, i.e., toward t in one path and away
from t in the other. In the latter case, A must eventually
pass the message back to s before it can reach t. Returning
the message to s requires at least i + 2 steps and reach-
ing t requires at least k + 1 additional steps. Therefore,
the total number of steps is at least 2i + k + 3. This gives
rA(s, t) ≥ 2n− 3k − 1 when i = n− 2k − 2. Since dist(s, t)
can be as little as k + 1, the results follows.

The bound on dilation (1) is perhaps more clearly ex-
pressed by taking the limit as the number of nodes ap-
proaches infinity (and k = c · n for some constant c). We
denote this limit by S(k):

S(k) = lim
n→∞

2n− 3k − 1

k + 1
=

2n

k
− 3.

Of particular interest are the values of k ∈ {n/4, n/3, n/2},
for which the corresponding bounds on dilation are 5 (when
k = n/4), 3 (when k = n/3), and 1 (when k → n/2). These
bounds are tight for k = n/3 and k = n/2 as shown in
Theorems 14, 16, and 17.

5. WHEN LOCAL ROUTING IS POSSIBLE:
ROUTING STRATEGIES

In this section we present positive results: there exists a
successful k-local routing algorithm when the degree of local-
ity k exceeds the given bound. We describe a k-local routing
algorithm for each combination of origin-awareness/oblivious-
ness and predecessor-awareness/obliviousness.

5.1 Predecessor Aware and Origin Aware
We describe an (n/4)-local predecessor-aware and origin-

aware routing algorithm. Given any k ≥ n/4, the algorithm
begins with a k-local preprocessing step to identify the edges
on which routing takes place. Every node u ∈ G builds
a subgraph of Gk(u) by deleting an edge from every cycle
that contains u in Gk(u). The order in which the cycles are
broken is important. By our assumption that nodes have
unique labels, we obtain an ordering on the edges of G. In
particular, any set of edges has a minimum edge. The node
u considers every cycle that contains it in Gk(u) and deletes
the minimum edge e among all cycles. See Figure 6. The
node u then computes all remaining cycles in Gk(u) \ {e}
that contain u and deletes the minimum edge among these
cycles. This process is repeated until no cycles containing
u remain. The final graph denoted G′k(u) is a spanning
subgraph of Gk(u) in which u is a cut vertex.

Consider the local components in G′k(u). The edges in
G′k(u) joining u to a local component are called routing
edges. If a local component in G′k(u) is a frontier compo-
nent, the component is called active. Otherwise, both the
component and routing edge are called passive. The number
of active edges adjacent to a vertex is its active degree. Since
an active edge joins u to a component with at least n/4 ver-
tices, a node can have active degree at most 3. An edge
{a, b} is called consistent provided that both a and b con-
sider the edge between them to be active. A node is called
consistent provided that all of its active edges are consistent.
Otherwise, the node is called inconsistent

Observation 8. An inconsistent node has active degree
1.

255

B C DA E

B1

B3 B2

v1

v2v3

B1

B3 B2

v1

v2v3

B1

B3 B2

v1

v2v3

B1

B3 B2

v1

v2v3

v1

v2v3

u u uu u

Figure 6: k-local preprocessing. Suppose the current node u has three neighbours, v1 through v3, and Gk(u)
contains a cycle that includes vertices v1, u, and v2 (A). The preprocessing step classifies one of the edges
on the cycle as a non-routing edge (magenta). The selected edge may be distant from u (B) or adjacent to
u (C and D). The choice of routing edge does not affect nodes not on the cycle (e.g., v3) since the edges
of the cycle all lie in the same local component from the point of view of the corresponding vertex (E); in
particular, none of the cycle’s edges are adjacent to v3.

s

s
a

b

c

a

b
s a

Rule S3

Rule S2

Rule S1

Figure 7: Algorithm 1, Case 2: Message re-
ceived/forwarded by s.

Once each node has identified its routing edges, a simple
set of rules determine the forwarding decisions. The success
of the routing algorithm relies on the property that each
node has active degree at most 3. Notice that the lower
bound argument of the proof of Theorem 3 consists of graphs
that have one node with active degree 4; this cannot occur
when k > n/4. The routing algorithm consists of four cases
outlined below.

Algorithm 1: (n/4)-local, origin-aware, predecessor-
aware routing algorithm.
Case 1. Suppose dist(u, t) ≤ k. That is, t ∈ Gk(u). The
algorithm forwards the message to any neighbour of u on a
shortest path from u to t until the message arrives at t.
Case 2. Suppose dist(u, t) > k and u = s. Forwarding deci-
sions are illustrated in Figure 7.
Case 3. Suppose dist(u, t) > k, u 6= s, and either dist(u, s) >
k or s is in an active component of u. Forwarding decisions
are illustrated in Figure 8.
Case 4. Suppose dist(u, t) > k, u 6= s, and s is in a pas-
sive component of u. Forwarding decisions are illustrated in
Figure 9.

Lemma 9. Algorithm 1 successfully delivers the message
from the origin node s to the destination node t.

Proof. Suppose, for sake of a contradiction, that a mes-
sage from s does not reach t. Since the number of nodes
in G is finite, the message must visit a repeating sequence
of nodes of G. Denote by X = x1, . . . , xm the sequence of

u

u

u

a a

a

b

b

c

Rule U3

Rule U2

Rule U1

Figure 8: Algorithm 1, Case 3: Message re-
ceived/forwarded by a node u that cannot see t and
can possibly see s in an active component.

u

u

s

s

a

b

c

a
b

Rule US3

Rule US2

Figure 9: Algorithm 1, Case 4: Message re-
ceived/forwarded by a node u that cannot see t and
sees s in a passive component.

256

nodes visited, where R = xi, . . . , xm is a repeating sequence
of nodes for some 1 ≤ i < m.

Claim 1: All nodes in sequence R are consistent. This fol-
lows from the property that an inconsistent node can only
receive and forward a message at most once.

There is a set I of nodes in G that are invisible to all nodes
in X. By invisible, we mean that ∀x ∈ X, Gk(x) ∩ I = ∅.
In particular, t ∈ I. Consider a shortest path from t to a
node v ∈ V \I. By construction, v must be on the frontier of
some vertex xj ∈ X, i.e., dist(xj , v) = k ≥ n/4. Otherwise,
all neighbours of v would be visible to xj , contradicting the
fact that v is the closest visible vertex to t. Furthermore, no
node on a shortest path between xj and v can appear in X.

Since v is a frontier vertex of xj , the frontier component of
xj containing v must be active. However, xj never forwards
the message to this component. Consequently, xj has active
degree at least 2, which by Observation 8 implies that xj is
a consistent node. Let e = {xj , y} denote the corresponding
active edge (along which the message is not forwarded). To
obtain a contradiction, we show that in all cases, xj ulti-
mately forwards the message along edge e.

Claim 2: xj−1 6= xj+1. Only forwarding rules S1, S2, U1,
and US2 would have xj−1 = xj+1. In all four cases, the
message is forwarded to all active edges adjacent to xj , con-
tradicting the fact that v is the closest visible vertex to t.

Claims 1 and 2 imply that xj has active degree 3. Consider
the undirected subgraph S of G that consists only of the
edges followed by the algorithm in the repeating sequence
R. Observe that by construction, S has maximum degree 3.

Case 1. Suppose S contains no cycle. That is, S is a tree.
Root this tree at xj . When xj forwards the message to xj+1,
the message is passed into the subtree of S rooted at xj+1.
By Claim 2, since S is a tree, all paths from a node in the
subtree rooted at xj+1 to a node in the subtree rooted at
xj−1 must go through xj . This implies that at some point
in the sequence R, the node xj+1 forwards the message to
xj , which will then forward it to y, deriving a contradiction.

Case 2. Suppose S contains a simple cycle. By Claim 1,
all edges in the cycle are consistent. Every cycle of length at
most 2k contains at least one passive edge. Therefore, the
cycle must contain greater than 2k ≥ n/2 vertices.

The node xj must lie on such a cycle, otherwise, as in Case
1, forwarding the message along xj+1 will cause it to return
to xj via the edge {xj+1, xj}, deriving a contradiction.

We now show that the message cannot be passed around
this cycle. The key to breaking the cycle is the location
of the origin node s. Consider two cases: either node s is
invisible to every node in the cycle or it is visible to at least
one node in the cycle.

Case 2a. Suppose s is not visible to any node in the
cycle. Therefore, when s initially forwards the message, the
message follows a path from s to some node on the cycle.
This path contains at least k ≥ n/4 distinct nodes that are
not part of the cycle since no node of the cycle can see s. The
cycle contains more than n/2 distinct nodes and the path
from xj to v contains at least n/4 nodes, none of which are
visited by the sequence X. Therefore, we obtain the desired
contradiction since there are exactly n nodes in G.

Case 2b. Suppose s is visible to some xk on the cycle.
Consider two further subcases.

Case 2b1. Suppose s is contained in the cycle. Node
s must have active degree 2 or 3. If it has active degree 2,
then Rule S2 implies that the message is sent along the cycle
in two different directions, contradicting the fact that the
message is not forwarded along edge {xj , y}. If s has active
degree 3, then only one of three pairs of nodes adjacent to
s can be involved in the cycle. Let us examine each pair
in turn. For what follows, consider the labelling given in
Figures 7. The nodes a and c cannot be involved in the
cycle because when the message is received by s from c, it
is forwarded to b and when it is received from s by a, it
is also forwarded to b. Nodes a and b cannot be involved
in the cycle because s initially forwards the message to a,
which implies that to complete the cycle, it must receive the
message from b. However, when s receives a message from
b, it is forwarded to c. Therefore, according to Rule S3, if s
part of the cycle, then on the cycle, it receives the message
from b and forwards it to c or vice versa. However, initially
s forwards the message to a and the message returns to s.
This implies that none of the nodes in the active component
of s rooted at a are part of the cycle. This component has
size at least n/4. Moreover, none of these nodes can be part
of the path from xj to v. Therefore, we again contradict the
fact that G has n nodes.

Case 2b2. Suppose s is not contained in the cycle. The
argument is analogous to Case 2b1 upon substituting rules
US2 and US3 for rules S2 and S3, respectively.

Lemma 10. Algorithm 1 has dilation at most 8.

Proof. If a message from s is sent to t and t is visible
to s, then the path followed by Algorithm 1 has dilation 1.
When t is not visible to s, then the length of the shortest
path from s to t is at least n/4 + 1. By looking at the proof
of Lemma 9, we see that if a message follows a cycle, then
it visits every edge of the cycle once. Otherwise, it visits
every edge at most twice. This implies that the length of
the path followed by Algorithm 1 is at most 2n. Since the
length of the shortest path is at least n/4 + 1, we get the
desired result.

Theorem 11. For every k ≥ n/4, there exists an origin-
aware, predecessor-aware, k-local routing algorithm that suc-
ceeds on all connected graphs while guaranteeing dilation at
most 8.

5.2 Predecessor Aware and Origin Oblivious
We describe a (n/3)-local predecessor-aware and origin-

oblivious routing algorithm.
Choose any integer k ≥ n/3. Therefore, 3k+1 > n. Since

a frontier component contains at least k nodes, every node
has at most two frontier components. In particular, it has
at most two constrained frontier components. Let u denote
the current node.

The algorithm requires a k-local preprocessing step similar
to that described in Algorithm 1 to identify a set of active
edges in Gk(u) which we denote by G′k(u). Analogously,
after applying the preprocessing step, every active neighbour
of u is the root of a unique constrained component of u in
G′k(u) (there can be at most two).

The following algorithm is then applied to G′k(u) to make
the forwarding decision.

Algorithm 2: (n/3)-local, origin-oblivious, predeces-
sor-aware routing algorithm.

257

Case 1. Suppose dist(u, t) ≤ k. That is, t ∈ Gk(u). The
algorithm forwards the message to any neighbour of u on a
shortest path from u to t until the message arrives at t.
Case 2. Suppose dist(u, t) > k. Forwarding decisions are
illustrated by Rules U1 and U2 in Figure 8. If the message
originated at u or arrived at u via an inconsistent edge, then
the algorithm forwards the message along any active edge of
u.

Lemma 12. Algorithm 2 successfully delivers the message
to the destination node t.

Proof. (Sketch) Since 3k + 1 > n, a node cannot have
three or more active components. Therefore, each node has
active degree at most 2. Suppose Algorithm 2 does not
deliver the message to node t. The message must visit a
repeating sequence of nodes of G. Using an argument similar
to (but simpler than) the proof of Lemma 9, we derive a
contradiction by showing that this repeating sequence must
include a node that has an active component that is not
visited (and eventually leads to node t). Since each node
has active degree at most 2, this component must be visited
according to rule U2.

Lemma 13. Algorithm 2 has dilation at most 3.

We omit the proof of Lemma 13 due to space constraints.
Theorem 14 follows from Lemmas 12 and 13:

Theorem 14. For every k ≥ n/3, there exists an origin-
oblivious, predecessor-aware, k-local routing algorithm that
succeeds on all connected graphs while guaranteeing dilation
at most 3.

5.3 Predecessor Oblivious and Origin Oblivious
We describe a (n/2)-local predecessor-oblivious and origin-

oblivious routing algorithm.
Choose any k ≥ bn/2c. Therefore, 2k + 1 ≥ n. Since a

frontier component contains at least k nodes, every node has
at most two frontier components. Let u denote the current
node.

Algorithm 3: (n/2)-local, origin-oblivious, predeces-
sor-oblivious routing algorithm.
Case 1. Suppose dist(u, t) ≤ k. That is, t ∈ Gk(u). The
algorithm forwards the message to any neighbour of u on a
shortest path from u to t until the message arrives at t.
Case 2. Suppose u has zero or two frontier components.
Since 2k + 1 ≥ n, the entire network is contained in Gk(u)
and, therefore, d(u, t) ≤ k. Routing proceeds as in Case 1.
Case 3. Suppose u has one unconstrained frontier compo-
nent. Since every unconstrained frontier component con-
tains at least 2k vertices, the entire network is contained in
Gk(u) and, therefore, d(u, t) ≤ k. Routing proceeds as in
Case 1.
Case 4. Suppose dist(u, t) > k and u has one constrained
frontier component. Let v denote the constraint vertex in
Gk(u) that is furthest from u. The algorithm forwards the
message to any neighbour of u that reduces the distance to
v. This procedure continues until the algorithm enters Cases
1, 2, or 3.

Lemma 15. Algorithm 3 successfully delivers the message
to the destination node t along a shortest path from s to t.

Proof. In Cases 1 through 3, the distance from the cur-
rent node to the destination, dist(u, t), decreases by one unit
each time the message is forwarded. In Case 4, observe that
dist(u, t) = dist(u, v) + dist(v, t). Therefore a decrease in
dist(u, v) implies an equal decrease in dist(u, t). It follows
that the route from s to t has length dist(s, t). Therefore,
Algorithm 3 finds a shortest path from s to t.

Theorem 16 follows from Lemma 15:

Theorem 16. For every k ≥ n/2, there exists an origin-
oblivious, predecessor-oblivious, k-local routing algorithm that
succeeds on all connected graphs and finds a shortest path
from the origin to the destination.

Algorithm 3 can be defined analogously to Algorithms 1
and 2. That is, when at a node u, the same preprocessing
step could be included to classify edges as active or pas-
sive. Upon doing so, a node has active degree at most
3 in Algorithm 1 (k ≥ n/4), active degree at most 2 in
Algorithm 2 (k ≥ n/3), and active degree at most 1 in
Algorithm 3 (k ≥ n/2). Ignoring predecessor- and origin-
awareness/obliviousness, this trend suggests that the local-
ity parameter k is inversely proportional to the number of
possible forwarding decisions that a k-local routing algo-
rithm must consider at each node.

5.4 Predecessor Oblivious and Origin Aware
As we now show, an origin-aware k-local routing algorithm

does not require a greater locality parameter k than does
an origin-oblivious k-local routing algorithm to guarantee
delivery.

Theorem 17. For every k ≥ n/2, there exists an origin-
aware, predecessor-oblivious, k-local routing algorithm that
succeeds on all connected graphs and finds a shortest path
from the origin to the destination.

Proof. For every k-local origin-oblivious routing algo-
rithm A there is a corresponding k-local origin-aware al-
gorithm A′ whose routing function matches that of A. In
other words, providing knowledge of the origin cannot hin-
der an origin-oblivious routing algorithm. The result follows
by Theorem 16.

6. DIRECTIONS FOR FUTURE RESEARCH

Directed Graphs. The results of this paper concern k-
local routing on undirected graphs. Of course, the analogous
questions can be posed in the setting of directed graphs,
many of which remain open. Preliminary investigations of
local routing on directed graphs have been made by Chávez
et al. [5] who describe 1-local routing algorithms for Eu-
lerian graphs and outerplanar graphs and Fraser et al. [10]
who show that every 1-local routing algorithm requires Ω(n)
bits of memory on directed graphs (i.e., no stateless 1-local
routing algorithm exists).

Using Additional Memory. Relaxing constraints and al-
locating additional memory the message overhead to store
state information allows more general solutions to the local
routing problem. Braverman [4] shows that there exists a
position-oblivious 1-local routing algorithm using Θ(log n)
state bits that succeeds on all graphs. An interesting open

258

question is to determine whether there is a corresponding
lower bound. Alternatively, does there exist a position-
oblivious, origin-aware, predecessor-aware, k-local routing
algorithm with o(logn) state bits for k ∈ O(1)? In general,
can we identify tight bounds on memory requirements for
deterministic k-local routing under various models?

Acknowledgements
The authors wish to thank Therese Biedl who observed that
our origin-oblivious and predecessor-oblivious (n/2)-local rout-
ing algorithm (Algorithm 3) identifies a shortest path.

7. REFERENCES
[1] P. Bose, A. Brodnik, S. Carlsson, E. D. Demaine,

R. Fleischer, A. López-Ortiz, P. Morin, and I. Munro.
Online routing in convex subdivisions. International
Journal of Computational Geometry and Applications,
12(4):283–295, 2002.

[2] P. Bose and P. Morin. Online routing in triangulations.
SIAM Journal on Computing, 33(4):937–951, 2004.

[3] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia.
Routing with guaranteed delivery in ad hoc wireless
networks. Wireless Networks, 7(6):609–616, 2001.

[4] M. Braverman. On ad hoc routing with guaranteed
delivery. In Proceedings of the ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing
(PODC), volume 27, page 418, 2008.

[5] E. Chávez, S. Dobrev, E. Kranakis, J. Opatrny,
L. Stacho, and J. Urrutia. Route discovery with
constant memory in oriented planar geometric
networks. Networks, 48(1):7–15, 2006.

[6] S. Durocher, D. Kirkpatrick, and L. Narayanan. On
routing with guaranteed delivery in three-dimensional
ad hoc wireless networks. Wireless Networks, 2008. To
appear.

[7] G. G. Finn. Routing and addressing problems in large
metropolitan-scale internetworks. Technical Report
ISI/RR-87-180, Information Sciences Institute, 1987.

[8] R. Flury and R. Wattenhofer. Randomized 3D
geographic routing. In Proceedings of the IEEE
Conference on Computer Communications
(INFOCOM), pages 834–842, 2008.

[9] M. Fraser. Local routing on tori. In Proceedings of the
Conference on Ad-Hoc, Mobile, and Wireless
Networks, volume 4686 of Lecture Notes in Computer
Science, pages 1–14. Springer, 2007.

[10] M. Fraser, E. Kranakis, and J. Urrutia. Memory
requirements for local geometric routing and traversal
in digraphs. In Proceedings of the Canadian
Conference on Computational Geometry (CCCG),
volume 20, 2008.

[11] E. Kranakis, H. Singh, and J. Urrutia. Compass
routing on geometric networks. In Proceedings of the
Canadian Conference on Computational Geometry
(CCCG), volume 11, pages 51–54, 1999.

[12] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc
networks beyond unit disk graphs. In Joint Workshop
on Foundations of Mobile Computing, pages 69–78,
2003.

[13] I. Stojmenović. Position based routing in ad hoc
networks. IEEE Communications Magazine,
40(7):128–134, 2002.

259

