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Abstract

In this paper, data dimensionality estimation methods are reviewed. The estima-
tion of the dimensionality of a data set is a classical problem of pattern recognition.
There are some good reviews [1] in literature but they do not include more re-
cent developments based on fractal techniques and neural autoassociators. The aim
of this paper is to provide an up-to-date survey of the dimensionality estimation
methods of a data set, paying special attention to the fractal-based methods.

Key words: Intrinsic Dimensionality; Topological Dimension; Fukunaga-Olsen’s
algorithm; Fractal Dimension; MultiDimensional Scaling

1 Introduction

Pattern recognition problems deal with data represented as vectors of dimen-
sion d. The data is then embedded in Rd, but this does not necessarily imply
that its actual dimension is d. The dimensionality of a data set is the minimum
number of free variables needed to represent the data without information loss.
In more general terms, following Fukunaga [2], a data set Ω ⊂ Rd is said to
have Intrinsic Dimensionality (ID) equal to M if its elements lie entirely
within an M -dimensional subspace of Rd (where M < d).
ID estimation is important for many reasons. The use of more dimensions
than strictly necessary leads to several problems. The first one is the space
needed to store the data. As the amount of available information increases, the
compression for storage purposes becomes even more important. The speed
of algorithms using the data depends on the dimension of the vectors, so a
reduction of the dimension can result in reduced computation time. Then
it can be hard to make reliable classifiers when the dimensionality of input
data is high (curse of dimensionality [3]). According to the statistical learn-
ing theory approach [4], the capacity and the generalization capability of the
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classifiers depend on ID. Therefore the use of vectors with smaller dimension
often leads to improved classification performance. Besides, when using an
autoassociative neural network [5] to perform a nonlinear feature extraction
(e.g. nonlinear principal component analysis), the ID can suggest a reasonable
value for the number of hidden neurons. Finally, ID estimation methods are
used to fix the model order in a time series, that is crucial in order to make
reliable time series predictions. This paper reviews the methods to estimate ID
paying special attention to the fractal-based techniques, which are generally
neglected in the surveys on ID estimation.
Following the classification proposed in [1], there are two approaches for es-
timating ID. In the first one (local) ID is estimated using the information
contained in sample neighborhoods, avoiding the projection of the data onto
a lower-dimensional space. In the second approach (global), the data set is
unfolded in the d-dimensional space. Unlike local approaches that use only
the information contained in the neighborhood of each data sample, global
approaches make use of the whole data set.
The paper is organized as follows: in Section 2 local approaches are reviewed;
Section 3 present global approaches to estimate ID; Section 4 is devoted to
describe specific global approaches i.e. fractal-based techniques; in Section 5
some applications are described; in Section 6 a few conclusions are drawn.

2 Local methods

Local (or topological) methods try to estimate the topological dimension of the
data manifold. The definition of topological dimension was given by Brouwer
[6] in 1913. Topological dimension is the basis dimension of the local linear
approximation of the hypersurface on which the data resides, i.e. the tangent
space. For example, if the data set lies on an m-dimensional submanifold, then
it has an m-dimensional tangent space at every point in the set. For instance,
a sphere has a two-dimensional tangent space at every point and may be
viewed as a two-dimensional manifold. Since the ID of the sphere is three, the
topological dimension represents a lower bound of ID. If the data does not lie
on a manifold, the definition of topological dimension does not directly apply.
Sometimes the topological dimension is also referred to simply as the local
dimension. This is the reason why the methods that estimate the topological
dimension are called local. The basic algorithm to estimate the topological
dimension was proposed by Fukunaga and Olsen [7]. Alternative approaches
to the Fukunaga-Olsen’s algorithm have been proposed to estimate locally
ID. Among them the Near Neighbor Algorithm [8] and the methods based on
Topological Representing Networks (TRN) [9] are the most popular.
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2.1 Fukunaga-Olsen’s algorithm

Fukunaga-Olsen’s algorithm is based on the observation that for vectors em-
bedded in a linear subspace, the dimension is equal to the number of non-zero
eigenvalues of the covariance matrix. Besides, Fukunaga and Olsen assume
that the intrinsic dimensionality of a data set can be computed by dividing
the data set in small regions (Voronoi tesselation of data space). Voronoi tes-
selation can be performed by means of a clustering algorithm, e.g. LBG [10].
In each region (Voronoi set) the surface in which the vectors lie is approxi-
mately linear and the eigenvalues of the local covariance matrix are computed.
Eigenvalues are normalized by dividing them by the largest eigenvalue. The
intrinsic dimensionality is defined as the number of normalized eigenvalues
that are larger than a threshold T . Although Fukunaga and Olsen proposed
for T , on the basis of heuristic motivations, values such as 0.05 and 0.01, it is
not possible to fix a threshold value T good for every problem.

2.2 The Near Neighbor Algorithm

The first attempt to use near neighbor techniques in order to estimate ID is
due to Trunk [11]. Trunk’s method works as follows. An initial value of an
integer parameter k is chosen and the k nearest neighbors to each pattern in
the given data set are identified. The subspace spanning the vectors from the
ith pattern to its k nearest neighbors is constructed for all patterns. The angle
between the (k +1)th near neighbor of pattern i and the subspace constructed
for pattern i is then computed for all i. If the average of these angles is below
a threshold, ID is k. Otherwise, k is incremented by 1 and the process is
repeated. The weakness of Trunk’s method is that it is not clear how to fix a
suitable value for the threshold.
An improvement (Near Neighbor Algorithm) of Trunk’s method was proposed
by Pettis et al. [8]. Assuming that the data are locally uniformly distributed,
they derive the following expression for ID:

ID =
〈rk〉

(〈rk+1〉 − 〈rk〉)k (1)

where 〈rk〉 is the mean of the distances from each pattern to its k nearest
neighbors.
The algorithm presents some problems. It is necessary to fix a suitable value
for k and it is performed on a heuristic basis. Besides, Pettis et al. derived ID,
using the equation (1), for the special case of three uniformly distributed one-
dimensional vectors. They found ID = 0.9. Therefore it seems that Pettis’
estimator is biased even for this simple case. Besides, Pettis described an
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iterative algorithm, based on an arbitrary number of neighbors, for the ID
estimation. Then Verveer and Duin [12] found that Pettis’ iterated algorithm
yielded a uncorrect value for ID. Therefore Verveer and Duin proposed an
iterative algorithm (near neighbor estimator) that provides a non iterative
solution for ID estimation.
If 〈rk〉 is observed for k = km to k = kM a least square regression line can
be fit to 〈rk〉 as a function of (〈rk+1〉 − 〈rk〉)k. Verveer and Duin obtained the
following estimation for ID:

ID =




kM−1∑

k=km

(〈rk+1〉 − 〈rk〉)〈rk〉
k







kM−1∑

k=km

(〈rk+1〉 − 〈rk〉)2



−1

(2)

Since the estimate yielded by Verveer-Duin’s algorithm is generally not an in-
teger it has to be rounded to the nearest integer. Since the vectors are usually
locally uniformly distributed, Verveer and Duin advise that the values k = km

and k = kM should be small as possible. When the data is very noisy Verveer
and Duin suggest to ignore the first nearest neighbor i.e it should be km > 1.
As a general comment it is necessary to remark that both Pettis’ and Verver-
Duin’s algorithms are sensitive to outliers. The presence of outliers tends to
significantly affect the ID estimate. Another problem is the influence of the
edge effect. Data close to the cluster edge are not uniformly distributed. There-
fore if the percentage of this data, on the whole data set, is not negligible, ID
estimate is distorted. This happens when the dimensionality of the data set is
high and the data density is low.

2.3 TRN-based methods

Topology Representing Network (TRN) is a unsupervised neural network pro-
posed by Martinetz and Schulten [9]. They proved that TRN are optimal
topology preserving maps i.e TRN preserves in the map the topology origi-
nally present in the data.
Bruske and Sommer [13] proposed to improve Fukunaga-Olsen’s algorithm
using TRN in order to perform the Voronoi tesselation of the data space. In
detail, the algorithm proposed by Bruske and Sommer is the following. An
optimal topology preserving map G, by means of a TRN, is computed. Then,
for each neuron i ∈ G, a PCA is performed on the set Qi consisting of the
differences between the neuron i and all of its mi closest neurons in G. Bruske-
Sommer’s algorithm shares with Fukunaga-Olsen’s one the same limitations:
since none of the eigenvalues of the covariance matrix will be null due to noise,
it is necessary to use heuristic thresholds in order to decide whether an eigen-
value is significant or not.
Finally Frisone et al. [14] use Topology Representing Networks to get directly
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an ID estimate. If the data manifold Ω is approximated by a TRN, the number
n of cross-correlations learnt by each neuron of the TRN is an indicator of the
local dimension of the data set Ω. Frisone et al. conjectured that the number
n is close to the number k of spheres that touch a given sphere, in the Sphere
Packing Problem (SPP) [15]. For space dimensions from 1 to 8, k is: 2, 6, 12,
24, 40, 72, 126, 240. Besides, SPP has only been solved for a 24-dimensional
space and k is 196560. Hence it is adequate to measure k to infer ID. Frisone’s
approach presents some drawbacks: the conjecture has not been proved yet,
the number k is known exactly only for few dimension values and tends to
grow exponentially with the space dimension. This last peculiarity strongly
limits the use of the conjecture in practical applications where data can have
high dimensionality.

3 Global Methods

Global methods try to estimate the ID of a data set, unfolding the whole data
set in the d-dimensional space. Unlike local methods that use only the infor-
mation contained in the neighborhood of each data sample, global methods
make use of the whole data set.
Global methods can be grouped in three big families: Projection techniques,
Multidimensional Scaling Methods and Fractal-Based Methods.

3.1 Projection techniques

Projection techniques search for the best subspace to project the data by min-
imizing the projection error. These methods can be divided into two families:
linear and nonlinear.
Principal Component Analysis (PCA) [5,16] is a widely used linear method.
PCA projects the data along the directions of maximal variance. The method
consists of computing eigenvalues and eigenvectors of the covariance matrix of
data. Each of the eigenvectors is called a principal component. ID is given by
the number of the non-null eigenvalues. The method presents some problems.
PCA is an inadequate estimator, since it tends to overestimate the ID [17].
As shown in Figure 1, a data set formed by points lying on a circumference
for PCA has dimension 2 rather than 1.
In order to cope with these problems, nonlinear algorithms have been proposed
to get nonlinear PCA. There are two different possible approaches to get a
nonlinear PCA: an autoassociative approach (Nonlinear PCA) [5,18] and the
one based on the use of Mercer kernels (Kernel PCA) [19].
Nonlinear PCA is performed by means of a five-layers neural network. The
neural net has a typical bottleneck structure, shown in Figure 2. The first (in-
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put) and the last (output) layer have the same number of neurons, while the
remaining hidden layers have less neuron than the first and the last ones. The
second, the third and the fourth layer are called respectively mapping, bottle-
neck and demapping layer. Mapping and demapping layers have usually the
same number of neurons. The number of the neurons of the bottleneck layer
provides an ID estimate. The targets used to train Nonlinear PCA are simply
the input vector themselves. The network is trained with the backpropaga-
tion algorithm, minimizing the square error. As optimization algorithm, the
conjugate-gradient algorithm [20] is generally used. Though nonlinear PCA
performs better than linear PCA in some contexts [21], it presents drawbacks
when estimating ID. As underlined by Malthouse [22], the projections onto
curves and surfaces are suboptimal. Besides, NLPCA cannot model curves or
surfaces that intersect themselves. Kernel PCA consists of making a nonlinear
projection of the data set, by means of an appropriate positive definite func-
tion (Mercer kernel) [23] in a new space (Feature Space). Then the eigenvalues
of the covariance matrix in the Feature Space are computed and ID is given by
the number of the non-null eigenvalues. The method presents some problems.
The performance of the method is heavily influenced by the kernel choice [24].
Moreover, due to the data noise, last eigenvalues, even if very small, are not
null. Therefore it is necessary to ignore the eigenvalues whose magnitude is
lower than a threshold value that can be only fixed in a heuristic way. Among
projection techniques it is worth mentioning the Whitney reduction network
recently proposed by Broomhead and Kirby [5,25]. This method is based on
Whitney’s concept of good projection [26], namely a projection obtained by
means of an injective mapping. An injective mapping between two sets U and
V is a mapping that associate a unique element of V to each element of U . As
pointed out in [5], finding projections, by means of injective mappings, can be
difficult and can sometimes involve empirical considerations.

3.2 Multidimensional Scaling Methods

Multidimensional Scaling (MDS) [27,28] methods are projection techniques
that tend to preserve, as much as possible, the distances among data. Therefore
data that are close in the original data set should be projected in such a way
that their projections, in the new space (output space), are still close. Among
multidimensional scaling algorithms, the best known example is MDSCAL, by
Kruskal [29] and Shepard [30]. The criterion for the goodness of the projection
used by MDSCAL is the stress. This depends only on the distances between
data. When the rank order of the distances in the output space is the same
as the rank order of the distances in the original data space, stress is zero.
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Kruskal’s stress SK is:

SK =




∑

i<j

[rank(d(xi, xj))− rank(D(xi, xj))]
2

∑

i<j

rank(d(xi, xj))
2




1
2

(3)

where d(xi, xj) is the distance between the data xi and xj and the D(xi, xj)
is the distance of the projections of the same data in the output space. When
the stress is zero a perfect projection exists. Stress is minimized by iteratively
moving the data in the output space from their initially randomly chosen po-
sitions according to a gradient-descent algorithm. The intrinsic dimensionality
is determined in the following way. The minimum stress for projections of dif-
ferent dimensionalities is computed. Then a plot of the minimum stress versus
dimensionality of the output space is performed. ID is the dimensionality value
for which there is a knee or a flattening of the curve. Kruskal and Shepard’s
algorithm presents a main drawback. The knee or the flattening of the curve
could not exists. MDS approaches close to Kruskal and Shepard’s one are the
Bennett’s algorithm [31] and the Sammon’s mapping [32]

3.2.1 Bennett’s algorithm

Bennett’s algorithm is the based on the assumption that data are uniformly
distributed inside a sphere of radius r in an L-dimensional space. Let X1

and X2 be random variables representing points in the sphere and RL be the
normalized Euclidean distance (the interpoint distance) between them. If

RL =
|X1 −X2|

2r
(4)

then the variance of RL is a decreasing function of L, which may be expressed
as:

L var(RL) ≈ constant (5)

where var(RL) is the variance of RL. Therefore increasing the variance of the
interpoint distances has the effect of decreasing the dimensionality of the rep-
resentation, i.e. it ”flattens” the data set.
Bennett’s algorithm involves two stages. The first stage moves the patterns,
in the original input space, in order to increase the variance of the interpoint
distances. The second stage adjusts the position of the patterns in order to
make the rank orders of interpoint distances in local regions are the same.
These steps are repeated until the variance of the interpoint distances levels
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off. Finally the covariance matrix of the whole data set, yielded by the pre-
vious stages, is computed. The ID is determined by the number of significant
eigenvalues of the covariance matrix.
Bennett’s algorithm presents some drawbacks. First of all, as in Fukunaga-
Olsen’s algorithm, in order to decide if an eigenvalue is significant, it is nec-
essary to fix heuristically a threshold value. Besides, as underlined previously
in the PCA description, this method tends to overestimate the dimensionality
of a data set.
Chen and Andrews [33] proposed to improve Bennett’s algorithm by intro-
ducing a cost function to make Bennett’s rank-order criterion more sensitive
to local data regions. The basic idea is still to mantain rank order of local
distances in the two spaces.

3.2.2 Sammon’s mapping

Sammon proposed to minimize a stress measure similar to Kruskal’s one. The
stress SS proposed by Sammon has the following expression:

SS =


∑

i<j

(d(xi, xj)−D(xi, xj))
2

d(xi, xj)





∑

i<j

d(xi, xj)



−1

(6)

Where d(xi, xj) is the distance between patterns xi and xj in the original data
space and D(xi, xj) is the distance in the two- or three- dimensional output
space. The stress is minimized by the gradient-descent algorithm.
Kruskal [34] demonstrated how a data projection very similar to Sammon’s
mapping could be generated from MDSCAL. An improvement to Kruskal’s
and Sammon’s methods has been proposed by Chang and Lee [35]. Unlike
Sammon and Kruskal who move all points simultaneously in the output space
to minimize the stress, Chang and Lee have suggested to minimize the stress
by moving the points two at a time. In this way, it tries to preserve local struc-
ture while minimizing the stress. The method requires heavy computational
resources even when the cardinality of the data set is moderate. Besides, the
results are influenced by the order in which the points are coupled.
Several other approaches to ID estimation have been proposed. It is worth
mentioning Shepard and Carroll’s index of continuity [36], Kruskal’s indices of
condensation [37] and Kruskal and Carroll’s parametric mapping [38]. Surveys
of the classical Multidimensional Scaling methods can be found in [27,28,39].
Recently local versions of MDS methods, i.e. ISOMAP algorithm [40] and
Local Linear Embedding [41], have been proposed. We do not describe these
methods for the sake of the brevity.
Finally it is worth mentioning the Curvilinear Component Analysis (CCA)
proposed by Demartines and Herault [42]. The principle of CCA is a self-
organizing neural network performing two tasks: vector quantization of the
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data set, whose dimensionality is n, and a nonlinear projection of these quan-
tizing vectors onto a space of dimensionality p (p < n). The first task is
performed by means of SOM [43]. The second task is performed by means of
a technique very similar to MDS methods previously described. Since a MDS
that preserve all distances is not possible, a cost function E measures the
goodness of the projection. The cost function E is the following:

E =
1

2

∑

i

∑

j 6=i

(d(xi, xj)−D(xi, xj))
2F (D(xi, xj), λ) (7)

where d(xj, xj) are Euclidean distances between the points xi and xj of data
space and D(xi, xj) are Euclidean distances between the projections of the
points in the output space; λ is a set of parameters to set up and F (·) is
a function (e.g. a decreasing exponential or a sigmoid) to be chosen in an
opportune way.
CCA seems to have very close performances to Shepard’s MDS based on index
of continuity [42].

4 Fractal-Based Methods

Fractal-based techniques are global methods that have been successfully ap-
plied to estimate the attractor dimension of the underlying dynamic system
generating time series [44]. Unless other global methods, they can provide as
ID estimation a non-integer value. Since fractals are generally 1 characterized
by a non-integer dimensionality, for instance the dimension of Cantor’s set and
Koch’s curve [45] is respectively ln 2

ln 3
and ln 4

ln 3
, these methods are called fractal.

In nonlinear dynamics many definitions of fractal dimensions [46] have been
proposed. The Box-Counting and the Correlation dimension are the most
popular.

4.1 Box-Counting Dimension

The first definition of dimension (Hausdorff dimension) [46,47] is due to Haus-
dorff [48]. The Hausdorff dimension DH of a set Ω is defined by introducing
the quantity

Γd
H(r) = inf

si

∑

i

(ri)
d (8)

1 Fractals have not always non-integer dimensionality. For instance, the dimension
of Peano’s curve is 2.
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where the set Ω is covered by cells si with variable diameter ri, and all diam-
eters satisfy ri < r.
That is, we look for that collection of covering sets si with diameters less than
or equal to r which minimizes the sum in (8) and we denote that minimized
sum Γd

H(r). The d-dimensional Hausdorff measure is then defined as

Γd
H = lim

r→0
Γd

H(r) (9)

The d-dimensional Hausdorff measure generalizes the usual notion of the total
length, area and volume of simple sets. Haussdorf proved that Γd

H , for every
set Ω, is +∞ if d is less than some critical value DH and is 0 if d is greater
than DH . The critical value DH is called the Hausdorff dimension of the set.
Since the Hausdorff dimension is not easy to evaluate, in practical application
it is replaced by an upper bound that differs only in some constructed exam-
ples: the Box-Counting dimension (or Kolmogorov capacity) [47].
The Box-Counting dimension DB of a set Ω is defined as follows:
if ν(r) is the number of the boxes of size r needed to cover Ω, then DB is

DB = lim
r→0

ln(ν(r))

ln(1
r
)

(10)

It can show that if in the definition of Hausdorff dimension the cells have
the same diameter r, Hausdorff dimension reduces to Box-Counting dimen-
sion. Although efficient algorithms [49],[50], [51] have been proposed, the Box-
Counting dimension can be computed only for low-dimensional sets because
the algorithmic complexity grows exponentially with the set dimensionality.

4.2 Correlation Dimension

A good substitute for the Box-Counting dimension can be the Correlation di-
mension [52]. Due to its computational simplicity, the Correlation dimension
is successfully used to estimate the dimension of attractors of dynamical sys-
tems.
The Correlation dimension is defined as follows:
let Ω = x1,x2, . . . ,xN be a set of points in Rn of cardinality N . If the corre-
lation integral Cm(r) is defined as:

Cm(r) = lim
N→∞

2

N(N − 1)

N∑

i=1

N∑

j=i+1

I(‖xj − xi‖ ≤ r) (11)
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where I is an indicator function 2 , then the Correlation dimension D of Ω is:

D = lim
r→0

ln(Cm(r))

ln(r)
(12)

Correlation and Box-Counting dimension are strictly related. It can be shown
that both dimensions are special cases of the generalized Renyi dimension.
If the generalized correlation integral Cp is:

Cp(r) =
1

N(N − 1)p−1

N∑

i=1




N∑

j 6=i

I(‖xj − xi‖ ≤ r)




p−1

(13)

The generalized Renyi dimension Dp is defined in the following way:

Dp = lim
r→0

1

p− 1

ln(Cp(r))

ln(r)
(14)

It can be shown [52] that for p = 0 and p = 2 Dp reduces respectively to the
Box-Counting and the Correlation dimension. Besides, it can be proved that
Correlation Dimension is a lower bound of the Box-Counting Dimension. Nev-
ertheless, due to noise, the difference between the two dimensions is negligible
in applications with real data.

4.3 Methods of Estimation of Fractal Dimension

The most popular method to estimate Box-Counting and Correlation dimen-
sion is the log-log plot. This method consists in plotting ln(Cm(r)) versus
ln(r). The Correlation dimension is the slope of the linear part of the curve
(Figure 3). The method to estimate Box-Counting is analogous, but ln(ν(r))
replaces ln(Cm(r)).
The methods to estimate Correlation and Box-Counting dimension present
some drawbacks. Though Correlation and Box-Counting dimension are asymp-
totic results and hold only for r → 0; r cannot be too small since too few ob-
servations cannot allow to get reliable dimension estimates. In fact the noise
has most influence at small distance. Therefore there is a trade-off between
taking r small enough to avoid non-linear effects and taking r sufficiently
large to reduce statistical errors due to lack of data. The use of least-square
method makes the dimension estimate not adequately robust towards the out-
liers. Moreover, log-log plot method does not allow to compute the error in
dimension estimation.

2 I(λ) is 1 iff condition λ holds, 0 otherwise.
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Some methods [53],[54],[55] have been studied to obtain an optimal estimate
for the correlation dimension. Takens [55] has proposed a method, based on
Fisher’s method of Maximum Likelihood [56,57], that allows to estimate the
correlation dimension with a standard error.

4.3.1 Takens’ method

Let Q be the following set Q = {qk | qk < r} where rk is the the Euclidean
distance between a generic couple of points of Ω and r (cut-off radius) is a
real positive number.
Using the Maximum Likelihood principle it can prove that the expectation
value of the Correlation Dimension 〈Dc〉 is:

〈Dc〉 = −

 1

|Q|
|Q|∑

k=1

qk



−1

(15)

where |Q| stands for the cardinality of Q.
Takens’ method presents some drawbacks. It requires some heuristics to set
the radius [58]. Besides, the method is optimal only if the correlation integral
Cm(r) assumes the form Cm(r) = arD[1 + br2 + o(r2)] where a and b are
constants. Otherwise Takens’ estimator can perform poorly [59].

4.4 Limitations of Fractal Methods

In addition to the drawbacks previously exposed, estimation methods based
on fractal techniques have a fundamental limitation.
It has been proved [60,61] that in order to get an accurate estimate of the
dimension D, the set cardinality N has to satisfy the following inequality:

D < 2 log10 N (16)

Inequality (16) shows that the number N of data points needed to accurately

estimate the dimension of a D-dimensional set is at least 10
D
2 . Even for low

dimensional sets this leads to huge values of N .
In order to cope with this problem and to improve the reliability of the measure
for low values of N , the method of surrogate data [62] has been proposed. The
method of surrogate data is an application of a well-know statistic technique
called bootstrap [63]. Given a data set Ω, the method of surrogate data consists
of creating a new synthetic data set Ω′, with greater cardinality, that has the
same statistical properties of Ω, namely the same mean, variance and Fourier
Spectrum. Although the cardinality of Ω′ can be chosen arbitarily, the method
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of surrogate data cannot be used when the dimensionality of the data set is
high. As pointed out previously, a data set whose dimension is 18 requires at
least, on the base of (16), a data set with 109 points. Therefore the method of
surrogate data becomes computationally burdensome.
Finally heuristic methods [64,65] have been proposed in order to estimate
how fractal techniques underestimate the dimensionality of a data set when
its cardinality is unadequate. These heuristic methods permit inferring the
actual dimensionality of the data set. Since the methods are not theoretically
well-grounded they have to be used with prudence.

5 Applications

As mentioned before, estimation methods of the dimensionality of data sets
are useful in pattern recognition to develop powerful feature extractors. For
instance, when using an autoassociative neural network to perform a nonlin-
ear feature extraction (e.g. nonlinear principal component analysis), the ID
can suggest a reasonable value for the number of hidden neurons. Besides, ID
has been used as feature for the characterization of human faces [66] and, in
general, some authors [67,68] have measured the fractal dimension of an image
with the aim to establish if the dimensionality was a distinctive feature of the
image itself.
The estimate of the dimensionality of a data set is crucial in the analysis of sig-
nals and time series. For instance, ID estimation is fundamental in the study
of chaotic systems (e.g. Hénon map, Rössler oscillator) [47], in the analysis
of ecological time series (e.g. Canadian lynx population) [69], in biomedical
signal analysis [70,71], in radar clutter identification [72], in speech analysis
[73], and in the prediction of financial time series [74].
Finally ID estimation methods are used to fix the model order in time series.
This is fundamental to make reliable time series predictions. In order to un-
derstand the importance of the knowledge of ID, we consider a time series
x(t), with (t = 1, 2, . . . , N). It can be described by the equation:

x(t) = f(x(t− 1), x(t− 2), . . . , x(t− (d− 2)), x(t− (d− 1))) + εt (17)

The term εt represents an indeterminable part originated either from unmod-
elled dynamics of the process or from real noise. The function f(·) is the
skeleton of the time series [75,76]. If f(·) is linear, we have an autoregressive
model of order (AR(d-1)), otherwise a nonlinear autoregressive model of order
(NAR(d-1)).
The key problem in the autoregressive models is to fix the model order (d-1).
Fractal-based techniques can be used to fix the order in a time series. In
particular, these techniques can be used for the model reconstruction (or re-
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construction of dynamics) of the time series. This is performed by the method
of delays [77].
The time series in the equation (17) is represented as a series of a set of points
{X(t) : X(t) = [x(t), x(t − 1), . . . , x(t − d + 1)]} in a d -dimensional space. If
d is adequately large, between the manifold M , generated by the points X(t)
and the attractor U of the dynamic system that generated the time series,
there is a diffeomorphism 3 .
Takens-Mañé embedding theorem [78,79] states that, in order to obtain a faith-
ful reconstruction of the system dynamics, it must be:

2S + 1 ≤ d (18)

where S is the dimension of the system attractor and d is called the Embedding
dimension of the system.
Therefore, it is adequate to measure S to infer the Embedding dimension d
and the order of the time series d− 1. The estimation of S can be performed
by means of fractal techniques (e.g Box-Counting and Correlation dimension
estimation) previously described in Section 4.
There are many applications of fractal techniques to fix the model order to
natural time series: in the economic field [74], in engineering [80], in the anal-
ysis of electroencephalogram data [81], in metereology [82,83], in the analysis
of astronomical data [84] and many others. A good review about these appli-
cation can be found in [69].

6 Conclusions

In this paper, the data set dimensionality estimation methods have been re-
viewed. The estimation of the dimensionality of a data set is a classical prob-
lem of pattern recognition. Recently the use of fractal-based techniques and
neuroassociators seems to get new force to the research on reliable estimation
methods of data set dimensionality. The aim of this paper has been to provide
a survey of the estimation methods, focusing on the methods based on fractal
techniques and neural autoassociators. In spite of fractal techniques have been
successfully applied to estimate the dimensionality of a data set, they seem to
fail dramatically when, at the same time, the cardinality of the data set is low
and the dimensionality is high. To get reliable estimators, when the dimen-
sionality is high and the set cardinality is low, still remains an open problem.
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[79] R. Mañé, On the dimension of compact invariant sets of certain nonlinear maps,
in: Dynamical Systems and Turbolence, Warwick 1980, Springer-Verlag, 1981,
pp. 230–242.

[80] F. Camastra, A. M. Colla, Neural short-term prediction based on dynamics
reconstruction, Neural Processing Letters 9 (1) (1999) 45–52.

[81] I. Dvorak, A. Holden, Mathematical Approaches to Brain Functioning
Diagnostics, Manchester University Press, 1991.

[82] E. N. Lorenz, Deterministic non-periodic flow, Journal of Atmospheric Science
20 (1963) 130–141.

[83] J. Houghton, The bakerian lecture 1991: the predictability of weather and
climates, Phil. Trans. R. Soc. Lond. A337 (1991) 521–572.

[84] J. Scargle, Studies in astronomical time series analysis. iv. modeling chaotic and
random processes with linear filters, Astrophysical Journal 359 (1990) 469–482.

19



y

x

u

v

Fig. 1. Ω Data Set. The data set is formed by points lying on the upper semicir-
conference of equation x2 + y2 = 1. The ID of Ω is 1. Neverthless PCA yields two
non-null eigenvalues. The principal components are indicated by u and v.
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Fig. 2. A Neural Net for Nonlinear PCA
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