How do I know, when this traffic signal will turn green?

Why do I want to know when the signal turns green?
Introduction

Traffic light countdown timer
Introduction

Traffic light countdown timer
Introduction

Traffic light countdown timer

- Expensive
- Impractical deployment
- Costly maintenance
Introduction

SignalGuru

Joint project of Princeton University and MIT

Demonstrates potential of smartphone cameras

Presented at MobiSys’11
Introduction

SignalGuru

Basic idea

- Take picture of intersection
- Filter out relevant traffic signal
- Predict the next green phase

Advantages

- No infrastructure
- Runs on mobile phones
- Detects and predicts traffic signals
Outline

1. Traffic Light Background
2. SignalGuru
3. Applications
4. Related Work
Traffic Light Background

Terminology

- **Phase**: different, but non-conflicting movements
- **Cycle**: each phase had green once
- **Phase length**: green light duration for a phase
- **Cycle length**: sum of all phase lengths
Traffic Light Background

2 types of traffic lights

Pre-timed

- Settings (i.e. phase and cycle lengths) are fixed
- Same schedule repeats every cycle
- Typically 3 modes of operation

Adaptive

- Uses inductive loop detectors
- Adjusts settings based on lane saturation
- Changes settings every cycle
- Phases scheduled in deterministic, round-robin manner
Outline

1. Traffic Light Background

2. SignalGuru
 a) Modules
 b) Challenges

3. Applications

4. Related Work

How do I know, when the traffic signal will turn green?
SignalGuru - Modules

1. Traffic Light Background
2. SignalGuru
3. Applications
4. Related Work
SignalGuru - Detection

Setup

Windshield mounted iPhones

Phone cameras capture video frames

Detection activated based on GPS location

Processes a new frame every 2 seconds
SignalGuru - Detection

Characteristics of a traffic light

- Bright bulb colour
- Bulb shape (circle, arrow)
- Black traffic signal housing
- High above ground

2. SignalGuru Modules
 - Detection
 - Transition Filtering
 - Collaboration
 - Prediction
SignalGuru - Detection

- Colour filter

2. SignalGuru Modules
 - Detection
 - Transition Filtering
 - Collaboration
 - Prediction
SignalGuru - Detection
SignalGuru - Detection

2. SignalGuru Modules
 - Detection
 - Transition Filtering
 - Collaboration
 - Prediction

- Colour filter
- Laplace edge detection
SignalGuru - Detection

1. Colour filter
2. Laplace edge detection
3. Hough transform

2. SignalGuru Modules
 - Detection
 - Transition Filtering
 - Collaboration
 - Prediction
SignalGuru - Detection
SignalGuru - Detection

Colour filter → Laplace edge detection → Hough transform

BCC * BBC > threshold?

Calculate BCC and BBC
SignalGuru - Detection

BCC = Bulb Colour Confidence
Is the object in correct colour range?

BBC = Black Box Confidence
Is the object surrounded by a traffic signal housing?
SignalGuru - Detection

2. SignalGuru Modules
 - Detection
 - Transition Filtering
 - Collaboration
 - Prediction

- Colour filter
- Laplace edge detection
- Hough transform
- Report no traffic light found
- BCC * BBC > threshold?
- Calculate BCC and BBC
- Report traffic light (colour, centre coordinates, radius)
Outline

1. Traffic Light Background

2. SignalGuru
 a) Modules
 b) Challenges

3. Applications

4. Related Work
SignalGuru - Challenges

How to run everything with limited processing power?

Make use of high placement of traffic signals
Reduce detection window size

Benefits:

a) Processing time decreased by 41% (from 1.73s to 1.02s)
b) Almost halves misdetection rate (from 15.4% to 7.8%)
SignalGuru - Challenges

How to run everything with limited processing power?

Detection window

3. SignalGuru Challenges
 • Processing Power
 • Ambient Light Conditions
SignalGuru - Challenges

How to deal with variable ambient light conditions?

LED traffic signals have fixed intensity

Adjust and lock camera exposure time
SignalGuru - Detection in action

SignalGuru: Traffic Signal Detection

Emmanouil Koukoumidis (MIT, Princeton)
Li-Shiuan Peh (MIT)
Margaret Martonosi (Princeton)
SignalGuru - Detection

Summary

Phone camera captures video frames

Algorithm filters out relevant traffic light

Reports location, radius and colour of a detected traffic light

![Image of a traffic light with coordinates and color]

Red

x: 4.05, y: 3.22

r: 0.05

Signal will turn **green** in 24s
Outline

1. Traffic Light Background

2. SignalGuru
 a) Modules
 b) Challenges

3. Applications

4. Related Work

How do I know, when the traffic signal will turn green?
SignalGuru - Transition Filtering

Detection module’s output is fairly noisy

While waiting at traffic light: 65% false transition detection

Need to filter out false positives

2. SignalGuru Modules
 - Detection
 - Transition Filtering
 - Collaboration
 - Prediction
SignalGuru - Transition Filtering

Two-stage filter

Low pass filter

88% of false positives in single frame

Colocation filter

Red and green bulb contained in the same black box
SignalGuru - Collaboration

Exchange time stamped R -> G transitions
Use ad-hoc 802.11g network connection

The more transition data, the more accurate the prediction.
Pre-timed traffic signals

Main challenge:

Accurately synchronise SignalGuru’s clock with phase transition

How it’s done:

Achieved by capturing a colour transition

Rest of the data available from traffic authorities
SignalGuru - Prediction

Traffic signal timeline

\[t = \text{detected signals and transitions} \]
\[PL = \text{phase length} \]
\[\tau = \text{predicted transitions} \]
\[\epsilon = \text{error} \]
SignalGuru - Prediction

Adaptive traffic signals

Main challenge:

Predict the phase length

How it’s done:

Measure and collaboratively collect transition history

Feed data to Support Vector Regression prediction model
Support Vector Regression

2 phases:

1. **Training**: create a prediction model (offline)

Diagram:

- History data
- Prediction scheme
- SVR
- SVR Model
SignalGuru - Prediction

Support Vector Regression

2 phases:

1. **Training**: create a prediction model (offline)
2. **Prediction**: predict next phase length

Current data → SVR Model → Next phase length

- Detection
- Transition Filtering
- Collaboration
- Prediction

Prediction scheme
SignalGuru - Prediction

Support Vector Regression

Prediction schemes

PS1: Prediction based on history for the same phase
PS2: Also use lengths of preceding phases in same cycle
PS3: Use data of the last 5 cycles

2. SignalGuru Modules
 • Detection
 • Transition Filtering
 • Collaboration
 • Prediction

![Chart showing phase length prediction mean absolute error for PS1, PS2, and PS3 for Bugis and Dover]

28.03.2012
Outline

1. Traffic Light Background
2. SignalGuru
3. Applications
4. Related Work

Why do I want to know when a signal turns green?
Applications - GLOSA

Green Light Optimal Speed Advisory

Advise drivers on optimal speed
Avoid stopping at red light

Benefits

a) Decreases fuel consumption by 20%
b) Smoothens and increases traffic flow
c) Decreases environmental impact

3. SignalGuru Applications
 • GLOSA
 • TSAN
Applications - GLOSA

SignalGuru’s GLOSA screen

- Advisory:
 - 3.0 sec
 - 45.0 sec
 - 11.9 mph

SignalGuru Applications
- GLOSA
- TSAN
Applications - TSAN

Traffic Signal-Adaptive Navigation

Avoid long waits at red lights
Advise drivers on possible detours

Benefits

a) No stops at red lights
b) Reduces travel time
Outline

1. Traffic Light Background
2. SignalGuru
3. Applications
4. Related Work
4. Related Work

- Location Warning
- ParkNet

Hazardous Location Warning

Vehicle detects hazardous location, i.e. oil spill
Transmits data to oncoming vehicles

Makes use of

- Car sensors
- Ad-hoc network

Related Work

ParkNet

Drive-by Sensing of Road-Side Parking Statistics

Project of Rutgers University, USA

Issue

Searching for parking spot creates congestion

Lead to a loss of $78 billion in 2007 in US

- 4.2 billion lost hours
- 11 billion litres of wasted fuel

Related Work

ParkNet

Drive-by Sensing of Road-Side Parking Statistics

Mobile system with sensors on cars

Ultrasonic sensor and GPS receiver

Related Work

ParkNet

Data uploaded using Wi-Fi

Central server creates parking map
Related Work

ParkNet

Allows checking of near-real-time parking situation

Eliminates need to search for parking

Benefits

a) Saves time

b) Saves a lot of fuel
The End

Questions?

Thank you for your attention!