The Round Complexity of Distributed Sorting

by
Boaz Patt-Shamir
Marat Teplitsky
Tel Aviv University

Motivation

- Distributed sorting
- Infrastructure is more and more distributed
 - Cloud
 - Smartphones

CONGEST model

- Models congestion in a network
 - Bandwidth restriction: Message complexity in O(log n)
- Abstract model
 - Removes complexity

Network

- Fully connected network (clique)
- Message in O(log n)
- Synchronous rounds

Problem statement

- Number of nodes: n
 - Denoted as $V = \{v_1, ..., v_n\}$
- Input Values: max n per node
 - Max n^2 in total
- Goal: Sort in O(log log n) rounds w.h.p

- Definition
 - With high probability (w.h.p): 1-n^{-O(1)}

The algorithm – Overview

- Split the input values into n ranges
- Each node sorts one range
 - Send input values to the corresponding node

- Create a global order on the keys
 - The nodes are order by their id
 - Each node creates an arbitrarily local order
 - The global order is then $\sum_{i=1}^{l-1} a_i + k_i$
- Partition them into n disjoint ranges

Choose order of delimiters: 12,6,10

Broadcast order of delimiters: 12,6,10

Broadcast delimiters: 24,5,50

- Only nodes with max 2n In In n keys in their range are active nodes in this phase
- Keys are active if their destination node is active.

repeat

- for each active key pick intermediate destination (source node)
- for each final destination, pick one key and send it (intermediate node)
- Send all other received keys back
 until all active key reached their destination

Active nodes: Max 2 keys in the range

The algorithm – Cleanup stage

Do the same for the nodes with more than
 2 n In In n keys.

Local sort the keys

Chernoff bound

- Lemma 1.1:
 - With high probability, the number of non-selected segments is at most $\frac{2n}{\ln n \ln \ln n}$.

- Lemma 1.2:
 - With high probability, the number of ranges with more than $2n \ln \ln n$ keys is at most $\frac{2n}{\ln n \ln \ln n}$.

- Lemma 2.1:
 - W.h.p., the number of keys remaining to the cleanup stage is at most $\frac{4n^2}{\ln n}$.

- Lemma 2.2:
 - In the cleanup stage, w.h.p., all ranges are of size
 O(n).

- Lemma 3.1:
 - If there are **more** than n active keys with destination v_i , then w.h.p. at least $\frac{n}{9}$ keys will be delivered at v_i in one iteration.

- Lemma 3.2:
 - If there are **at most** n active keys with destination v_i , then w.h.p. all keys will be delivered in O(ln ln n) iterations.

Related Work

- Concurrently to this paper, Lenzen and Wattenhofer proved the following:
 - Suppose there are O(n) messages in each node and the number of messages destined to each node is O(n), then routing all messages can be done in O(1)
- With this, the algorithm can be improved to work in O(1)

Q&A

