Optimal strategies for maintaining a chain of relays between an explorer and a base camp

Lukas Humbel

2. Mai 2012
1 Model Definition
 - Problem Statement
 - Time/Relay Model
 - What to measure

2 Manhattan Hopper Strategy
 - Strategy Description
 - Static Scenario Performance
 - Dynamic Scenario Performance

3 Conclusion
Problem Statement
Problem Statement

- Grid size: 0.5
- Transmission distance: 1
- Grid size: 0.5
- Transmission distance: 1
Problem Statement

- Grid size: 0.5
- Transmission distance: 1
Time/Relay Model
Time Model

- Synchronized
- Look – Compute – Move
- Sees its chain neighbors
- Memoryless
- No communication
Relay Model - Sensory Input

- Sees its chain neighbors
- Memoryless
- No communication
Relay Model - Sensory Input

- Sees its chain neighbors
- Memoryless
- No communication
- ... must sense when predecessor has stepped
- Moves with constant speed
- Moves with constant speed
- Can be removed everywhere
- Inserted only at home
Chain Attributes

- *Valid* condition
- *Optimal* condition
What to measure
Explorer fixed

Quality measurement: Time to optimal chain
Chain in optimal condition
Explorer moving
Quality measurement:
 Possible speed of explorer
 Maximal chain length
What can we expect?

- Dynamic Scenario
 - Explorer can move as fast as a relay
 - \textit{constant}
What can we expect?

- Dynamic Scenario
 - Explorer can move as fast as a relay
 - constant
 - Chain length? $O(\text{minimal length})$
What can we expect?

- **Dynamic Scenario**
 - Explorer can move as fast as a relay
 - constant
 - Chain length? \(O(\text{minimal length}) \)

- **Static Scenario**
 - There are cases where a (constant speed moving) relay needs \(n \) timesteps to get close to the direct line.
Strategy Description
Manhattan Hopper

- All stations move on a grid
- Chain remains valid
- Relays move at most constant distance
- Uses Manhattan distance
Manhattan Hopper

- All stations move on a grid
- Chain remains valid
- Relays move at most constant distance
- Uses Manhattan distance

\[d = \Delta_x + \Delta_y \]
Executed sequentially. v_{i+1} moves after v_i

One sequence is called a *run*
Neighbors not in line → move

Neighbors in line → stay
If \(v_i \) moves to \(v_{i+2} \), \(v_{i+1} \) and \(v_{i+2} \) are removed.
If v_i moves to v_{i+2}. v_{i+1} and v_{i+2} are removed.

v_{i+1} and v_{i+2} are removed.
If v_i moves to v_{i+2}. v_{i+1} and v_{i+2} are removed.

v_{i+1} and v_{i+2} are removed.

A remove operation ends the run.
Static Scenario Performance
Theorem 1

After n runs, the chain has optimal length
\[\vec{u}_i = position(v_{i+1}) - position(v_i) \]
$\vec{u}_i = \text{position}(v_{i+1}) - \text{position}(v_i)$

$C = (\Rightarrow, \uparrow, \uparrow, \Rightarrow, \Rightarrow, \ldots, \Rightarrow, \uparrow, \uparrow) = (\vec{u}_0, \vec{u}_1, \ldots, \vec{u}_k)$
\[\vec{u}_i = \text{position}(v_{i+1}) - \text{position}(v_i) \]

\[C = (\Rightarrow, \uparrow, \uparrow, \Rightarrow, \Rightarrow, \ldots, \Rightarrow, \uparrow, \uparrow) \]
\[= (\vec{u}_0, \vec{u}_1, \ldots, \vec{u}_k) \]

\[\vec{u}_i \text{ and } \vec{u}_j \text{ are oppositional } \iff \vec{u}_i = -\vec{u}_j \]
\[\vec{u}_i = \text{position}(v_{i+1}) - \text{position}(v_i) \]

\[C = (\Rightarrow, \uparrow, \uparrow, \Rightarrow, \Rightarrow, \ldots, \Rightarrow, \uparrow, \uparrow) \]

\[= (\vec{u}_0, \vec{u}_1, \ldots, \vec{u}_k) \]

\[\vec{u}_i \text{ and } \vec{u}_j \text{ are oppositional } \iff \vec{u}_i = -\vec{u}_j \]

Optimal (Manhattan) length configuration?
Lemma 2

- Let $C = (\vec{u}_0, \vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$.
- Assume a run finishes without removing any relay.
- $C' = (\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k, \vec{u}_0)$ is the configuration after the run.
- Also afterwards \vec{u}_0 is not oppositional to any other.
Static Scenario - Strategy Effects On Configuration

\[C = (\Rightarrow, \uparrow, \uparrow, \Rightarrow, \Rightarrow, \ldots, \Rightarrow, \uparrow, \uparrow) \]
$C = (\uparrow, \Rightarrow, \uparrow, \Rightarrow, \Rightarrow, \ldots, \Rightarrow, \uparrow, \uparrow)$
\[C = (\uparrow, \uparrow, \Rightarrow, \Rightarrow, \Rightarrow, \ldots, \Rightarrow, \uparrow, \uparrow) \]
$C = (\uparrow, \uparrow, \Rightarrow, \Rightarrow, \Rightarrow, \ldots, \Rightarrow, \uparrow, \uparrow)$
If \vec{u}_0 is oppositional to any other \vec{u}_i, \vec{u}_0 will meet it at some point

$$C = (\ldots, \Rightarrow, \Leftarrow, \ldots)$$

triggers a removal
Lemma 3

- Let $C = (\vec{u}_0, \vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$.
- The run finishes with removing v_i and v_{i+1} if and only if \vec{u}_{i+1} is the first vector oppositional to \vec{u}_0.
- $C' = (\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_i, \vec{u}_{i+2}, \ldots, \vec{u}_k)$ is the configuration after the run.
$C = (\uparrow, \uparrow, \Rightarrow, \Rightarrow, \Rightarrow, \downarrow, \ldots, \uparrow, \uparrow, \Rightarrow)$
$C = (\uparrow, \uparrow, \Rightarrow, \Rightarrow, \Rightarrow, \Rightarrow, \downarrow, \ldots, \uparrow, \uparrow, \Rightarrow)$
\[C = (\uparrow, \Rightarrow, \uparrow, \Rightarrow, \Rightarrow, \downarrow, \ldots, \uparrow, \uparrow, \Rightarrow) \]
$C = (\uparrow, \Rightarrow, \Rightarrow, \uparrow, \Rightarrow, \downarrow, \ldots, \uparrow, \uparrow, \Rightarrow)$
Static Scenario - Strategy Effects On Configuration

\[C = (\uparrow, \Rightarrow, \Rightarrow, \Rightarrow, \uparrow, \Rightarrow, \downarrow, \ldots, \uparrow, \uparrow, \Rightarrow) \]

\[C' = (\uparrow, \Rightarrow, \Rightarrow, \Rightarrow, \Rightarrow, \uparrow, \downarrow, \ldots, \uparrow, \uparrow, \Rightarrow) \]

\[C'' = (\uparrow, \Rightarrow, \Rightarrow, \Rightarrow, \Rightarrow, \ldots, \uparrow, \uparrow, \Rightarrow) \]
Let $C = (\vec{u_0}, \vec{u_1}, \vec{u_2}, \ldots, \vec{u_k})$.

The run finishes with removing v_i and v_{i+1} if and only if u_{i+1} is the first vector oppositional to $\vec{u_0}$.

$C' = (\vec{u_1}, \vec{u_2}, \ldots, \vec{u_i}, u_{i+2}, \ldots \vec{u_k})$ is the configuration after the run.
Vectors are never created, label them uniquely

\[C_1 = (\vec{a}_0, \vec{a}_1, \ldots, \vec{a}_k) \]
Static Scenario - Some Observations

- Vectors are never created, label them uniquely
 \[C_1 = (\vec{a}_0, \vec{a}_1, \ldots, \vec{a}_k) \]

- In every run \(\vec{u}_i \) (\(i \neq 0 \)) reduces its position at least by one
 - Case 1: No removal
 - Case 2: Removal happens and \(\vec{u}_i \) is before the removal
 - Case 3: Removal happens and \(\vec{u}_i \) is after the removal
Assume after \(n \) runs, there is an oppositional pair \(\vec{u}_p \) and \(\vec{u}_q \) with \(p < q \).

\[
C = (\ldots, u_p, \ldots, u_n)
\]

Distance: \(n - p \)

At most \(n - p + 1 \) runs earlier, \(\vec{u}_p \) was at position 0

and hence would have been removed.
Assume after n runs, there is an oppositional pair \vec{u}_p and \vec{u}_q with $p < q$.

$$C = (\ldots, u_p, \ldots, u_n)$$

Distance: $n-p$

At most $n - p + 1$ runs earlier, \vec{u}_p was at position 0

and hence would have been removed.

After n rounds, there are no more oppositional pairs.
It takes n rounds to reach minimal length. Timesteps?
Static Scenario

- It takes \(n \) rounds to reach minimal length. Timesteps?
- Pipeline! Start new run every 3 time steps.
It takes n rounds to reach minimal length. Timesteps?
Pipeline! Start new run every 3 time steps.
After $3n + n = 4n$ time steps the chain is optimal
Dynamic Scenario

- Must handle explorer moves
- Must handle explorer moves
- Perform *Follow* run
- Then perform *Hopper* run
 - The *Hopper* run is what we have seen before
Follow Run

Base inserts new relay
Follow Run
Lemma 4

Let the chain have optimal length prior to the explorer’s movement. Then after the explorer’s movement, the Hopper and Follow run bring the chain to an optimal length.
Lemma 4

Let the chain have optimal length prior to the explorer’s movement. Then after the explorer’s movement, the Hopper and Follow run bring the chain to an optimal length.

Proof.

- Let C be the configuration before the movement and C' after the follow run.
Lemma 4

Let the chain have optimal length prior to the explorer’s movement. Then after the explorer’s movement, the Hopper and Follow run bring the chain to an optimal length.

Proof.

- Let C be the configuration before the movement and C' after the follow run.
- No pair of oppositional vectors in C
Lemma 4

Let the chain have optimal length prior to the explorer’s movement. Then after the explorer’s movement, the Hopper and Follow run bring the chain to an optimal length.

Proof.

- Let C be the configuration before the movement and C' after the follow run.
- No pair of oppositional vectors in C
- At most one pair of oppositional in C'
Lemma 4

Let the chain have optimal length prior to the explorer’s movement. Then after the explorer’s movement, the Hopper and Follow run bring the chain to an optimal length.

Proof.

- Let C be the configuration before the movement and C' after the follow run.
- No pair of oppositional vectors in C
- At most one pair of oppositional in C'
- One Hopper removes the first pair of oppositional vectors
Lemma 4

Let the chain have optimal length prior to the explorer’s movement. Then after the explorer’s movement, the Hopper and Follow run bring the chain to an optimal length.

Proof.

- Let C be the configuration before the movement and C' after the follow run.
- No pair of oppositional vectors in C
- At most one pair of oppositional in C'
- One Hopper removes the first pair of oppositional vectors
- Hence there is no pair at the end and hence the chain has optimal length
$d_r := \text{(Manhattan) distance between explorer and home at beginning of round } r.$
Dynamic Scenario Performance

- $d_r :=$ (Manhattan) distance between explorer and home at beginning of round r.
- $d_r = 4.5$
- Number of relays $= 9$
- Optimal chain: Number of relays $= 2d_r$
Explorer speed?
Dynamic Scenario Performance

- Explorer speed?
- Must pipeline

\[
\begin{align*}
\text{Time} & \\
(t+6) & \text{Explorer moves} \\
(t+4) & \text{Hopper run started, } v_1 \text{ moves} \\
(t+1) & \text{Follow run started, } v_1 \text{ moves} \\
t & \text{Explorer moves}
\end{align*}
\]

One round
Theorem 5

Assume we start with an optimal chain. Then, the chain maintained by the strategy has the following properties before each round r.

1. The chain remains connected
2. The explorer may move a distance of $\frac{1}{2}$ every round, i.e. every 6th time step
3. Relays move at most constant distance per round
4. The number of relays used in the chain is at most $3d_r + 2$
Each *Hopper* run operates on an optimal chain.
- Chain has $2d_r$ relays.
- Run takes at most $2d_r + 2$ time steps.
Each *Hopper* run operates on an optimal chain.
- Chain has $2d_r$ relays.
- Run takes at most $2d_r + 2$ time steps.

Fix round r

Number of relays $\leq 2d_r + 2$ (number of unfinished *Hopper* runs)
Dynamic Scenario Performance - Number Of Relays

Run of round r

Run of round $r - 1$

Run of round $r - 2$
How Many Unfinished Hopper runs Are There?

Lemma 6

There are at most $\frac{d_r + 1}{2}$ unfinished runs in round r.

\iff The run started in round $r - \frac{d_r + 1}{2}$ is finished at round r
$r := \text{current round}$

$z := \text{earlier round}$

Run started in round z

\[r > z + 2 \text{ timesteps} \]

Max. distance of explorer between z and r

\[d_z \leq d_r + (r - z)^2 \]

Run of round z ends in which round?
How Many Unfinished Hopper Runs Are There?

- $r :=$ current round
- $z :=$ earlier round

Run started in round $z

$z < r - \frac{d_r+1}{2}$
How Many Unfinished Hopper Runs Are There?

- \(r \) := current round
- \(z \) := earlier round

Run started in round \(z \)

- 1. \(z < r - \frac{d_r + 1}{2} \)
- 2. Run of round \(z \) needs \(< 2d_z + 2 \) timesteps to finish
How Many Unfinished Hopper Runs Are There?

- $r :=$ current round
- $z :=$ earlier round

Run started in round z

![Diagram showing the relationship between z, r, and the rounds]

1. $z < r - \frac{d_r + 1}{2}$
2. Run of round z needs $< 2d_z + 2$ timesteps to finish
3. Max. distance of explorer between z and $r = \frac{r - z}{2}$
 \[\rightarrow d_z \leq d_r + \frac{r - z}{2} \]

Run of round z ends in which round?
Dynamic Scenario Performance

- \(z < r - \frac{d_r + 1}{2} \)

Unfinished runs at \(r \) ? At most \(r - z = \frac{d_r + 1}{2} \) many

Number of relays \(\leq 2d_r + 2 \) (number of unfinished Hopper runs)

Number of relays \(\leq 2d_r + 2 \frac{d_r + 1}{2} = 3d_r + 1 \)
• $z < r - \frac{d_r + 1}{2}$

Unfinished runs at r? At most $r - z = \frac{d_r + 1}{2}$ many

Number of relays $\leq 2d_r + 2$ (number of unfinished Hopper runs)

Number of relays $\leq 2d_r + 2 \cdot \frac{d_r + 1}{2} = 3d_r + 1$

The strategy keeps chain length in $O(d_r)$
Outlook

- Can be generalized (drop grid requirement)
- Keeps optimal characteristics
The oscillation of the strategy and its sequential nature improve the *Go-to-the-Middle* strategy.

- It converts a chain into an optimal in $O(n)$ timesteps ($n =$ number of relays)
 - Which is optimal
- It allows the explorer to move with constant speed.
 - Which is optimal
Questions?