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Introduction and background

Edmonds maximum matching algorithm

Matching-duality theorem



Matching

Matching in a graph is a set of edges, no two of which meet at a
common vertex.

Maximum matching is a matching of maximum cardinality.



Matching

Matching in a graph is a set of edges, no two of which meet at a
common vertex.

Maximum matching is a matching of maximum cardinality.



Question

Why do we want to study matching
problems?



A lot of applications
Job recruitment process.



A lot of applications
Then someone is not happy.



A lot of applications
Everyone is happy now.



Question

You don’t want to do it manually.

So, how can you find the maximum
matching?



First try: greedy method

Enumerate every edge, if both end points are not covered by the
matching, add the edge to the matching.

Not always work. May reach local optimum (maximal matching).



First try: greedy method

How to improve the matching?



Augment the matching

If we flip the edges...



Augment the matching

Seems we have found a way to improve the matching!

Then we want to generalize the idea.



Exposed vertex

Exposed(free) vertex is a vertex that is not incident with any edge
in the matching M

M
exposed vertex



Alternating path

Alternating path is a path whose edges are alternately in M and M

M
exposed vertex

alternating path



Augmenting path

Augmenting path is a simple alternating path between exposed ver-
tices

M
exposed vertex

augmenting path



Augmenting path

We can find a larger matching in the augmenting path!

M
exposed vertex

This operation is called symmetric difference ⊕.



Symmetric difference

Symmetric difference of two sets D and E is defined as D ⊕ E =
(D − E ) ∪ (E − D)

D E

D ⊕ E

The result of the symmetric difference between a matching and an
augmenting path on the graph is a larger matching.



Intuition

Then our algorithm can try to find aug-
menting paths to improve the known
mathcing.



Question

Can we stop when there is no aug-
menting paths?

What is the optimality condition for
the algorithm to terminate?



Answer

Berge theorem says if there is no aug-
menting path, we can stop!



Berge’s theorem

Theorem - Berge(1957)

M is not a maximum matching if and only if there exists an
augmenting path with respect to M

I Proof:
We have already seen that if there is an augmenting path we
can find a larger matching.

So we only need to prove if the matching is not maximum, there
must exist an augmenting path.



Berge’s theorem

If we have a larger matching, how to
find an augmenting path?



Berge’s theorem

Recall that we use ⊕ to find a larger matching.

Now we reverse the step. If we apply ⊕ between matching M1

and a larger matching M2, what do we get?



Berge’s theorem

The results are paths and circuits which are alternating for M1 and
M2.

M1 M2

M1 ⊕M2

We have found alternating paths, which is very close to find aug-
menting paths!



Berge’s theorem

Since the matching M2 is larger, there must be a component
has one more edge in M2 than in M1.

This component is an augmenting path.

Why?



Berge’s theorem

Since the matching M2 is larger, there must be a component
has one more edge in M2 than in M1.

This component is an augmenting path.

Why?



Berge’s theorem

Since the matching M2 is larger, there must be a component
has one more edge in M2 than in M1.

This component is an augmenting path.

Why?



Berge’s theorem

Because there are only four kinds of alternating paths. The only
case when edges not in the matching are more than edges in the
matching is an augmenting path!



Algorithm

Then we have a general algorithm, which keeps finding augmenting
paths and improving the matching until there is no more augmenting
path.

Maximum-Matching(G )

1 M = ∅
2 repeat
3 if there is an augmenting path P with respect to M
4 M = M ⊕ P
5 until there isn’t an augmenting path with respect to M
6 return M



Algorithm

How can we perform the search for an augmenting path effi-
ciently? By brute force, the search space could be exponential.

And... what is an efficient algorithm?



Digression

Edmonds defined that an efficient algorithm should have poly-
nomial running time in this paper, which is earlier than Stephen
Cook defined P and NP .



Previous work: bipartite matching
A bipartite graph is a graph whose vertices can be divided into two
disjoint sets U and V such that every edge connects a vertex in U
to one in V .

Equivalently, a bipartite graph is a graph that does not contain any
odd-length cycles!

There are polynomial time algorithms for maximum matching on
bipartite graphs!

1

2

3

4

A

B

C



Find an augmenting path using BFS

We can use some greedy heuristic to find an initial matching. Then
we start from an exposed vertex to grow an alternating tree, since
the augmenting path is an alternating path.

r

even nodes

odd nodes



Find an augmenting path using BFS

Case 1, y is an exposed vertex not contained in T .
We found an augmenting path!

r

x
y

even nodes

odd nodes



Find an augmenting path using BFS

Case 2, y is matched vertex not in T , grow the tree.

r

x
y

even nodes

odd nodes



Find an augmenting path using BFS

Case 3, y is already contained in T as an odd vertex.
Ignore it, no worry! Why?

r y

x

even nodes

odd nodes



Find an augmenting path using BFS

Case 4, y is already contained in T as an even vertex.
Can’t ignore y , but it doesn’t happen on a bipartite graph (no odd
cycle)!

r y

x

even nodes

odd nodes



Summary

The algorithm grows an alternating tree from an exposed vertex, if
we find an exposed vertex, we can enlarge the matching and start
from another exposed vertex growing the tree again.

After growing trees from all the exposed vertices, the algorithm
terminates.

Time complexity O(nm), n is the number of vertices, m is the num-
ber of edges.
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Summary

The algorithm grows an alternating tree from an exposed vertex, if
we find an exposed vertex, we can enlarge the matching and start
from another exposed vertex growing the tree again.

After growing trees from all the exposed vertices, the algorithm
terminates.

Time complexity O(nm), n is the number of vertices, m is the num-
ber of edges.



Question

Why will odd cycles be a trouble?



Examples of BFS failure on non-bipartite graphs

I Initial graph

1 2 3

4

5

6

I Start from vertex 1, we add vertex 2 and 3.

1 2 3

even nodes

odd nodes



Examples of BFS failure on non-bipartite graphs

I Initial graph

1 2 3

4

5

6

I Two vertices 4 and 5 could be visited. If we first visit 4...

1 2 3 4 5

even nodes

odd nodes



Examples of BFS failure on non-bipartite graphs

I Initial graph

1 2 3

4

5

6

I From 5, we find 3 which is contained in T , if we ignore it, we
will stop here.

1 2 3 4 5

even nodes

odd nodes



Examples of BFS failure on non-bipartite graphs

I Initial graph

1 2 3

4

5

6

I But actually there is an augmenting path!

1 2 3 45 6



Examples of BFS failure on non-bipartite graphs

I Initial graph

1 2 3

4

5

6

I The problem is that 3 already been visited in even layer, and
5 is also in even layer. But the tree must alternate between
different layers.

1 2 3 4 5

even nodes

odd nodes



Examples of BFS failure on non-bipartite graphs

I Initial graph

1 2 3

4

5

6

I First idea: allow vertices to be visited both even and odd layers.

1 2 3

4 5

5 4 6

even nodes

odd nodes



Examples of BFS failure on non-bipartite graphs

I Initial graph

1 2 3

4

5

6

I But the augmenting path we find may not be a simple path.

1 2 23 3

4

4

5

5

6



Examples of BFS failure on non-bipartite graphs

I Result graph

1 2 3

4

5

6

I If we flip the edges...

1 2 23 3

4

4

5

5

6



Review

The frontier of the BFS consist of only even nodes, from where we
extend the search tree.

r

even nodes

odd nodes



Review

For any node in the tree, there is a unique path from root to the
node.
For odd node, the path length is odd. For even node, the path
lenght is even.

r

even nodes

odd nodes



Review

If there is an edge connecting two even nodes (equivalently there is
an odd cycle), there are now two paths from root to every node in
the odd cycle, one is odd length, the other is even length.

Then the previous odd nodes can also become even nodes, from
which we can continue growing the tree!

r r



Edmonds’ idea
An alternating path with an exposed vertex at one end and a match-
ing edge at the other end is called stem.

The odd cycle is called blossom.

The alternating path from root plus the blossom is called flower.
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Edmonds’ idea

Since all the nodes in the odd cycle can become even nodes, we
shrink all the nodes to an even pseudo vertex, all edges connected
to the nodes in the odd cycle now connect to the pseudo vertex.
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Edmonds’ idea

I Whenever a blossom B is found, we shrink it to a pseudo vertex,
and recursively run the algorithm to find maximum matching
of the new graph G/B.

I Edmonds proved that the maximum matching of G is equal to
the maximum matching of G/B plus the maximum matching
of B.

I Since there are at most n exposed vertices, we need O(n) aug-
mentations.

I Each augmentation will shrink at most O(n) blossoms.

I Constructing the alternating tree takes at most n2 if we use
adjacency matrix.

I ∴ O(n4).
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Other implementations

I Actually we do not need to contract the blossom. We can also
put all the odd nodes in the blossom to the queue of the BFS.
But mainting the alternating path to every vertex still needs
some trick (We need to change the odd path to the odd node
with the other even length path).

I With some careful implementaion, Gabow[73] reduced the time
complexity to O(n3).

I An O(n2.5) time complexity can be achieved by finding many
augmenting paths at one time, see Micali and Vazirani[80].

I Currently the best known algorithm gives O(n2.376) complexity,
based on fast matrix multiplication.
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A graph G = (V ,E ) and a matching M.
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8 9
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A graph G = (V ,E) and a matching M.

1 2 3 4
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8 9

10

Start a BFS from 1.

1

even
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Examples
A graph G = (V ,E) and a matching M.

1 2 3 4

567

8 9

10

Grow the tree....

1

even

2

odd

3

even

4

odd

5

even

10

odd

9

even



Examples
A graph G = (V ,E) and a matching M.

1 2 3 4

567

8 9

10

Encounter an edge connecting two even vertices. Find an odd cycle!

1

even

2

odd

3

even

4

odd

5

even

10

odd

9

even



Examples

A graph G = (V ,E) and a matching M.

1 2 3 4

(5, 10, 9)

67

8

Shrink (5,10,9) into a single pseudo vertex.

1

even

2

odd

3

even

4

odd even

(5, 10, 9)



Examples
A graph G = (V ,E) and a matching M.

1 2 3 4

(5, 10, 9)

67

8

Continue the search, and encounter the odd cycle (5,10,9)-6-8.

1

even

2

odd

3

even

4

odd even

5, 10, 9

6

odd

8

even



Examples

A graph G = (V ,E) and a matching M.

1 2 3 4

(5, 10, 9), 6, 8

7

Shrinke the odd cycle and encounter an exposed vertex 7.

1

even

2

odd

3

even

4

odd even

(5, 10, 9), 6, 8

7



Examples

A graph G = (V ,E) and a matching M.

1 2 3 4

(5, 10, 9), 6, 8

7

Find an augmenting path! Still need to find the augmenting path in the original graph...

1

even

2

odd

3

even

4

odd even

(5, 10, 9), 6, 8

7



Examples
A graph G = (V ,E) and a matching M.

1 2 3 4

(5, 10, 9)

67

8

Expand the pseudo vertex to recover the augmenting path.
Since there are two ways to bypass the odd cycle, one is odd length, the other is even
length, we can always choose one to ensure the path is still an augmenting path.

1

even

2

odd

3

even

4

odd even

5, 10, 9

6

odd

7

8

even



Examples
A graph G = (V ,E) and a matching M.

1 2 3 4

567

8 9

10

Expand the pseudo vertex to recover the augmenting path.

1 2 3 4 5 9

10

6

8

7



Examples

Applying M = M ⊕ P yeilds following enlarged matching in the
original graph.

1 2 3 4

567

8 9

10



Summary

I An efficient algorithm has been found.

I The essence is to extend the search tree with odd nodes in the
blossom. The other parts are the same with the algorithm on
bipartite graph.
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Matching-duality theorem

The maximum matching problem can
also be solved as linear programming
problem.

But, what is linear programming?



Linear programming

Standard linear programming model

maximize
cT x

subject to
Ax ≤ 0

x ≥ 0



Maximum matching as linear programming

1 2

3 4

Maximum matching

maximize
x13 + x23 + x24

subject to
x13 ≤ 1

x23 + x24 ≤ 1
x13 + x23 ≤ 1

x24 ≤ 1



Matching-duality theorem

Linear programming duality theorem

If

x ≥ 0,Ax ≤ c
y ≥ 0,AT y ≥ b

for given real vectors b and c and real matrix A, then for real
vectors x and y ,

maxx(b, x) = miny (c , y)

if such extrema exist.

Generally, if we can solve one, we can solve the other.



Matching-duality theorem

And the dual problem of max match-
ing is...?



Matching-duality theorem on bipartite graph

1 2

3 4

Maximum matching

maximize

x13 + x23 + x24

subject to

x13 ≤ 1
x23 + x24 ≤ 1

x13 + x23 ≤ 1
x24 ≤ 1

Minimum vertex cover

minimize

x1 + x2 + x3 + x4

subject to

x1+ x3 ≥ 1
x2+ x3 ≥ 1
x2+ x4 ≥ 1



Matching-duality theorem on bipartite graph

König theorem

In a bipartite graph, the maximum size of a matching is equal to
the minimum size of a vertex cover.

1 2

3 4

1 2

3 4

1 2

3 4



Matching-duality theorem

But it does not hold on the general graph...

1 2

3 4

1 2

3 4

1 2

3 4



Matching-duality theorem

Can we find a minimization problem
whose optimal value is equal to the
maximum matching on the general graph?



Matching-duality theorem

Odd set cover An odd set contains odd number of vertices. A edge
is covered by a single vertex set S if it is adjacent to
the vertex. If the size of the odd set is larger than 1,
both end points of the edge must be in the set O.

The capacity of the odd-set cover is defined as: |S | +
t∑

j=1

|Oj |−1
2 .

Note |O|−1
2 is the possible size of the maximum match-

ing of the odd set O.

verticesS odd-setsOj



Matching-duality theorem

General König theorem

If M is a maximum matching and C is a minimum odd-set cover
then

|M| = capacity(C )

I Proof:

Edges of M are covered by either S or Oj . Each vertex of S
can cover at most one edge in the matching, and Oj can cover

at most |O|−1
2 edges and leave one vertex exposed. Therefore,

|M| ≤ capacity(C ).



Matching-duality theorem

I Proof:

Then we have only to prove the existence of an odd set cover
and a matching for which the numbers are equal.

For a perfect matching M with no exposed vertices, the odd set
cover consists of two sets. One is a single vertex, one consists
of other vertices.

1 2 3

4 5 6



Matching-duality theorem

I Proof:

For a graph which has a matching with one exposed vertices,
the odd set cover consists of one set, that is the set of all the
vertices.

1 2 3

5 6



Matching-duality theorem

I Proof:

For a graph with more than one exposed vertex, if we run the
blossom algorithm from an exposed vertex, we get an alternat-
ing tree.



Matching-duality theorem

I Proof:

The odd set cover for the alternating tree J consists of the sets
of blossoms, and all the odd nodes as single vertex sets. And
its capacity is equal to the size of the matching on J.



Matching-duality theorem

I Proof:

For the other components of the graph G − J, the number
of exposed vertex is reduced by one. If we assume |MG−J | =
capacity(CG−J), we can prove the theorem by induction.



Summary

I We have found the dual problem to maximum matching on
general graphs!

I Although maximum matching is an integer programming prob-
lem, which is inherently intractable, Edmonds proved in an-
other paper that the optimal value of this integer programming
is equal to the optimal value of the corresponding linear pro-
gramming problem, if we relax the integral constraints. But it
is beyond the scope of this talk.
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Conclusion

I We have defined what an efficient algorithm is.

I We have extended the algorithm for finding maximum matching
on bipartite graph to the general graph, which has polynomial
running time guarantee.

I We have generalized König theorem to general graph which is
mathematically elegant.
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Conclusion

I We have defined what an efficient algorithm is.

I We have extended the algorithm for finding maximum matching
on bipartite graph to the general graph, which has polynomial
running time guarantee.

I We have generalized König theorem to general graph which is
mathematically elegant.



Thank you! && Questions?



Appendix

Lemma 1

If G/B contains an augmenting path P starting at r (or the
pseudo node containing r), w.r.t. the matching M/B, then G
contains an augmenting path starting at r w.r.t. matching M.



Proof of Lemma 1

Proof:

If P does not contain the pseudo node b, it is also augmenting path
in G .
Case 1: non-empty stem

I Next suppose that the stem is non-empty.

r i
b

j q
P1 P2



Proof of Lemma 1

r i
b

j q
P1 P2

I After the expansion, j must be incident to some node in the
blossom. Let this node be k .

I If k 6= w , there is an alternating path P2 from w to k that ends
in a matching edge.

I P1 + (i ,w) + P2 + (k , j) + P3 is an augmenting path.

r i w

k j q

P1

P2

P3



Proof of Lemma 1

I if k = w , then P1 + (i ,w) + (w , j) + P3 is an augmenting
path.

r i w
k

j q
P1 P3



Proof of Lemma 1

Proof:

Case 2: empty stem

I If the stem is empty then after expanding the blossom, w = r .

b
j q
P3

w
r

k j q

P2

P3

I The path r + P2 + (k , j) + P3 is an augmenting path.



Proof of Lemma 2

Lemma 2

If G contains an augmenting path P from r to q w.r.t. matching
M then G/B contains an augmenting path from r (or the pseudo
node containing r) to q w.r.t. the matching M/B.

Proof:

I If P does not contain a node from B there is nothing to prove.

I We can assume that r and q are the only exposed nodes in G .



Proof of Lemma 2
Case 1: empty stem

I Let i be the last node on the path P that is part of the blossom.

I P is of the form P1 + (i , j) + P2, for some node j and (i , j) is
unmatched.

I (b, j) + P2 is an augmenting path in the contracted graph.

w

i

j q

P1

P2

b
j q
P2



Proof of Lemma 2

Case 2: non-empty stem

I Let P3 be alternating path from r to w . Define M+ = M⊕P3.

r i w

k j q
P3



Proof of Lemma 2

Case 2: non-empty stem

I In M+, r is matched and w is unmatched.

I G must contain an augmenting path w.r.t. matching M+, since
M and M+ have same cardinality.

I This path must go between w and q as these are the only
unmatched vertices w.r.t. M+.

r i w

k j q
P3



Proof of Lemma 2

Case 2: non-empty stem

I For M+/B the blossom has an empty stem. Case 1 applies.

I G/B has an augmenting path w.r.t. M+/B. It must also have
an augmenting path w.r.t. M/B, as both matchings have the
same cardinality.

I This path must go between r and q, since they are the only
exposed nodes.

w

k j q

b
j q
P2
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