
Distributed
 Computing

FS 2014 Prof. R. Wattenhofer
Jara Uitto

Principles of Distributed Computing

Exercise 5: Sample Solution

1 Shared Sum

In the following, let X (initialized to 0) always denote the shared register used to hold the sum
x =

∑n
i=1 xi, and assume that all xi (and thus also x) are initially 0. Denote by ∆xi the amount by

which xi is changed by process pi at some time, i.e., if xi := x′
i is assigned by pi, then ∆xi = x′

i−xi.

a) To update x, pi calls fetch-and-add(X,∆xi). Therefore, X changes exactly the same as xi

and holds the correct value. Since no process has to wait or retry, we have neither lockouts
nor deadlocks. A simple read on X (or fetch-and-add(X, 0)) gets the current value of x.

b) An update is done by the following code:

1: x := X
2: while not compare-and-swap(X,x, x + ∆xi) do
3: x := X
4: end while

The loop is left after X changed by ∆xi exactly once, thus the code is correct. Again, x can
be obtained by a simple read. Since the compare-and-swap may only fail if another process
pj changed the value of X between pi reading it and calling compare-and-swap, there is no
deadlock. However, other updates may delay a change by some pi indefinitely, hence lockouts
are possible.

c) A write is implemented by

1: x := load-link(X)
2: while not store-conditional(X,x + ∆xi) do
3: x := load-link(X)
4: end while

and is correct for the same reasons as in b). Reads are again simple. However, the solution
differs from b) in that we may have deadlocks, since e.g. two processes can fight endlessly
for getting the register linked to them for sufficiently long to write a value (At least for the
case where a load-link can destroy the link to the register of another processor; i.e. weak
LL/SC).

d) It can be done. We use a special encoding on X. Either it stores a regular value and ⊥ (i.e.,
(x,⊥)) or the value and an additional identifier identifier id(i) of a process pi. A node will
effectively acquire a lock on X by writing its ID to X and only afterwards write its update
to X.

When xi is changed, pi executes

1: while true do
2: (x, id) := X // simple read
3: (x, id) := compare-and-swap(X, (x,⊥), (x, id(i))) // try to lock X with own ID
4: if id = id(i) then
5: X := (x + ∆xi,⊥) // regular write, but compare-and-swap would also do
6: break while loop
7: end if
8: end while

Because writing by compare-and-swap works only if the second argument equals the value
of the register, once a process “locks” X with its identifier, no other process may do so until
the same process performs the write enclosed in the if-condition. Thus, this write happens
exactly if the compare-and-swap was successful. The only reason to check the identifier by
an if-statement rather than using compare-and-swap again is that we need to ensure that
the process leaves the loop after changing X by ∆xi. On the other hand, the while loop can
only be left after a succesful write, thus X is updated correctly. Reads are again plain reads.

As before, the solution is free of deadlocks: At least one process can write, because after
each write the ID part of X contains ⊥, i.e., one process will succeed in “locking” X. As in
b) and c), the solution is prone to lockouts.

2

