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Basics

Static task scheduling.

Everything is known a priori.
Problem:

I Input: number of tasks and a set of processors
I Output: schedule with minimal overall completion time
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Tasks

DAG

Edges show precedence relation

Entry and exit task
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Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P
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Schedule

A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:

I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:

I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs
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NP-completeness

G = (V, E, w, c)

P, a parallel system
SCHED(G, P) is the associated decision problem

I Is there a schedule S for G on P with length sl(S) ≤ T?

SCHED(G, P) is strongly NP-hard
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Proof

1 It is argued that SCHED belongs to NP

2 3-PARTITION is NP-complete in the strong sense
3 By reducing 3-PARTITION in polynomial time to SCHED, it’s shown that

SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 8 / 38



Proof

1 It is argued that SCHED belongs to NP
2 3-PARTITION is NP-complete in the strong sense

3 By reducing 3-PARTITION in polynomial time to SCHED, it’s shown that
SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 8 / 38



Proof

1 It is argued that SCHED belongs to NP
2 3-PARTITION is NP-complete in the strong sense
3 By reducing 3-PARTITION in polynomial time to SCHED, it’s shown that

SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 8 / 38



SCHED ∈ NP

For any S from SCHED(G, P)

It can be verified in polynomial time whether S is feasible

and sl(S) ≤ T

Hence, SCHED(G, P) ∈ NP
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3-PARTITION

3-PARTITION:

I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB
I with B

4 < ai < B
2

I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975
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Construction

n0

n1 n2 ni n3m

a1 a2 ai a3m

1/2
1/2 1/2

1/2

Constructing SCHED from arbitrary instance of 3-PARTITION

|V| = 3m + 1 nodes, |P| = m and T = B + 1.5
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Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction

I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION

I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard
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Pop Quiz #1

Unlimited processors

Complexity
SCHED(G, P∞) is NP-complete
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Pop Quiz #2

No communication costs

Complexity
SCHED-C0(G, Pc0) is NP-complete
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Pop Quiz #3

No communication costs
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Heterogeneous Systems

Diverse set of processors

Interconnected with a high-speed network
Can mean:

1 Same functionality, different speeds
2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard
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Algorithms - Motivation

TS is NP-complete in most cases

Intractable even for moderate-sized input
What can we do?

I Heuristics!
I and/or other optimization techniques
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Taxonomy

Static Task-Scheduling Algorithms

Heuristic Based Guided Random Search Based

List Scheduling Heuristics

Clustering Heuristics

Task Duplication Heuristics
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List Scheduling - Motivation

No FPTAS for TS

PTAS in restricted cases

I 2
√

m-approximation for restricted heterogeneous systems
I 2-approximation with greedy approach

HEFT & CPOP
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List Scheduling Heuristics

Class/category of algorithms

Two phase heuristic:

I task prioritization
I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases
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Additional Definitions

ranku

Cost after and including task

Defined recursively

rankd

Cost up to task

Defined recursively

a

b c d e

f g

h

14

13 11 13 12

7 5

21

18
12 9

11

11 15
27 23

17 13
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HEFT & CPOP

Implement list-scheduling heuristics
HEFT

I Heterogeneous Earliest Finish Time
I Implements an insertion-based policy

CPOP
I Critical-Path-on-Processor
I Tries to speed up the execution of tasks on the critical path
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HEFT

2 phases

I task prioritization
I processor selection/allocation

Task prioritiziation:

I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT
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CPOP

2 phases

I task prioritization
I processor selection/allocation

Uses a different metric for priorities

Different strategy when assigning tasks to processors
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CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:

1 n0 is selected and marked as critical path task
2 Next critical path task, immediate successor with highest priority
3 Until exit node is reached

Implemented using a priority queue
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CPOP - Processor Allocation

Select a pCP which minimizes the cummulative computation cost on the
critical path

If a selected task is on the critical path, schedule on pCP

Else assign it to a processor which minimizes its EFT

Both cases consider an insertion-based scheduling policy
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Experiments

Algorithms tested on two sets of graphs:

I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs

I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications

I Gaussian Elimination
I FFT
I Molecular Dynamics Code
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Competing Algorithms

Dynamic-Level Scheduling (DLS)

Mapping Heuristic (MH)

Levelized-Min Time (LMT)
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Comparison Metrics

Schedule Length Ratio(SLR)
I SLR is a normalized schedule length for an algorithm
I The SLR value for an algorithm is given by:

SLR = makespan∑
ni∈CPmin

minpj∈Q wij

Run time
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Avg. SLR
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Avg. Runtime
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Comparison Metrics (contd.)

Speedup
I The speedup value for a given graph is computed by dividing the sequential

execution time by the parallel execution time
I It’s value is given by:

Speedup =
∑

ni∈CPmin
minpj∈Q wij

makespan

Efficiency
I Efficiency is calculated by dividing the speedup by the number of processors
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Avg. Speedup
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Efficiency - Gaussian Elimination
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Result Summary
HEFT pwns everyone
CPOP isn’t far behind
Alternative task prioritizing
and processor selection policies for HEFT
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Conclusion

Static TS is NP-complete in a strong sense

Heterogeneous systems are important, TS on them more so

Two list heuristic based algorithms: CPOP and HEFT

Significantly outperform their competitors
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Questions?
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