
Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Systems

H. Topcuoglu, S. Hariri, M. Wu

Jait Dixit

21.05.2014

Jait Dixit Better Task Scheduling 21.05.2014 1 / 38

Outline

1 Task Scheduling
Classic Model
Theoritical Background
Heterogeneity
Algorithms

2 HEFT & CPOP
Heterogeneous Earliest Finish Time (HEFT)
Critical-Path-on-Processor (CPOP)
Experiments

3 Conclusion

Jait Dixit Better Task Scheduling 21.05.2014 2 / 38

Basics

Static task scheduling.

Everything is known a priori.
Problem:

I Input: number of tasks and a set of processors
I Output: schedule with minimal overall completion time

Jait Dixit Better Task Scheduling 21.05.2014 3 / 38

Basics

Static task scheduling.

Everything is known a priori.

Problem:

I Input: number of tasks and a set of processors
I Output: schedule with minimal overall completion time

Jait Dixit Better Task Scheduling 21.05.2014 3 / 38

Basics

Static task scheduling.

Everything is known a priori.
Problem:

I Input: number of tasks and a set of processors
I Output: schedule with minimal overall completion time

Jait Dixit Better Task Scheduling 21.05.2014 3 / 38

Basics

Static task scheduling.

Everything is known a priori.
Problem:

I Input: number of tasks and a set of processors

I Output: schedule with minimal overall completion time

Jait Dixit Better Task Scheduling 21.05.2014 3 / 38

Basics

Static task scheduling.

Everything is known a priori.
Problem:

I Input: number of tasks and a set of processors
I Output: schedule with minimal overall completion time

Jait Dixit Better Task Scheduling 21.05.2014 3 / 38

Tasks

DAG

Edges show precedence relation

Entry and exit task

Jait Dixit Better Task Scheduling 21.05.2014 4 / 38

Tasks

DAG

G = (V , E)

Edges show precedence relation

Entry and exit task

a

b c d e

f g

h

Jait Dixit Better Task Scheduling 21.05.2014 4 / 38

Tasks

DAG

G = (V , E , w)

Edges show precedence relation

Entry and exit task

a

b c d e

f g

h

14

13 11 13 12

7 5

21

Jait Dixit Better Task Scheduling 21.05.2014 4 / 38

Tasks

DAG

G = (V , E , w, c)

Edges show precedence relation

Entry and exit task

a

b c d e

f g

h

14

13 11 13 12

7 5

21

18
12 9

11

11 15
27 23

17 13

Jait Dixit Better Task Scheduling 21.05.2014 4 / 38

Tasks

DAG

G = (V , E , w, c)

Edges show precedence relation

Entry and exit task

a

b c d e

f g

h

14

13 11 13 12

7 5

21

18
12 9

11

11 15
27 23

17 13

Jait Dixit Better Task Scheduling 21.05.2014 4 / 38

Tasks

DAG

G = (V , E , w, c)

Edges show precedence relation

Entry and exit task

a

b c d e

f g

h

14

13 11 13 12

7 5

21

18
12 9

11

11 15
27 23

17 13

Jait Dixit Better Task Scheduling 21.05.2014 4 / 38

Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 / 38

Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 / 38

Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 / 38

Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 / 38

Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 / 38

Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 / 38

Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 / 38

Processors

Set of processors

Homogeneous

Non-preemptive

Cost-free local communication

Communication subsystem

Concurrent communication

Fully connected

Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 / 38

Schedule

A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:

I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:

I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

Schedule
A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:

I allocation of tasks in G to a processor in P

I defining a start time for the node on the respective processor

Schedule is feasible only if:

I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

Schedule
A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:

I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:

I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

Schedule

A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:
I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:

I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

Schedule

A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:
I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:
I precedence constraints in G are satisified

I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

Schedule

A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:
I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:
I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

Schedule

A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:
I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:
I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time

makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

Schedule

A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:
I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:
I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

Schedule

A schedule S for task graph G = (V, E, w, c) on a finite set P of processors:
I allocation of tasks in G to a processor in P
I defining a start time for the node on the respective processor

Schedule is feasible only if:
I precedence constraints in G are satisified
I non-preemption is enforced

Feasibility of schedule can be verified in polynomial time
makespan = sl(S)

I Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 / 38

NP-completeness

G = (V, E, w, c)

P, a parallel system
SCHED(G, P) is the associated decision problem

I Is there a schedule S for G on P with length sl(S) ≤ T?

SCHED(G, P) is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 7 / 38

NP-completeness

G = (V, E, w, c)

P, a parallel system

SCHED(G, P) is the associated decision problem

I Is there a schedule S for G on P with length sl(S) ≤ T?

SCHED(G, P) is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 7 / 38

NP-completeness

G = (V, E, w, c)

P, a parallel system
SCHED(G, P) is the associated decision problem

I Is there a schedule S for G on P with length sl(S) ≤ T?

SCHED(G, P) is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 7 / 38

NP-completeness

G = (V, E, w, c)

P, a parallel system
SCHED(G, P) is the associated decision problem

I Is there a schedule S for G on P with length sl(S) ≤ T?

SCHED(G, P) is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 7 / 38

NP-completeness

G = (V, E, w, c)

P, a parallel system
SCHED(G, P) is the associated decision problem

I Is there a schedule S for G on P with length sl(S) ≤ T?

SCHED(G, P) is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 7 / 38

Proof

1 It is argued that SCHED belongs to NP

2 3-PARTITION is NP-complete in the strong sense
3 By reducing 3-PARTITION in polynomial time to SCHED, it’s shown that

SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 8 / 38

Proof

1 It is argued that SCHED belongs to NP
2 3-PARTITION is NP-complete in the strong sense

3 By reducing 3-PARTITION in polynomial time to SCHED, it’s shown that
SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 8 / 38

Proof

1 It is argued that SCHED belongs to NP
2 3-PARTITION is NP-complete in the strong sense
3 By reducing 3-PARTITION in polynomial time to SCHED, it’s shown that

SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 8 / 38

SCHED ∈ NP

For any S from SCHED(G, P)

It can be verified in polynomial time whether S is feasible

and sl(S) ≤ T

Hence, SCHED(G, P) ∈ NP

Jait Dixit Better Task Scheduling 21.05.2014 9 / 38

SCHED ∈ NP

For any S from SCHED(G, P)

It can be verified in polynomial time whether S is feasible

and sl(S) ≤ T

Hence, SCHED(G, P) ∈ NP

Jait Dixit Better Task Scheduling 21.05.2014 9 / 38

SCHED ∈ NP

For any S from SCHED(G, P)

It can be verified in polynomial time whether S is feasible

and sl(S) ≤ T

Hence, SCHED(G, P) ∈ NP

Jait Dixit Better Task Scheduling 21.05.2014 9 / 38

SCHED ∈ NP

For any S from SCHED(G, P)

It can be verified in polynomial time whether S is feasible

and sl(S) ≤ T

Hence, SCHED(G, P) ∈ NP

Jait Dixit Better Task Scheduling 21.05.2014 9 / 38

3-PARTITION

3-PARTITION:

I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB
I with B

4 < ai < B
2

I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

3-PARTITION:
I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB
I with B

4 < ai < B
2

I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

3-PARTITION:
I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB

I with B
4 < ai < B

2
I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

3-PARTITION:
I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB
I with B

4 < ai < B
2

I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

3-PARTITION:
I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB
I with B

4 < ai < B
2

I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

3-PARTITION:
I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB
I with B

4 < ai < B
2

I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

3-PARTITION:
I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB
I with B

4 < ai < B
2

I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

3-PARTITION:
I a set A of 3m positive integers ai

I a positive integer bound B s.t.
∑3m

i=1 ai = mB
I with B

4 < ai < B
2

I Can A be partitioned into m disjoint sets A1, . . . , Am

I s.t. each Ai is a triplet whose sum is B?

Strongly NP-complete

Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

Construction

n0

n1 n2 ni n3m

a1 a2 ai a3m

1/2
1/2 1/2

1/2

Constructing SCHED from arbitrary instance of 3-PARTITION

|V| = 3m + 1 nodes, |P| = m and T = B + 1.5

Jait Dixit Better Task Scheduling 21.05.2014 11 / 38

Construction

n0

n1 n2 ni n3m

a1 a2 ai a3m

1/2
1/2 1/2

1/2

Constructing SCHED from arbitrary instance of 3-PARTITION

|V| = 3m + 1 nodes, |P| = m and T = B + 1.5

Jait Dixit Better Task Scheduling 21.05.2014 11 / 38

Construction

n0

n1 n2 ni n3m

a1 a2 ai a3m

1/2
1/2 1/2

1/2

Constructing SCHED from arbitrary instance of 3-PARTITION

|V| = 3m + 1 nodes, |P| = m and T = B + 1.5

Jait Dixit Better Task Scheduling 21.05.2014 11 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction

I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION

I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution

I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION

I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION

I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION

I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S)?

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION

I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION

I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION

I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION
I An instance of SCHED which admits a solution

I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION
I An instance of SCHED which admits a solution
I Each processor can spend at most B time units

I
∑3m

i=1 w(ni) = mB and |P| = m
I Due to w(ni) = ai , B

4 < ai < B
2

I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION
I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION
I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2

I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION
I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Proving Reduction

Input ∈ 3-PARTITION → Input ∈ Construction
I A, an arbitrary instance of 3-PARTITION which admits a solution
I n0 is allocated to P1

I Remaining triplets are allocated to P1, . . . , Pm

I sl(S) = B + 1.5 ≤ T .

Input ∈ Construction → Input ∈ 3-PARTITION
I An instance of SCHED which admits a solution
I Each processor can spend at most B time units
I

∑3m
i=1 w(ni) = mB and |P| = m

I Due to w(ni) = ai , B
4 < ai < B

2
I only 3 nodes can have the exact execution time of B

3-PARTITON reduces to SCHED ⇒ SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 / 38

Pop Quiz #1

Unlimited processors

Complexity
SCHED(G, P∞) is NP-complete

Jait Dixit Better Task Scheduling 21.05.2014 13 / 38

Pop Quiz #1

Unlimited processors

Complexity
SCHED(G, P∞) is NP-complete

Jait Dixit Better Task Scheduling 21.05.2014 13 / 38

Pop Quiz #2

No communication costs

Complexity
SCHED-C0(G, Pc0) is NP-complete

Jait Dixit Better Task Scheduling 21.05.2014 14 / 38

Pop Quiz #2

No communication costs

Complexity
SCHED-C0(G, Pc0) is NP-complete

Jait Dixit Better Task Scheduling 21.05.2014 14 / 38

Pop Quiz #3

No communication costs

Unlimited processors

Complexity
SCHED-C0(G, Pc0) is solvable in polynomial time

Jait Dixit Better Task Scheduling 21.05.2014 15 / 38

Pop Quiz #3

No communication costs

Unlimited processors

Complexity
SCHED-C0(G, Pc0) is solvable in polynomial time

Jait Dixit Better Task Scheduling 21.05.2014 15 / 38

Heterogeneous Systems

Diverse set of processors

Interconnected with a high-speed network
Can mean:

1 Same functionality, different speeds
2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

Diverse set of processors

Interconnected with a high-speed network

Can mean:

1 Same functionality, different speeds
2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

Diverse set of processors

Interconnected with a high-speed network
Can mean:

1 Same functionality, different speeds
2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

Diverse set of processors

Interconnected with a high-speed network
Can mean:

1 Same functionality, different speeds

2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

Diverse set of processors

Interconnected with a high-speed network
Can mean:

1 Same functionality, different speeds
2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems
Diverse set of processors
Interconnected with a high-speed network
Can mean:

1 Same functionality, different speeds
2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

Diverse set of processors

Interconnected with a high-speed network
Can mean:

1 Same functionality, different speeds
2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

Diverse set of processors

Interconnected with a high-speed network
Can mean:

1 Same functionality, different speeds
2 Different functional capabilities

w replaced by ω : V×P→ Q+

NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Algorithms - Motivation

TS is NP-complete in most cases

Intractable even for moderate-sized input
What can we do?

I Heuristics!
I and/or other optimization techniques

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Algorithms - Motivation

TS is NP-complete in most cases

Intractable even for moderate-sized input

What can we do?

I Heuristics!
I and/or other optimization techniques

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Algorithms - Motivation

TS is NP-complete in most cases

Intractable even for moderate-sized input
What can we do?

I Heuristics!
I and/or other optimization techniques

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Algorithms - Motivation

TS is NP-complete in most cases

Intractable even for moderate-sized input
What can we do?

I Heuristics!
I and/or other optimization techniques

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Algorithms - Motivation

TS is NP-complete in most cases

Intractable even for moderate-sized input
What can we do?

I Heuristics!

I and/or other optimization techniques

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Algorithms - Motivation

TS is NP-complete in most cases

Intractable even for moderate-sized input
What can we do?

I Heuristics!
I and/or other optimization techniques

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Taxonomy

Static Task-Scheduling Algorithms

Heuristic Based Guided Random Search Based

List Scheduling Heuristics

Clustering Heuristics

Task Duplication Heuristics

Jait Dixit Better Task Scheduling 21.05.2014 18 / 38

Taxonomy

Static Task-Scheduling Algorithms

Heuristic Based Guided Random Search Based

List Scheduling Heuristics

Clustering Heuristics

Task Duplication Heuristics

Jait Dixit Better Task Scheduling 21.05.2014 18 / 38

Taxonomy

Static Task-Scheduling Algorithms

Heuristic Based Guided Random Search Based

List Scheduling Heuristics

Clustering Heuristics

Task Duplication Heuristics

Jait Dixit Better Task Scheduling 21.05.2014 18 / 38

Taxonomy

Static Task-Scheduling Algorithms

Heuristic Based Guided Random Search Based

List Scheduling Heuristics

Clustering Heuristics

Task Duplication Heuristics

Jait Dixit Better Task Scheduling 21.05.2014 18 / 38

Taxonomy

Static Task-Scheduling Algorithms

Heuristic Based Guided Random Search Based

List Scheduling Heuristics

Clustering Heuristics

Task Duplication Heuristics

Jait Dixit Better Task Scheduling 21.05.2014 18 / 38

List Scheduling - Motivation

No FPTAS for TS

PTAS in restricted cases

I 2
√

m-approximation for restricted heterogeneous systems
I 2-approximation with greedy approach

HEFT & CPOP

Jait Dixit Better Task Scheduling 21.05.2014 19 / 38

List Scheduling - Motivation

No FPTAS for TS
PTAS in restricted cases

I 2
√

m-approximation for restricted heterogeneous systems
I 2-approximation with greedy approach

HEFT & CPOP

Jait Dixit Better Task Scheduling 21.05.2014 19 / 38

List Scheduling - Motivation

No FPTAS for TS
PTAS in restricted cases

I 2
√

m-approximation for restricted heterogeneous systems

I 2-approximation with greedy approach

HEFT & CPOP

Jait Dixit Better Task Scheduling 21.05.2014 19 / 38

List Scheduling - Motivation

No FPTAS for TS
PTAS in restricted cases

I 2
√

m-approximation for restricted heterogeneous systems
I 2-approximation with greedy approach

HEFT & CPOP

Jait Dixit Better Task Scheduling 21.05.2014 19 / 38

List Scheduling - Motivation

No FPTAS for TS
PTAS in restricted cases

I 2
√

m-approximation for restricted heterogeneous systems
I 2-approximation with greedy approach

HEFT & CPOP

Jait Dixit Better Task Scheduling 21.05.2014 19 / 38

List Scheduling Heuristics

Class/category of algorithms

Two phase heuristic:

I task prioritization
I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20 / 38

List Scheduling Heuristics

Class/category of algorithms
Two phase heuristic:

I task prioritization
I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20 / 38

List Scheduling Heuristics

Class/category of algorithms
Two phase heuristic:

I task prioritization

I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20 / 38

List Scheduling Heuristics

Class/category of algorithms
Two phase heuristic:

I task prioritization
I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20 / 38

List Scheduling Heuristics

Class/category of algorithms
Two phase heuristic:

I task prioritization
I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20 / 38

List Scheduling Heuristics

Class/category of algorithms
Two phase heuristic:

I task prioritization
I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20 / 38

List Scheduling Heuristics

Class/category of algorithms
Two phase heuristic:

I task prioritization
I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20 / 38

List Scheduling Heuristics

Class/category of algorithms
Two phase heuristic:

I task prioritization
I processor selection/allocation

Heuristic skeleton

Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20 / 38

Additional Definitions

ranku

Cost after and including task

Defined recursively

rankd

Cost up to task

Defined recursively

a

b c d e

f g

h

14

13 11 13 12

7 5

21

18
12 9

11

11 15
27 23

17 13

Jait Dixit Better Task Scheduling 21.05.2014 21 / 38

Additional Definitions

ranku

Cost after and including task

Defined recursively

rankd

Cost up to task

Defined recursively

a

b c d e

f g

h

14

13 11 13 12

7 5

21

18
12 9

11

11 15
27 23

17 13

Jait Dixit Better Task Scheduling 21.05.2014 21 / 38

HEFT & CPOP

Implement list-scheduling heuristics
HEFT

I Heterogeneous Earliest Finish Time
I Implements an insertion-based policy

CPOP
I Critical-Path-on-Processor
I Tries to speed up the execution of tasks on the critical path

Jait Dixit Better Task Scheduling 21.05.2014 22 / 38

HEFT

2 phases

I task prioritization
I processor selection/allocation

Task prioritiziation:

I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization

I processor selection/allocation

Task prioritiziation:

I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:

I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:

I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:
I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:
I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:
I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly

I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:
I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:
I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:

I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:
I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:
I Insertion-based policy

I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

HEFT

2 phases
I task prioritization
I processor selection/allocation

Task prioritiziation:
I Priority of task = ranku

I Sorting tasks by decreasing order of ranku

I Tie-breaking is done randomly
I Topological order

Processor selection:
I Insertion-based policy
I Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 / 38

CPOP

2 phases

I task prioritization
I processor selection/allocation

Uses a different metric for priorities

Different strategy when assigning tasks to processors

Jait Dixit Better Task Scheduling 21.05.2014 24 / 38

CPOP

2 phases
I task prioritization

I processor selection/allocation

Uses a different metric for priorities

Different strategy when assigning tasks to processors

Jait Dixit Better Task Scheduling 21.05.2014 24 / 38

CPOP

2 phases
I task prioritization
I processor selection/allocation

Uses a different metric for priorities

Different strategy when assigning tasks to processors

Jait Dixit Better Task Scheduling 21.05.2014 24 / 38

CPOP

2 phases
I task prioritization
I processor selection/allocation

Uses a different metric for priorities

Different strategy when assigning tasks to processors

Jait Dixit Better Task Scheduling 21.05.2014 24 / 38

CPOP

2 phases
I task prioritization
I processor selection/allocation

Uses a different metric for priorities

Different strategy when assigning tasks to processors

Jait Dixit Better Task Scheduling 21.05.2014 24 / 38

CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:

1 n0 is selected and marked as critical path task
2 Next critical path task, immediate successor with highest priority
3 Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 / 38

CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:

1 n0 is selected and marked as critical path task
2 Next critical path task, immediate successor with highest priority
3 Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 / 38

CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:

1 n0 is selected and marked as critical path task
2 Next critical path task, immediate successor with highest priority
3 Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 / 38

CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:

1 n0 is selected and marked as critical path task
2 Next critical path task, immediate successor with highest priority
3 Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 / 38

CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:
1 n0 is selected and marked as critical path task

2 Next critical path task, immediate successor with highest priority
3 Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 / 38

CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:
1 n0 is selected and marked as critical path task
2 Next critical path task, immediate successor with highest priority

3 Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 / 38

CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:
1 n0 is selected and marked as critical path task
2 Next critical path task, immediate successor with highest priority
3 Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 / 38

CPOP - Task Prioritization

Priority of task = ranku + rankd

Uses critical path of the given task graph

priority(n0) = |CP|

Algorithm for finding CP:
1 n0 is selected and marked as critical path task
2 Next critical path task, immediate successor with highest priority
3 Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 / 38

CPOP - Processor Allocation

Select a pCP which minimizes the cummulative computation cost on the
critical path

If a selected task is on the critical path, schedule on pCP

Else assign it to a processor which minimizes its EFT

Both cases consider an insertion-based scheduling policy

Jait Dixit Better Task Scheduling 21.05.2014 26 / 38

CPOP - Processor Allocation

Select a pCP which minimizes the cummulative computation cost on the
critical path

If a selected task is on the critical path, schedule on pCP

Else assign it to a processor which minimizes its EFT

Both cases consider an insertion-based scheduling policy

Jait Dixit Better Task Scheduling 21.05.2014 26 / 38

CPOP - Processor Allocation

Select a pCP which minimizes the cummulative computation cost on the
critical path

If a selected task is on the critical path, schedule on pCP

Else assign it to a processor which minimizes its EFT

Both cases consider an insertion-based scheduling policy

Jait Dixit Better Task Scheduling 21.05.2014 26 / 38

CPOP - Processor Allocation

Select a pCP which minimizes the cummulative computation cost on the
critical path

If a selected task is on the critical path, schedule on pCP

Else assign it to a processor which minimizes its EFT

Both cases consider an insertion-based scheduling policy

Jait Dixit Better Task Scheduling 21.05.2014 26 / 38

Experiments

Algorithms tested on two sets of graphs:

I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs

I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications

I Gaussian Elimination
I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs

I Graphs representing real world problems

Randomly generated application graphs

I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications

I Gaussian Elimination
I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs

I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications

I Gaussian Elimination
I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs

I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications

I Gaussian Elimination
I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs
I Parametrized random graph generator

I About 56K DAGs.

Task graphs of real world applications

I Gaussian Elimination
I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs
I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications

I Gaussian Elimination
I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs
I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications

I Gaussian Elimination
I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs
I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications
I Gaussian Elimination

I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs
I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications
I Gaussian Elimination
I FFT

I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Experiments

Algorithms tested on two sets of graphs:
I Randomly generated application graphs
I Graphs representing real world problems

Randomly generated application graphs
I Parametrized random graph generator
I About 56K DAGs.

Task graphs of real world applications
I Gaussian Elimination
I FFT
I Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 / 38

Competing Algorithms

Dynamic-Level Scheduling (DLS)

Mapping Heuristic (MH)

Levelized-Min Time (LMT)

Jait Dixit Better Task Scheduling 21.05.2014 28 / 38

Competing Algorithms

Dynamic-Level Scheduling (DLS)

Mapping Heuristic (MH)

Levelized-Min Time (LMT)

Jait Dixit Better Task Scheduling 21.05.2014 28 / 38

Competing Algorithms

Dynamic-Level Scheduling (DLS)

Mapping Heuristic (MH)

Levelized-Min Time (LMT)

Jait Dixit Better Task Scheduling 21.05.2014 28 / 38

Comparison Metrics

Schedule Length Ratio(SLR)
I SLR is a normalized schedule length for an algorithm
I The SLR value for an algorithm is given by:

SLR = makespan∑
ni∈CPmin

minpj∈Q wij

Run time

Jait Dixit Better Task Scheduling 21.05.2014 29 / 38

Avg. SLR

Jait Dixit Better Task Scheduling 21.05.2014 30 / 38

Avg. Runtime

Jait Dixit Better Task Scheduling 21.05.2014 31 / 38

Comparison Metrics (contd.)

Speedup
I The speedup value for a given graph is computed by dividing the sequential

execution time by the parallel execution time
I It’s value is given by:

Speedup =
∑

ni∈CPmin
minpj∈Q wij

makespan

Efficiency
I Efficiency is calculated by dividing the speedup by the number of processors

Jait Dixit Better Task Scheduling 21.05.2014 32 / 38

Avg. Speedup

Jait Dixit Better Task Scheduling 21.05.2014 33 / 38

Efficiency - Gaussian Elimination

Jait Dixit Better Task Scheduling 21.05.2014 34 / 38

Result Summary
HEFT pwns everyone
CPOP isn’t far behind
Alternative task prioritizing
and processor selection policies for HEFT

Jait Dixit Better Task Scheduling 21.05.2014 35 / 38

Conclusion

Static TS is NP-complete in a strong sense

Heterogeneous systems are important, TS on them more so

Two list heuristic based algorithms: CPOP and HEFT

Significantly outperform their competitors

Jait Dixit Better Task Scheduling 21.05.2014 36 / 38

Questions?

Jait Dixit Better Task Scheduling 21.05.2014 37 / 38

Bibliography

Performance-Effective and Low-Complexity Task Scheduling for
Heterogeneous Systems; H. Topcuoglu, S. Hariri and M. Wu

Task Scheduling for Parallel Systems; O. Sinnen

Approximation Algorithms for Scheduling Unrelated Parallel Machines; J.
Lenstra, D. Shmoys and E. Tardos

Algorithms for Scheduling Tasks on Unrelated Processors; E. Davis, J. Jaffe

Jait Dixit Better Task Scheduling 21.05.2014 38 / 38

	Task Scheduling
	Classic Model
	Theoritical Background
	Heterogeneity
	Algorithms

	HEFT & CPOP
	Heterogeneous Earliest Finish Time (HEFT)
	Critical-Path-on-Processor (CPOP)
	Experiments

	Conclusion
	Appendix

