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Basics

o Static task scheduling.
@ Everything is known a priori.

@ Problem:

> Input: number of tasks and a set of processors

» QOutput: schedule with minimal overall completion time
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Tasks

e DAG
o G=(V,E,w,c)
o Edges show precedence relation

@ Entry and exit task
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Processors

@ Set of processors

@ Homogeneous

@ Non-preemptive

@ Cost-free local communication
@ Communication subsystem

@ Concurrent communication

o Fully connected

o Parallel system, P
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Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

> allocation of tasks in G to a processor in P

» defining a start time for the node on the respective processor
@ Schedule is feasible only if:

> precedence constraints in G are satisified

> non-preemption is enforced
o Feasibility of schedule can be verified in polynomial time
e makespan = si(S)

> Last finishing time of the given jobs
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NP-completeness

o G=(V,E, w,c)
o P, a parallel system

e SCHED(G,P) is the associated decision problem
> Is there a schedule S for G on P with length si(S) < T7?

e SCHED(G,P) is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 7/38



Proof

@ It is argued that SCHED belongs to NP

Jait Dixit Better Task Scheduling



Proof

@ It is argued that SCHED belongs to NP
@ 3-PARTITION is NP-complete in the strong sense

Jait Dixit Better Task Scheduling 21.05.2014 8 /38



Proof

@ It is argued that SCHED belongs to NP
@ 3-PARTITION is NP-complete in the strong sense

@ By reducing 3-PARTITION in polynomial time to SCHED, it's shown that
SCHED is strongly NP-hard
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SCHED € NP

For any § from SCHED(G, P)

@ It can be verified in polynomial time whether S is feasible
and si(S) < T

Hence, SCHED(G, P) € NP
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3-PARTITION

@ 3-PARTITION:

> aset A of 3m positive integers a;

> a positive integer bound B s.t. Zf:l a; = mB

» with B <a; < B

» Can A be partitioned into m disjoint sets A1,..., A,
» s.t. each A; is a triplet whose sum is B?

@ Strongly NP-complete
@ Proved by Garey & Johnson, 1975
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Construction

@ Constructing SCHED from arbitrary instance of 3-PARTITION
e |[V|=3m+1nodes, |Pl=mand T'=B+1.5
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@ Input € 3-PARTITION — Input € Construction
> A, an arbitrary instance of 3-PARTITION which admits a solution
> ng is allocated to P,
» Remaining triplets are allocated to Pi,..., Py,
» sI(S)=B+15< T.
@ Input € Construction — Input € 3-PARTITION
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Proving Reduction

@ Input € 3-PARTITION — Input € Construction
> A, an arbitrary instance of 3-PARTITION which admits a solution
> ng is allocated to P,
» Remaining triplets are allocated to Pi,..., Py,
» sI(S)=B+15< T.
@ Input € Construction — Input € 3-PARTITION
» An instance of SCHED which admits a solution
» Each processor can spend at most B time units

> Z3m w(n;) = mB and |P| =m

i=1

v

Due to w(n;) = a;, £ < a; < &

only 3 nodes can have the exact execution time of B

v

@ 3-PARTITON reduces to SCHED = SCHED is strongly NP-hard
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Pop Quiz #3

@ No communication costs

@ Unlimited processors

Complexity
SCHED-CO(G, P ) is solvable in polynomial time J
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Heterogeneous Systems

@ Diverse set of processors
@ Interconnected with a high-speed network

@ Can mean:

© Same functionality, different speeds
@ Different functional capabilities

@ wreplaced by w: V x P — QF
NP-hard
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Algorithms - Motivation

@ TS is NP-complete in most cases

@ Intractable even for moderate-sized input

@ What can we do?

I CAN TEACH
YOU TO MANAGE

YOUR TIME MORE
EFFICIENTLY.

www.dilbert.com  scottadams@sol.com

Jait Dixit Better Task Scheduling

PUT ALL OF YOUR
HIGH PRIORITIES
ON ONE LIST AND
YOUR LOW
PRIORITIES
ON ANOTHER.

THEN DO EVERYTHING
ON BOTH LISTS EVEN
IF IT KILLS YOU,

OTHERWISE YOU'RE
A FREAKIN'

145 |61 ©2001 United Feature Syndicate. Inc.
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Algorithms - Motivation

@ TS is NP-complete in most cases
@ Intractable even for moderate-sized input

@ What can we do?

» Heuristics!

» and/or other optimization techniques
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List Scheduling - Motivation

@ No FPTAS for TS
@ PTAS in restricted cases

> 2./m-approximation for restricted heterogeneous systems

> 2-approximation with greedy approach

e HEFT & CPOP
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List Scheduling Heuristics

o Class/category of algorithms
@ Two phase heuristic:

> task prioritization

» processor selection/allocation

Heuristic skeleton

@ Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases
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Additional Definitions

e rank,

Cost after and including task

@ Defined recursively

@ ranky

Cost up to task

@ Defined recursively
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HEFT & CPOP

@ Implement list-scheduling heuristics
o HEFT

» Heterogeneous Earliest Finish Time

> Implements an insertion-based policy
e CPOP

» Critical-Path-on-Processor

» Tries to speed up the execution of tasks on the critical path
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HEFT

@ 2 phases
> task prioritization
> processor selection/allocation
@ Task prioritiziation:
> Priority of task = rank,
> Sorting tasks by decreasing order of rank,
» Tie-breaking is done randomly
» Topological order
@ Processor selection:

> Insertion-based policy

> Assign task to processor which minimizes EFT
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CPOP

@ 2 phases

> task prioritization

> processor selection/allocation
@ Uses a different metric for priorities

o Different strategy when assigning tasks to processors
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CPOP - Task Prioritization

Priority of task = rank, + ranky

@ Uses critical path of the given task graph

priority(ng) = |CP]
Algorithm for finding CP:

@ np is selected and marked as critical path task

@ Next critical path task, immediate successor with highest priority

Jait Dixit Better Task Scheduling 21.05.2014 25 /38



CPOP - Task Prioritization

@ Priority of task = rank, + rankg

@ Uses critical path of the given task graph
@ priority(ng) = |CP|

@ Algorithm for finding CP:

@ np is selected and marked as critical path task
@ Next critical path task, immediate successor with highest priority
@ Until exit node is reached

Jait Dixit Better Task Scheduling 21.05.2014 25 /38



CPOP - Task Prioritization

@ Priority of task = rank, + rankg

@ Uses critical path of the given task graph
@ priority(ng) = |CP|

Algorithm for finding CP:

@ np is selected and marked as critical path task

@ Next critical path task, immediate successor with highest priority
© Until exit node is reached

Implemented using a priority queue
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CPOP - Processor Allocation

@ Select a pcp which minimizes the cummulative computation cost on the
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CPOP - Processor Allocation

@ Select a pcp which minimizes the cummulative computation cost on the
critical path

o If a selected task is on the critical path, schedule on pcp
@ Else assign it to a processor which minimizes its EFT

@ Both cases consider an insertion-based scheduling policy
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Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

@ Randomly generated application graphs

» Parametrized random graph generator
> About 56K DAGs.

@ Task graphs of real world applications

» Gaussian Elimination
» FFT

» Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 /38



Competing Algorithms

@ Dynamic-Level Scheduling (DLS)

Jait Dixit Better Task Scheduling



Competing Algorithms

@ Dynamic-Level Scheduling (DLS)
e Mapping Heuristic (MH)

Jait Dixit Better Task Scheduling



Competing Algorithms

@ Dynamic-Level Scheduling (DLS)
e Mapping Heuristic (MH)
o Levelized-Min Time (LMT)
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Comparison Metrics

o Schedule Length Ratio(SLR)

» SLR is a normalized schedule length for an algorithm

» The SLR value for an algorithm is given by:

makespan

SLR = -
Zni € CPypy, Mp; € Q Wij

@ Run time
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Avg. Runtime
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Comparison Metrics (contd.)

@ Speedup
» The speedup value for a given graph is computed by dividing the sequential
execution time by the parallel execution time

> It's value is given by:

Z”i € CPpjin, mlnpj €Q wz]

Speedup =
P P makespan

o Efficiency

» Efficiency is calculated by dividing the speedup by the number of processors
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Efficiency - Gaussian Elimination
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Result Summary

HEFT pwns everyone
CPOP isn't far behind
Alternative task prioritizing

and processor selection policies for HEFT
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Conclusion

o Static TS is NP-complete in a strong sense
o Heterogeneous systems are important, TS on them more so
@ Two list heuristic based algorithms: CPOP and HEFT

@ Significantly outperform their competitors
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Questions?
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