Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Systems
H. Topcuoglu, S. Hariri, M. Wu

Jait Dixit

21.05.2014

Jait Dixit Better Task Scheduling

Outline

@ Task Scheduling
o Classic Model
@ Theoritical Background
@ Heterogeneity
@ Algorithms

@ HEFT & CPOP
@ Heterogeneous Earliest Finish Time (HEFT)
@ Critical-Path-on-Processor (CPOP)
o Experiments

© Conclusion

Jait Dixit Better Task Scheduling 21.05.2014 2/38

Basics

o Static task scheduling.

Jait Dixit Better Task Scheduling

Basics

o Static task scheduling.

@ Everything is known a priori.

Jait Dixit Better Task Scheduling

Basics

o Static task scheduling.
@ Everything is known a priori.

@ Problem:

Jait Dixit Better Task Scheduling 21.05.2014 3/38

Basics

o Static task scheduling.
@ Everything is known a priori.

@ Problem:

> Input: number of tasks and a set of processors

Jait Dixit Better Task Scheduling 21.05.2014 3/38

Basics

o Static task scheduling.
@ Everything is known a priori.

@ Problem:

> Input: number of tasks and a set of processors

» QOutput: schedule with minimal overall completion time

Jait Dixit Better Task Scheduling 21.05.2014 3/38

Tasks

e DAG

Jait Dixit Better Task Scheduling

Tasks

o DAG
o G=(V,E)

Better Task Scheduling 21.05.2014 4 /38

Tasks

e DAG
o G=(V,E,w)

Better Task Scheduling 21.05.2014 4 /38

Tasks

e DAG
o G=(V,E,w,c)

Jait Dixit Better Task Scheduling 21.05.2014 4 /38

Tasks

e DAG
o G=(V,E,w,c)

o Edges show precedence relation

Jait Dixit Better Task Scheduling 21.05.2014 4 /38

Tasks

e DAG
o G=(V,E,w,c)
o Edges show precedence relation

@ Entry and exit task

Jait Dixit Better Task Scheduling 21.05.2014 4 /38

Processors

@ Set of processors

Jait Dixit Better Task Scheduling

Processors

@ Set of processors

@ Homogeneous

Jait Dixit Better Task Scheduling

Processors

@ Set of processors
@ Homogeneous

@ Non-preemptive

Jait Dixit Better Task Scheduling

Processors

@ Set of processors
@ Homogeneous
@ Non-preemptive

@ Cost-free local communication

Jait Dixit Better Task Scheduling 21.05.2014 5 /38

Processors

@ Set of processors
@ Homogeneous
@ Non-preemptive

Cost-free local communication

@ Communication subsystem

Jait Dixit Better Task Scheduling 21.05.2014 5 /38

Processors

@ Set of processors
@ Homogeneous
@ Non-preemptive

Cost-free local communication

@ Communication subsystem

@ Concurrent communication

Jait Dixit Better Task Scheduling 21.05.2014 5 /38

Processors

@ Set of processors
@ Homogeneous
@ Non-preemptive

Cost-free local communication

@ Communication subsystem

@ Concurrent communication

Fully connected

Jait Dixit Better Task Scheduling 21.05.2014 5 /38

Processors

@ Set of processors

@ Homogeneous

@ Non-preemptive

@ Cost-free local communication
@ Communication subsystem

@ Concurrent communication

o Fully connected

o Parallel system, P

Jait Dixit Better Task Scheduling 21.05.2014 5 /38

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

Jait Dixit Better Task Scheduling

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

> allocation of tasks in G to a processor in P

Jait Dixit Better Task Scheduling

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:
> allocation of tasks in G to a processor in P

> defining a start time for the node on the respective processor

Jait Dixit Better Task Scheduling

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

> allocation of tasks in G to a processor in P

» defining a start time for the node on the respective processor

@ Schedule is feasible only if:

Jait Dixit Better Task Scheduling 21.05.2014 6 /38

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

> allocation of tasks in G to a processor in P

» defining a start time for the node on the respective processor
@ Schedule is feasible only if:

> precedence constraints in G are satisified

Jait Dixit Better Task Scheduling 21.05.2014 6 /38

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

> allocation of tasks in G to a processor in P

» defining a start time for the node on the respective processor
@ Schedule is feasible only if:

> precedence constraints in G are satisified

> non-preemption is enforced

Jait Dixit Better Task Scheduling 21.05.2014 6 /38

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

> allocation of tasks in G to a processor in P

» defining a start time for the node on the respective processor
@ Schedule is feasible only if:

> precedence constraints in G are satisified

> non-preemption is enforced

o Feasibility of schedule can be verified in polynomial time

Jait Dixit Better Task Scheduling 21.05.2014 6 /38

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

> allocation of tasks in G to a processor in P

» defining a start time for the node on the respective processor
@ Schedule is feasible only if:

> precedence constraints in G are satisified

> non-preemption is enforced
o Feasibility of schedule can be verified in polynomial time

e makespan = si(S)

Jait Dixit Better Task Scheduling 21.05.2014 6 /38

Schedule

@ A schedule S for task graph G = (V,E, w, ¢) on a finite set P of processors:

> allocation of tasks in G to a processor in P

» defining a start time for the node on the respective processor
@ Schedule is feasible only if:

> precedence constraints in G are satisified

> non-preemption is enforced
o Feasibility of schedule can be verified in polynomial time
e makespan = si(S)

> Last finishing time of the given jobs

Jait Dixit Better Task Scheduling 21.05.2014 6 /38

NP-completeness

e G=(V,E,uw,c)

Jait Dixit Better Task Scheduling

NP-completeness

e G=(V,E,uw,c)

o P, a parallel system

Jait Dixit Better Task Scheduling

NP-completeness

o G=(V,E, w,c)
o P, a parallel system

e SCHED(G,P) is the associated decision problem

Jait Dixit Better Task Scheduling 21.05.2014 7/38

NP-completeness

o G=(V,E, w,c)
o P, a parallel system

e SCHED(G,P) is the associated decision problem
> Is there a schedule S for G on P with length si(S) < T7?

Jait Dixit Better Task Scheduling 21.05.2014 7/38

NP-completeness

o G=(V,E, w,c)
o P, a parallel system

e SCHED(G,P) is the associated decision problem
> Is there a schedule S for G on P with length si(S) < T7?

e SCHED(G,P) is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 7/38

Proof

@ It is argued that SCHED belongs to NP

Jait Dixit Better Task Scheduling

Proof

@ It is argued that SCHED belongs to NP
@ 3-PARTITION is NP-complete in the strong sense

Jait Dixit Better Task Scheduling 21.05.2014 8 /38

Proof

@ It is argued that SCHED belongs to NP
@ 3-PARTITION is NP-complete in the strong sense

@ By reducing 3-PARTITION in polynomial time to SCHED, it's shown that
SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 8 /38

SCHED € NP

e For any S from SCHED(G, P)

Jait Dixit Better Task Scheduling

SCHED € NP

e For any S from SCHED(G, P)

@ It can be verified in polynomial time whether S is feasible

Jait Dixit Better Task Scheduling 21.05.2014 9/38

SCHED € NP

e For any S from SCHED(G, P)
@ It can be verified in polynomial time whether S is feasible

eand sl(S)< T

Jait Dixit Better Task Scheduling 21.05.2014 9/38

SCHED € NP

For any § from SCHED(G, P)

@ It can be verified in polynomial time whether S is feasible
and si(S) < T

Hence, SCHED(G, P) € NP

Jait Dixit Better Task Scheduling 21.05.2014 9/38

3-PARTITION

@ 3-PARTITION:

Jait Dixit Better Task Scheduling

3-PARTITION

@ 3-PARTITION:

> aset A of 3m positive integers a;

Jait Dixit Better Task Scheduling

3-PARTITION

@ 3-PARTITION:

> aset A of 3m positive integers a;

» a positive integer bound B s.t. Zf’:l a; = mB

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

@ 3-PARTITION:

> aset A of 3m positive integers a;

» a positive integer bound B s.t. Zf’:l a; = mB

» with B <a; < B

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

@ 3-PARTITION:

> aset A of 3m positive integers a;

» a positive integer bound B s.t. Zf’:l a; = mB

» with B <a; < B

» Can A be partitioned into m disjoint sets A1,..., A,

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

@ 3-PARTITION:

> aset A of 3m positive integers a;

» a positive integer bound B s.t. Zf’:l a; = mB

» with B <a; < B

» Can A be partitioned into m disjoint sets A1,..., A,

v

s.t. each A; is a triplet whose sum is B?

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

@ 3-PARTITION:

> aset A of 3m positive integers a;
3m

=1 ai = mB

> a positive integer bound B s.t.

» with B <a; < B

v

Can A be partitioned into m disjoint sets A1,..., A,

v

s.t. each A; is a triplet whose sum is B?

@ Strongly NP-complete

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

3-PARTITION

@ 3-PARTITION:

> aset A of 3m positive integers a;

> a positive integer bound B s.t. Zf:l a; = mB

» with B <a; < B

» Can A be partitioned into m disjoint sets A1,..., A,
» s.t. each A; is a triplet whose sum is B?

@ Strongly NP-complete
@ Proved by Garey & Johnson, 1975

Jait Dixit Better Task Scheduling 21.05.2014 10 / 38

Construction

Jait Dixit Better Task Scheduling 21.05.2014 11 /38

Construction

@ Constructing SCHED from arbitrary instance of 3-PARTITION

Jait Dixit Better Task Scheduling 21.05.2014 11 /38

Construction

@ Constructing SCHED from arbitrary instance of 3-PARTITION
e |[V|=3m+1nodes, |Pl=mand T'=B+1.5

Jait Dixit Better Task Scheduling 21.05.2014 11 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction

Jait Dixit Better Task Scheduling

Proving Reduction

@ Input € 3-PARTITION — Input € Construction
» A, an arbitrary instance of 3-PARTITION which admits a solution

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction

» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction

» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py

» Remaining triplets are allocated to Pi,..., Py,

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction

» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py

» Remaining triplets are allocated to Pi,..., Py,
> sl(8)?

21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction
» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py

» Remaining triplets are allocated to Pi,..., Py,
» sl(S)=B+15< T.

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction

» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py
» Remaining triplets are allocated to Pi,..., Py,

> si(S)=B+15< T.
@ Input € Construction — Input € 3-PARTITION

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction

» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py
» Remaining triplets are allocated to Pi,..., Py,
» sI(S)=B+15< T.
@ Input € Construction — Input € 3-PARTITION

» An instance of SCHED which admits a solution

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction
» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py
> Remaining triplets are allocated to Pi,..., Pp
» sI(S)=B+15< T.
@ Input € Construction — Input € 3-PARTITION

» An instance of SCHED which admits a solution

» Each processor can spend at most B time units

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction
» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py
» Remaining triplets are allocated to Pi,..., Py,
» SIS)=B+15<T.
@ Input € Construction — Input € 3-PARTITION
» An instance of SCHED which admits a solution

» Each processor can spend at most B time units
> Zf’:l w(n;) = mB and |P| =m

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction
» A, an arbitrary instance of 3-PARTITION which admits a solution
» 1y is allocated to Py
» Remaining triplets are allocated to Pi,..., Py,
» SIS)=B+15<T.
@ Input € Construction — Input € 3-PARTITION
» An instance of SCHED which admits a solution
» Each processor can spend at most B time units
> Zf’;nl w(n;) = mB and |P| =m

» Dueto w(n:) =a;, £ <a; <2

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction
> A, an arbitrary instance of 3-PARTITION which admits a solution
> ng is allocated to P,
» Remaining triplets are allocated to Pi,..., Py,
» sI(S)=B+15< T.
@ Input € Construction — Input € 3-PARTITION
» An instance of SCHED which admits a solution
» Each processor can spend at most B time units

> ZBW w(n;) = mB and |P| =m

i=1

v

Due to w(n;) = a;, £ < a; < &

only 3 nodes can have the exact execution time of B

v

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Proving Reduction

@ Input € 3-PARTITION — Input € Construction
> A, an arbitrary instance of 3-PARTITION which admits a solution
> ng is allocated to P,
» Remaining triplets are allocated to Pi,..., Py,
» sI(S)=B+15< T.
@ Input € Construction — Input € 3-PARTITION
» An instance of SCHED which admits a solution
» Each processor can spend at most B time units

> Z3m w(n;) = mB and |P| =m

i=1

v

Due to w(n;) = a;, £ < a; < &

only 3 nodes can have the exact execution time of B

v

@ 3-PARTITON reduces to SCHED = SCHED is strongly NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 12 /38

Pop Quiz #1

@ Unlimited processors

Jait Dixit Better Task Scheduling

Pop Quiz #1

@ Unlimited processors

Complexity
SCHED(G, P) is NP-complete J

Jait Dixit Better Task Scheduling

Pop Quiz #2

@ No communication costs

Jait Dixit Better Task Scheduling

Pop Quiz #2

@ No communication costs

Complexity
SCHED-CO(G, P o) is NP-complete J

Jait Dixit Better Task Scheduling

Pop Quiz #3

@ No communication costs

@ Unlimited processors

Jait Dixit Better Task Scheduling

Pop Quiz #3

@ No communication costs

@ Unlimited processors

Complexity
SCHED-CO(G, P) is solvable in polynomial time J

Jait Dixit Better Task Scheduling

Heterogeneous Systems

@ Diverse set of processors

Jait Dixit Better Task Scheduling

Heterogeneous Systems

@ Diverse set of processors

@ Interconnected with a high-speed network

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

@ Diverse set of processors
@ Interconnected with a high-speed network

@ Can mean:

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

@ Diverse set of processors
@ Interconnected with a high-speed network

@ Can mean:

© Same functionality, different speeds

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

@ Diverse set of processors
@ Interconnected with a high-speed network

@ Can mean:

© Same functionality, different speeds
@ Different functional capabilities

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

@ Diverse set of processors
@ Interconnected with a high-speed network
o Can mean:

© Same functionality, different speeds

@ Different functional capabilities

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

@ Diverse set of processors
@ Interconnected with a high-speed network

@ Can mean:

© Same functionality, different speeds
@ Different functional capabilities

@ wreplaced by w: V x P — QF

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Heterogeneous Systems

@ Diverse set of processors
@ Interconnected with a high-speed network

@ Can mean:

© Same functionality, different speeds
@ Different functional capabilities

@ wreplaced by w: V x P — QF
NP-hard

Jait Dixit Better Task Scheduling 21.05.2014 16 / 38

Algorithms - Motivation

@ TS is NP-complete in most cases

Jait Dixit Better Task Scheduling

Algorithms - Motivation

@ TS is NP-complete in most cases

@ Intractable even for moderate-sized input

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Algorithms - Motivation

@ TS is NP-complete in most cases
@ Intractable even for moderate-sized input

@ What can we do?

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Algorithms - Motivation

@ TS is NP-complete in most cases

@ Intractable even for moderate-sized input

@ What can we do?

I CAN TEACH
YOU TO MANAGE

YOUR TIME MORE
EFFICIENTLY.

www.dilbert.com scottadams@sol.com

Jait Dixit Better Task Scheduling

PUT ALL OF YOUR
HIGH PRIORITIES
ON ONE LIST AND
YOUR LOW
PRIORITIES
ON ANOTHER.

THEN DO EVERYTHING
ON BOTH LISTS EVEN
IF IT KILLS YOU,

OTHERWISE YOU'RE
A FREAKIN'

145 |61 ©2001 United Feature Syndicate. Inc.

21.05.2014

17 / 38

Algorithms - Motivation

@ TS is NP-complete in most cases
@ Intractable even for moderate-sized input

@ What can we do?

» Heuristics!

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Algorithms - Motivation

@ TS is NP-complete in most cases
@ Intractable even for moderate-sized input

@ What can we do?

» Heuristics!

» and/or other optimization techniques

Jait Dixit Better Task Scheduling 21.05.2014 17 / 38

Taxonomy

| Static Task-Scheduling Algorithms |

| Heuristic Based

| | Guided Random Search Based |

List Scheduling Heuristics |

| Task Duplication Heuristics

Clustering Heuristics |

Jait Dixit Better Task Scheduling

21.05.2014 18 / 38

Taxonomy

| Static Task-Scheduling Algorithms

Heuristic Based |

List Scheduling Heuristics | | Task Duplication Heuristics

| Clustering Heuristics |

Jait Dixit Better Task Scheduling

Taxonomy

| Static Task-Scheduling Algorithms |

Heuristic Based | | Guided Random Search Based |

List Scheduling Heuristics |

| Clustering Heuristics

Jait Dixit Better Task Scheduling

Taxonomy

| Static Task-Scheduling Algorithms |

Heuristic Based | | Guided Random Search Based |

List Scheduling Heuristics Task Duplication Heuristics

Jait Dixit Better Task Scheduling

Taxonomy

| Static Task-Scheduling Algorithms |

Heuristic Based | | Guided Random Search Based |

| Task Duplication Heuristics

Clustering Heuristics |

Jait Dixit Better Task Scheduling

List Scheduling - Motivation

@ No FPTAS for TS

Jait Dixit Better Task Scheduling

List Scheduling - Motivation

@ No FPTAS for TS

@ PTAS in restricted cases

Jait Dixit Better Task Scheduling

List Scheduling - Motivation

@ No FPTAS for TS
@ PTAS in restricted cases

> 2./m-approximation for restricted heterogeneous systems

Jait Dixit Better Task Scheduling 21.05.2014 19 / 38

List Scheduling - Motivation

@ No FPTAS for TS
@ PTAS in restricted cases

> 2./m-approximation for restricted heterogeneous systems

> 2-approximation with greedy approach

Jait Dixit Better Task Scheduling 21.05.2014 19 / 38

List Scheduling - Motivation

@ No FPTAS for TS
@ PTAS in restricted cases

> 2./m-approximation for restricted heterogeneous systems

> 2-approximation with greedy approach

e HEFT & CPOP

Jait Dixit Better Task Scheduling 21.05.2014 19 / 38

List Scheduling Heuristics

o Class/category of algorithms

Jait Dixit Better Task Scheduling

List Scheduling Heuristics

o Class/category of algorithms

@ Two phase heuristic:

Jait Dixit Better Task Scheduling

List Scheduling Heuristics

o Class/category of algorithms
@ Two phase heuristic:

> task prioritization

Jait Dixit Better Task Scheduling

List Scheduling Heuristics

o Class/category of algorithms
@ Two phase heuristic:

> task prioritization

» processor selection/allocation

Jait Dixit Better Task Scheduling 21.05.2014 20/ 38

List Scheduling Heuristics

o Class/category of algorithms
@ Two phase heuristic:

> task prioritization

» processor selection/allocation

@ Heuristic skeleton

Jait Dixit Better Task Scheduling 21.05.2014 20/ 38

List Scheduling Heuristics

o Class/category of algorithms
@ Two phase heuristic:

> task prioritization

» processor selection/allocation
@ Heuristic skeleton

@ Different method in each phase

Jait Dixit Better Task Scheduling 21.05.2014 20/ 38

List Scheduling Heuristics

o Class/category of algorithms
@ Two phase heuristic:

> task prioritization

» processor selection/allocation

Heuristic skeleton

@ Different method in each phase

Practical, better results + better scheduling time

Jait Dixit Better Task Scheduling 21.05.2014 20/ 38

List Scheduling Heuristics

o Class/category of algorithms
@ Two phase heuristic:

> task prioritization

» processor selection/allocation

Heuristic skeleton

@ Different method in each phase

Practical, better results + better scheduling time

Complexity dependent on scheme in phases

Jait Dixit Better Task Scheduling 21.05.2014 20/ 38

Additional Definitions

e rank,
@ Cost after and including task

@ Defined recursively

Jait Dixit Better Task Scheduling 21.05.2014 21 /38

Additional Definitions

e rank,

Cost after and including task

@ Defined recursively

@ ranky

Cost up to task

@ Defined recursively

Jait Dixit Better Task Scheduling 21.05.2014 21 /38

HEFT & CPOP

@ Implement list-scheduling heuristics
o HEFT

» Heterogeneous Earliest Finish Time

> Implements an insertion-based policy
e CPOP

» Critical-Path-on-Processor

» Tries to speed up the execution of tasks on the critical path

Jait Dixit Better Task Scheduling 21.05.2014 22 /38

HEFT

@ 2 phases

Jait Dixit Better Task Scheduling

HEFT

@ 2 phases

> task prioritization

Jait Dixit Better Task Scheduling

HEFT

@ 2 phases

> task prioritization

> processor selection/allocation

Jait Dixit Better Task Scheduling

HEFT

@ 2 phases

> task prioritization

> processor selection/allocation

@ Task prioritiziation:

Jait Dixit Better Task Scheduling

HEFT

@ 2 phases

> task prioritization

> processor selection/allocation
@ Task prioritiziation:

> Priority of task = rank,

Jait Dixit Better Task Scheduling 21.05.2014 23 /38

HEFT

@ 2 phases

> task prioritization

> processor selection/allocation
@ Task prioritiziation:

> Priority of task = rank,

> Sorting tasks by decreasing order of rank,

Jait Dixit Better Task Scheduling 21.05.2014 23 /38

HEFT

@ 2 phases
> task prioritization
> processor selection/allocation
@ Task prioritiziation:
> Priority of task = rank,
> Sorting tasks by decreasing order of rank,

» Tie-breaking is done randomly

Jait Dixit Better Task Scheduling 21.05.2014 23 /38

HEFT

@ 2 phases
> task prioritization
> processor selection/allocation
@ Task prioritiziation:
> Priority of task = rank,
> Sorting tasks by decreasing order of rank,
» Tie-breaking is done randomly

» Topological order

Jait Dixit Better Task Scheduling 21.05.2014 23 /38

HEFT

@ 2 phases
> task prioritization
> processor selection/allocation
@ Task prioritiziation:
> Priority of task = rank,
> Sorting tasks by decreasing order of rank,
» Tie-breaking is done randomly

» Topological order

@ Processor selection:

Jait Dixit Better Task Scheduling 21.05.2014 23 /38

HEFT

@ 2 phases
> task prioritization
> processor selection/allocation
@ Task prioritiziation:
> Priority of task = rank,
> Sorting tasks by decreasing order of rank,
» Tie-breaking is done randomly
» Topological order
@ Processor selection:

> Insertion-based policy

Jait Dixit Better Task Scheduling 21.05.2014 23 /38

HEFT

@ 2 phases
> task prioritization
> processor selection/allocation
@ Task prioritiziation:
> Priority of task = rank,
> Sorting tasks by decreasing order of rank,
» Tie-breaking is done randomly
» Topological order
@ Processor selection:

> Insertion-based policy

> Assign task to processor which minimizes EFT

Jait Dixit Better Task Scheduling 21.05.2014 23 /38

CPOP

@ 2 phases

Jait Dixit Better Task Scheduling

CPOP

@ 2 phases

> task prioritization

Jait Dixit Better Task Scheduling

CPOP

@ 2 phases

> task prioritization

> processor selection/allocation

Jait Dixit Better Task Scheduling

CPOP

@ 2 phases

> task prioritization

> processor selection/allocation

@ Uses a different metric for priorities

Jait Dixit Better Task Scheduling 21.05.2014 24 /38

CPOP

@ 2 phases

> task prioritization

> processor selection/allocation
@ Uses a different metric for priorities

o Different strategy when assigning tasks to processors

Jait Dixit Better Task Scheduling 21.05.2014 24 /38

CPOP - Task Prioritization

@ Priority of task = rank, + ranky

Jait Dixit Better Task Scheduling

CPOP - Task Prioritization

@ Priority of task = rank, + ranky

@ Uses critical path of the given task graph

Jait Dixit Better Task Scheduling

CPOP - Task Prioritization

@ Priority of task = rank, + rankg
@ Uses critical path of the given task graph

@ priority(ng) = |CP|

Jait Dixit Better Task Scheduling 21.05.2014 25 /38

CPOP - Task Prioritization

@ Priority of task = rank, + rankg

@ Uses critical path of the given task graph
@ priority(ng) = |CP|

@ Algorithm for finding CP:

Jait Dixit Better Task Scheduling 21.05.2014 25 /38

CPOP - Task Prioritization

@ Priority of task = rank, + rankg

@ Uses critical path of the given task graph
@ priority(ng) = |CP|

@ Algorithm for finding CP:

@ np is selected and marked as critical path task

Jait Dixit Better Task Scheduling 21.05.2014 25 /38

CPOP - Task Prioritization

Priority of task = rank, + ranky

@ Uses critical path of the given task graph

priority(ng) = |CP]
Algorithm for finding CP:

@ np is selected and marked as critical path task

@ Next critical path task, immediate successor with highest priority

Jait Dixit Better Task Scheduling 21.05.2014 25 /38

CPOP - Task Prioritization

@ Priority of task = rank, + rankg

@ Uses critical path of the given task graph
@ priority(ng) = |CP|

@ Algorithm for finding CP:

@ np is selected and marked as critical path task
@ Next critical path task, immediate successor with highest priority
@ Until exit node is reached

Jait Dixit Better Task Scheduling 21.05.2014 25 /38

CPOP - Task Prioritization

@ Priority of task = rank, + rankg

@ Uses critical path of the given task graph
@ priority(ng) = |CP|

Algorithm for finding CP:

@ np is selected and marked as critical path task

@ Next critical path task, immediate successor with highest priority
© Until exit node is reached

Implemented using a priority queue

Jait Dixit Better Task Scheduling 21.05.2014 25 /38

CPOP - Processor Allocation

@ Select a pcp which minimizes the cummulative computation cost on the

critical path

Jait Dixit Better Task Scheduling 21.05.2014 26 /38

CPOP - Processor Allocation

@ Select a pcp which minimizes the cummulative computation cost on the

critical path

o If a selected task is on the critical path, schedule on pcp

Jait Dixit Better Task Scheduling 21.05.2014 26 /38

CPOP - Processor Allocation

@ Select a pcp which minimizes the cummulative computation cost on the

critical path
o If a selected task is on the critical path, schedule on pcp

@ Else assign it to a processor which minimizes its EFT

Jait Dixit Better Task Scheduling 21.05.2014 26 /38

CPOP - Processor Allocation

@ Select a pcp which minimizes the cummulative computation cost on the
critical path

o If a selected task is on the critical path, schedule on pcp
@ Else assign it to a processor which minimizes its EFT

@ Both cases consider an insertion-based scheduling policy

Jait Dixit Better Task Scheduling 21.05.2014 26 /38

Experiments

@ Algorithms tested on two sets of graphs:

Jait Dixit Better Task Scheduling

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

@ Randomly generated application graphs

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

@ Randomly generated application graphs

» Parametrized random graph generator

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

@ Randomly generated application graphs

» Parametrized random graph generator
> About 56K DAGs.

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

@ Randomly generated application graphs

» Parametrized random graph generator
> About 56K DAGs.

@ Task graphs of real world applications

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

@ Randomly generated application graphs

» Parametrized random graph generator
> About 56K DAGs.

@ Task graphs of real world applications

» Gaussian Elimination

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

@ Randomly generated application graphs

» Parametrized random graph generator
> About 56K DAGs.

@ Task graphs of real world applications

» Gaussian Elimination
» FFT

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Experiments

@ Algorithms tested on two sets of graphs:

» Randomly generated application graphs

> Graphs representing real world problems

@ Randomly generated application graphs

» Parametrized random graph generator
> About 56K DAGs.

@ Task graphs of real world applications

» Gaussian Elimination
» FFT

» Molecular Dynamics Code

Jait Dixit Better Task Scheduling 21.05.2014 27 /38

Competing Algorithms

@ Dynamic-Level Scheduling (DLS)

Jait Dixit Better Task Scheduling

Competing Algorithms

@ Dynamic-Level Scheduling (DLS)
e Mapping Heuristic (MH)

Jait Dixit Better Task Scheduling

Competing Algorithms

@ Dynamic-Level Scheduling (DLS)
e Mapping Heuristic (MH)
o Levelized-Min Time (LMT)

Jait Dixit Better Task Scheduling 21.05.2014 28 /38

Comparison Metrics

o Schedule Length Ratio(SLR)

» SLR is a normalized schedule length for an algorithm

» The SLR value for an algorithm is given by:

makespan

SLR = -
Zni € CPypy, Mp; € Q Wij

@ Run time

Jait Dixit Better Task Scheduling 21.05.2014 29 /38

Avg. SLR

Average SLR
[#)]

2 1 1 1 1 I 1 I
20 30 40 50 60 70 80 80 100

Number of Nodes

Jait Dixit Better Task Scheduling 21.05.2014 30/ 38

Avg. Runtime
20
18

12

Average Running Time (in msec.)

Jait Dixit Better Task Scheduling

&—€ HEFT

4 -+l MH
= DLS
A=A LMT

a0 g0 70
Nurmber of Nodes

21.05.2014

31/ 38

Comparison Metrics (contd.)

@ Speedup
» The speedup value for a given graph is computed by dividing the sequential
execution time by the parallel execution time

> It's value is given by:

Z”i € CPpjin, mlnpj €Q wz]

Speedup =
P P makespan

o Efficiency

» Efficiency is calculated by dividing the speedup by the number of processors

Jait Dixit Better Task Scheduling 21.05.2014 32/38

Avg. Speedup

2.8
2.6
24

2.2

1.8

Average Speedup
N

1.6

1.4

1.2

1 | 1 I

40 20 60 70 80 90
Number of Nodes

Jait Dixit Better Task Scheduling

21.05.2014

33 /38

Efficiency - Gaussian Elimination

08 =
02 B |
0 i 5

2 4 8
Number of Frocessors

Efficiency
o
>

=]
=

Jait Di Better Task Scheduling 21.05.2014 34 /38

Result Summary

HEFT pwns everyone
CPOP isn't far behind
Alternative task prioritizing

and processor selection policies for HEFT

Jait Dixit Better Task Scheduling 21.05.2014 35 /38

Conclusion

o Static TS is NP-complete in a strong sense
o Heterogeneous systems are important, TS on them more so
@ Two list heuristic based algorithms: CPOP and HEFT

@ Significantly outperform their competitors

Jait Dixit Better Task Scheduling 21.05.2014 36 / 38

Questions?

Better Task Scheduling 21.05.2014 37 /38

Bibliography

@ Performance-Effective and Low-Complexity Task Scheduling for

Heterogeneous Systems; H. Topcuoglu, S. Hariri and M. Wu
@ Task Scheduling for Parallel Systems; O. Sinnen

@ Approximation Algorithms for Scheduling Unrelated Parallel Machines; J.
Lenstra, D. Shmoys and E. Tardos

o Algorithms for Scheduling Tasks on Unrelated Processors; E. Davis, J. Jaffe

Jait Dixit Better Task Scheduling 21.05.2014 38 /38

	Task Scheduling
	Classic Model
	Theoritical Background
	Heterogeneity
	Algorithms

	HEFT & CPOP
	Heterogeneous Earliest Finish Time (HEFT)
	Critical-Path-on-Processor (CPOP)
	Experiments

	Conclusion
	Appendix

