
Local Stable Marriage with Strict Preferences

Lei Zhong
Seminar of Distributed Computing
Mar. 12, 2014

Simple example

James Michael David

UZH ETH EPFL
Preferenes Table

Name Prefrence
James UZH>ETH>EPFL
Michael ETH>EPFL>UZH
David EPFL>ETH>UZH

Mar. 12, 2014 Seminar of Distributed Computing 2 / 34

Simple example

James Michael David

UZH ETH EPFL
Preferenes Table

Name Prefrence
James UZH>ETH>EPFL
Michael ETH>EPFL>UZH
David EPFL>ETH>UZH

Mar. 12, 2014 Seminar of Distributed Computing 2 / 34

Simple example

James Michael David

UZH ETH EPFL
Preferenes Table

Name Prefrence
James UZH>ETH>EPFL
Michael ETH>EPFL>UZH
David EPFL>ETH>UZH

Mar. 12, 2014 Seminar of Distributed Computing 3 / 34

Simple example

James Michael David

UZH ETH EPFL
Preferenes Table

Name Prefrence
James UZH>ETH>EPFL
Michael ETH>EPFL>UZH
David EPFL>ETH>UZH

Mar. 12, 2014 Seminar of Distributed Computing 3 / 34

Simple example

James Michael David

UZH ETH EPFL
Preferenes Table

Name Prefrence
James UZH>ETH>EPFL
Michael ETH>EPFL>UZH
David EPFL>ETH>UZH

Mar. 12, 2014 Seminar of Distributed Computing 3 / 34

Stable Matching

Definition

Given two sets of elements with their set of preferences.
A matching is a mapping from the elements of one set to the
elements of the other set.
A matching is stable if there is no blocking pair.

Mar. 12, 2014 Seminar of Distributed Computing 4 / 34

Blocking pair

Definition
A blocking pair is a pair such that both strictly improve by
matching to each other.

A B C

1 2 3

{A, 1} is a blocking pair.
Mar. 12, 2014 Seminar of Distributed Computing 5 / 34

Blocking pair

Definition
A blocking pair is a pair such that both strictly improve by
matching to each other.

A B C

1 2 3

{A, 1} is a blocking pair.
Mar. 12, 2014 Seminar of Distributed Computing 5 / 34

Problem modeling

i A network matching game: (social) network: N = (V , L)
ii A set of vertices representing agents: V
iii A set of fixed links: L ⊆ {{u, v}|u, v ∈ V , u 6= v}
iv A set of potential matching edges:

E ⊆ {{u, v}|u, v ∈ V , u 6= v}
v correlated network game: for ∀e ∈ E ,

bu(e) = bv (e) = b(e) > 0

Difference between a link and an edge:
endurable
controllable

Mar. 12, 2014 Seminar of Distributed Computing 6 / 34

Local blocking pair
Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition
A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

local blocking pairs ⊆ blocking pairs.
→ Every stable matching is a locally stable matching.

A B C

1 2 3

Mar. 12, 2014 Seminar of Distributed Computing 7 / 34

Local blocking pair
Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition
A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

local blocking pairs ⊆ blocking pairs.

→ Every stable matching is a locally stable matching.

A B C

1 2 3

Mar. 12, 2014 Seminar of Distributed Computing 7 / 34

Local blocking pair
Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition
A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

local blocking pairs ⊆ blocking pairs.
→ Every stable matching is a locally stable matching.

A B C

1 2 3

Mar. 12, 2014 Seminar of Distributed Computing 7 / 34

Local blocking pair
Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition
A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

local blocking pairs ⊆ blocking pairs.
→ Every stable matching is a locally stable matching.

A B C

1 2 3

Mar. 12, 2014 Seminar of Distributed Computing 7 / 34

Local blocking pair
Assumption: each agent can match only to partners in its 2-hop
neighborhood of matching edges and links.

Definition
A local blocking pair is a blocking pair of agents that are at hop
distance at most 2 in the network.

local blocking pairs ⊆ blocking pairs.
→ Every stable matching is a locally stable matching.

A B C

1 2 3

Mar. 12, 2014 Seminar of Distributed Computing 7 / 34

Locally stable matching

A local improvement step is one such step that add one local
blocking pair to M and remove all edges that conflict with this
new edge.

Definition
A locally stable matching is a matching without local blocking
pairs.

Is it easier to find or reach using distributed dynamics than
ordinary stable matchings?
Answer: Locally stable matchings have a rich structure and
can behave quite differently than ordinary stable matchings.

Mar. 12, 2014 Seminar of Distributed Computing 8 / 34

Locally stable matching

A local improvement step is one such step that add one local
blocking pair to M and remove all edges that conflict with this
new edge.

Definition
A locally stable matching is a matching without local blocking
pairs.

Is it easier to find or reach using distributed dynamics than
ordinary stable matchings?

Answer: Locally stable matchings have a rich structure and
can behave quite differently than ordinary stable matchings.

Mar. 12, 2014 Seminar of Distributed Computing 8 / 34

Locally stable matching

A local improvement step is one such step that add one local
blocking pair to M and remove all edges that conflict with this
new edge.

Definition
A locally stable matching is a matching without local blocking
pairs.

Is it easier to find or reach using distributed dynamics than
ordinary stable matchings?
Answer: Locally stable matchings have a rich structure and
can behave quite differently than ordinary stable matchings.

Mar. 12, 2014 Seminar of Distributed Computing 8 / 34

Another example

Preference-lists

v prefrences
1 C>B>A>D
2 D>C>B>A
3 A>D>C>B
4 B>A>D>C
A 4>1>3>2
B 1>2>4>3
C 2>3>1>4
D 3>4>2>1

Circling Gadget

1

2 3

4

A

B C

D

Mar. 12, 2014 Seminar of Distributed Computing 9 / 34

Explanation
Two locally stable matchings: {{1, B}, {2, C}, {3, D}, {4, A}} and
{{1, C}, {2, D}, {3, A}, {4, B}}.
Assume 1 is unmatched.
1 A is not matched with 4
→ 1 matched with A→ B matched with 1→ some node unmatched

2 A matched with 4
2.1 B is not matched with 2
→ 4 matches with B → A free for 1

2.2 B matches with 2
→ 2 move to C → 4 switch to B

3 To prevent circle, one vertex must be matched to some vertex
outside.

4 Existence of LSM is guarantied for the bipartite case, ∃ states
for which Reachability is not necessarily true.

Mar. 12, 2014 Seminar of Distributed Computing 10 / 34

Explanation
Two locally stable matchings: {{1, B}, {2, C}, {3, D}, {4, A}} and
{{1, C}, {2, D}, {3, A}, {4, B}}.
Assume 1 is unmatched.
1 A is not matched with 4
→ 1 matched with A→ B matched with 1→ some node unmatched

2 A matched with 4
2.1 B is not matched with 2
→ 4 matches with B → A free for 1

2.2 B matches with 2
→ 2 move to C → 4 switch to B

3 To prevent circle, one vertex must be matched to some vertex
outside.

4 Existence of LSM is guarantied for the bipartite case, ∃ states
for which Reachability is not necessarily true.

Mar. 12, 2014 Seminar of Distributed Computing 10 / 34

Explanation
Two locally stable matchings: {{1, B}, {2, C}, {3, D}, {4, A}} and
{{1, C}, {2, D}, {3, A}, {4, B}}.
Assume 1 is unmatched.
1 A is not matched with 4
→ 1 matched with A→ B matched with 1→ some node unmatched

2 A matched with 4
2.1 B is not matched with 2
→ 4 matches with B → A free for 1

2.2 B matches with 2
→ 2 move to C → 4 switch to B

3 To prevent circle, one vertex must be matched to some vertex
outside.

4 Existence of LSM is guarantied for the bipartite case, ∃ states
for which Reachability is not necessarily true.

Mar. 12, 2014 Seminar of Distributed Computing 10 / 34

Explanation
Two locally stable matchings: {{1, B}, {2, C}, {3, D}, {4, A}} and
{{1, C}, {2, D}, {3, A}, {4, B}}.
Assume 1 is unmatched.
1 A is not matched with 4
→ 1 matched with A→ B matched with 1→ some node unmatched

2 A matched with 4
2.1 B is not matched with 2
→ 4 matches with B → A free for 1

2.2 B matches with 2
→ 2 move to C → 4 switch to B

3 To prevent circle, one vertex must be matched to some vertex
outside.

4 Existence of LSM is guarantied for the bipartite case, ∃ states
for which Reachability is not necessarily true.

Mar. 12, 2014 Seminar of Distributed Computing 10 / 34

Reachability

Given an instance and an initial matching, is there a sequence of
local blocking pair resolutions leading to a locally stable matching?

Mar. 12, 2014 Seminar of Distributed Computing 11 / 34

Theorem 1

It is NP-hard to decide Reachability from the initial matching
M = ∅ to a given locally stable matching in a correlated network
game.

Mar. 12, 2014 Seminar of Distributed Computing 12 / 34

Proof:

Example of 3SAT

→ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5)

Prove that LSM is reducible to 3SAT and vice versa
Given a 3SAT formula with k variables x1, . . . , xk and l clauses
C1, . . . , Cl , where clauses Cj contains the literals l1j ,l2j and l3j .
Divide vertices set V into two disjoint sets U and W , we have
U = {uxi |i = 1...k}∪{uCj |j = 1 . . . l}∪{bh|h = 1 . . . k + l − 1},
W = {vxi , xi , xi , |i = 1 . . . k} ∪ {vCj |j = 1 . . . l} ∪ {a, a1}.

Mar. 12, 2014 Seminar of Distributed Computing 13 / 34

Benefits of matching edges

u ∈ U w ∈W b({u, w})
uCj a j j = 1, . . . , l
uxi a i + l i = 1, . . . , k
bh a h + 1/2 h = 1, . . . , k + l − 1
uCj l1j/l2j/l3j k + l + 1 j = 1, . . . , l
uxi xi/xi k + l + 1 i = 1, . . . , k
uCj vxi k + l + 1 + i i = 1, . . . , k, j = 1, . . . , l
uxi vx ′

i
k + l + 1 + i ′ i = 1, . . . , k, i ′ = 1, . . . , i

uCj vC ′
j

2k + l + 1 + j ′ j = 1, . . . , k, j ′ = 1, . . . , i

Goal: reach M∗ = {{us , vs}|s ∈ {x1, . . . , xk} ∪ {C1, . . . , Cl}}

Mar. 12, 2014 Seminar of Distributed Computing 14 / 34

3SAT Gadget

uC1 b1 uCl bl ux1 bl+1 uxk

a1

a

x1

x1

xk

xk

vx1 vxk vC1 vCl

Mar. 12, 2014 Seminar of Distributed Computing 15 / 34

3SAT → Local Stable Matching

Assume 3SAT is satisfiable.

3SAT Gadget

uC1 b1 uCl bl ux1 bl+1 uxk

a1

a

x1

x1

xk

xk

vx1 vxk vC1 vCl

Mar. 12, 2014 Seminar of Distributed Computing 16 / 34

3SAT → Local Stable Matching

Assume 3SAT is satisfiable.

3SAT Gadget

uC1 b1 uCl bl ux1 bl+1 uxk

a1

a

x1

x1

xk

xk

vx1 vxk vC1 vCl

Mar. 12, 2014 Seminar of Distributed Computing 16 / 34

3SAT → Local Stable Matching

Assume 3SAT is satisfiable.

3SAT Gadget

uC1 b1 uCl bl ux1 bl+1 uxk

a1

a

x1

x1

xk

xk

vx1 vxk vC1 vCl

Mar. 12, 2014 Seminar of Distributed Computing 16 / 34

3SAT → Local Stable Matching

Step 1
First introduce
{uCj , a}.

Step 2
Move it over the
u-and b-vertices
to uxk .

Step 3
Move it to negates its
value in the satisfying
assignment.

Every clause is fulfilled
All the clause u-vertex from a is not blocked by matching edges
of variable u-vertex.
Bypass the existing edges to reach final positions at M∗.
Variable-edges can leave the branching to move to final
position.

Mar. 12, 2014 Seminar of Distributed Computing 17 / 34

Local Stable Matching → 3SAT

Assume we can reach M∗ from ∅.

Clause u-vertices have to overtake variable u-vertices to reach
final position.
The only place: the branching leading over the xi and xi .
All variable-edges have to wait at some xi or xi until the
clause-edges have passed.

uC1 b1 uCl bl ux1 bl+1 uxk

a1

a

x1

x1

xk

xk

vx1 vxk vC1 vCl

Mar. 12, 2014 Seminar of Distributed Computing 18 / 34

Local Stable Matching → 3SAT

Assume we can reach M∗ from ∅.
Clause u-vertices have to overtake variable u-vertices to reach
final position.

The only place: the branching leading over the xi and xi .
All variable-edges have to wait at some xi or xi until the
clause-edges have passed.

uC1 b1 uCl bl ux1 bl+1 uxk

a1

a

x1

x1

xk

xk

vx1 vxk vC1 vCl

Mar. 12, 2014 Seminar of Distributed Computing 18 / 34

Local Stable Matching → 3SAT

Assume we can reach M∗ from ∅.
Clause u-vertices have to overtake variable u-vertices to reach
final position.
The only place: the branching leading over the xi and xi .

All variable-edges have to wait at some xi or xi until the
clause-edges have passed.

uC1 b1 uCl bl ux1 bl+1 uxk

a1

a

x1

x1

xk

xk

vx1 vxk vC1 vCl

Mar. 12, 2014 Seminar of Distributed Computing 18 / 34

Local Stable Matching → 3SAT

Assume we can reach M∗ from ∅.
Clause u-vertices have to overtake variable u-vertices to reach
final position.
The only place: the branching leading over the xi and xi .
All variable-edges have to wait at some xi or xi until the
clause-edges have passed.

uC1 b1 uCl bl ux1 bl+1 uxk

a1

a

x1

x1

xk

xk

vx1 vxk vC1 vCl

Mar. 12, 2014 Seminar of Distributed Computing 18 / 34

Local Stable Matching → 3SAT

From a, vertex uxi is only
blocking out a different vari-
able.

A vertex uCj will move
from a if it can reach
one of its literals.

All clauses can bypass
the variables → there
was one of its literals
left open for passage.

Set each variable to the
value that yields the
passage for clause-edges
in the branching.

Mar. 12, 2014 Seminar of Distributed Computing 19 / 34

Length of Sequences

Definition
The number of improvement steps required to reach locally stable
matchings.

Consider the number of improvement steps required to reach
locally stable matchings.
In general, we need an exponential number of steps before
reaching LSM.
In contrast, LSM can be reached in polynomial number of steps
in correlated case.

Mar. 12, 2014 Seminar of Distributed Computing 20 / 34

Theorem 2

=⇒ For every network game with correlated preferences, every
locally stable matching M∗ ∈ E and initial matching M0 ∈ E
such that M∗ can be reached from M0 through local
improvement steps,

, there exists a sequence of at most O(|E |3) local improvement
steps leading form M0 to M∗.

Mar. 12, 2014 Seminar of Distributed Computing 21 / 34

Theorem 2

=⇒ For every network game with correlated preferences, every
locally stable matching M∗ ∈ E and initial matching M0 ∈ E
such that M∗ can be reached from M0 through local
improvement steps,

, there exists a sequence of at most O(|E |3) local improvement
steps leading form M0 to M∗.

Mar. 12, 2014 Seminar of Distributed Computing 21 / 34

1 Rank all edges by their benefit:
→ rmax = max{r(e)|e ∈ E}

2 Ever edge e has at most rmax predecessors.
3 Observations:

i An edge can only be deleted by a stronger edge.
ii If an edge is created, moved, and finally deleted. → No need to

introduce it.
4.1 Initial matching is an empty matching.

→ We have |M∗| edges, which each made at most rmax steps.

4.2 Initial matching is not empty.

→ At most |M0| × rmax is introduced.

5 Overall bound: |M0| × rmax × rmax + |M∗| × rmax ∈ O(|E |3).

Mar. 12, 2014 Seminar of Distributed Computing 22 / 34

1 Rank all edges by their benefit:
→ rmax = max{r(e)|e ∈ E}

2 Ever edge e has at most rmax predecessors.

3 Observations:
i An edge can only be deleted by a stronger edge.

ii If an edge is created, moved, and finally deleted. → No need to
introduce it.

4.1 Initial matching is an empty matching.

→ We have |M∗| edges, which each made at most rmax steps.

4.2 Initial matching is not empty.

→ At most |M0| × rmax is introduced.

5 Overall bound: |M0| × rmax × rmax + |M∗| × rmax ∈ O(|E |3).

Mar. 12, 2014 Seminar of Distributed Computing 22 / 34

1 Rank all edges by their benefit:
→ rmax = max{r(e)|e ∈ E}

2 Ever edge e has at most rmax predecessors.
3 Observations:

i An edge can only be deleted by a stronger edge.
ii If an edge is created, moved, and finally deleted. → No need to

introduce it.

4.1 Initial matching is an empty matching.

→ We have |M∗| edges, which each made at most rmax steps.

4.2 Initial matching is not empty.

→ At most |M0| × rmax is introduced.

5 Overall bound: |M0| × rmax × rmax + |M∗| × rmax ∈ O(|E |3).

Mar. 12, 2014 Seminar of Distributed Computing 22 / 34

1 Rank all edges by their benefit:
→ rmax = max{r(e)|e ∈ E}

2 Ever edge e has at most rmax predecessors.
3 Observations:

i An edge can only be deleted by a stronger edge.
ii If an edge is created, moved, and finally deleted. → No need to

introduce it.
4.1 Initial matching is an empty matching.

→ We have |M∗| edges, which each made at most rmax steps.

4.2 Initial matching is not empty.

→ At most |M0| × rmax is introduced.

5 Overall bound: |M0| × rmax × rmax + |M∗| × rmax ∈ O(|E |3).

Mar. 12, 2014 Seminar of Distributed Computing 22 / 34

1 Rank all edges by their benefit:
→ rmax = max{r(e)|e ∈ E}

2 Ever edge e has at most rmax predecessors.
3 Observations:

i An edge can only be deleted by a stronger edge.
ii If an edge is created, moved, and finally deleted. → No need to

introduce it.
4.1 Initial matching is an empty matching.

→ We have |M∗| edges, which each made at most rmax steps.
4.2 Initial matching is not empty.

→ At most |M0| × rmax is introduced.

5 Overall bound: |M0| × rmax × rmax + |M∗| × rmax ∈ O(|E |3).

Mar. 12, 2014 Seminar of Distributed Computing 22 / 34

1 Rank all edges by their benefit:
→ rmax = max{r(e)|e ∈ E}

2 Ever edge e has at most rmax predecessors.
3 Observations:

i An edge can only be deleted by a stronger edge.
ii If an edge is created, moved, and finally deleted. → No need to

introduce it.
4.1 Initial matching is an empty matching.

→ We have |M∗| edges, which each made at most rmax steps.
4.2 Initial matching is not empty.

→ At most |M0| × rmax is introduced.
5 Overall bound: |M0| × rmax × rmax + |M∗| × rmax ∈ O(|E |3).

Mar. 12, 2014 Seminar of Distributed Computing 22 / 34

Recency Memory

With recency memory, each agent remembers the last partner he
has been matched to.
, Interestingly, here we actually can ensure that a LSM can be
reached.

Mar. 12, 2014 Seminar of Distributed Computing 23 / 34

Theorem 3

=⇒ For every network game with strict preference, links
L ⊆ (U ×W) ∪ (W ×W), recency memory and every initial
matching,

, there is a sequence of O(|U|2|W |2) many local improvement
steps to a locally stable matching.

Mar. 12, 2014 Seminar of Distributed Computing 24 / 34

Theorem 3

=⇒ For every network game with strict preference, links
L ⊆ (U ×W) ∪ (W ×W), recency memory and every initial
matching,

, there is a sequence of O(|U|2|W |2) many local improvement
steps to a locally stable matching.

Mar. 12, 2014 Seminar of Distributed Computing 24 / 34

↪→ Preparation phase:
1 while ∃ one u ∈ U with u matched and u part of a blocking pair

allow u to switch to the better partner.
2 Terminates at most |U| × |W | steps.

↪→ Memory phase
1 while ∃ a u ∈ U with u part of a blocking pair

Loop
pick u and execute a sequence of local improvement steps

Until u is not part of any blocking pair anymore.
2 For every edge e = {u′, w} with u′ 6= u that was deleted during

the sequence, recreate e from the memory of u′.

Mar. 12, 2014 Seminar of Distributed Computing 25 / 34

↪→ Preparation phase:
1 while ∃ one u ∈ U with u matched and u part of a blocking pair

allow u to switch to the better partner.
2 Terminates at most |U| × |W | steps.

↪→ Memory phase
1 while ∃ a u ∈ U with u part of a blocking pair

Loop
pick u and execute a sequence of local improvement steps

Until u is not part of any blocking pair anymore.
2 For every edge e = {u′, w} with u′ 6= u that was deleted during

the sequence, recreate e from the memory of u′.

Mar. 12, 2014 Seminar of Distributed Computing 25 / 34

→ At the end of preparation phase the only U-vertices in local
blocking pairs are unmatched.

→ Suppose u is chosen, w is matched. w clearly has improved.
→ All matched U-vertices cannot improve at the end of the round.
→ As one W -vertex improves in every round, we have at most
|U| × |W | rounds in the memory phase.

→ Where every round consists of at most |W | steps by u and at
most |U| − 1 edges reproduced from memory.

Mar. 12, 2014 Seminar of Distributed Computing 26 / 34

→ At the end of preparation phase the only U-vertices in local
blocking pairs are unmatched.

→ Suppose u is chosen, w is matched. w clearly has improved.

→ All matched U-vertices cannot improve at the end of the round.
→ As one W -vertex improves in every round, we have at most
|U| × |W | rounds in the memory phase.

→ Where every round consists of at most |W | steps by u and at
most |U| − 1 edges reproduced from memory.

Mar. 12, 2014 Seminar of Distributed Computing 26 / 34

→ At the end of preparation phase the only U-vertices in local
blocking pairs are unmatched.

→ Suppose u is chosen, w is matched. w clearly has improved.
→ All matched U-vertices cannot improve at the end of the round.

→ As one W -vertex improves in every round, we have at most
|U| × |W | rounds in the memory phase.

→ Where every round consists of at most |W | steps by u and at
most |U| − 1 edges reproduced from memory.

Mar. 12, 2014 Seminar of Distributed Computing 26 / 34

→ At the end of preparation phase the only U-vertices in local
blocking pairs are unmatched.

→ Suppose u is chosen, w is matched. w clearly has improved.
→ All matched U-vertices cannot improve at the end of the round.
→ As one W -vertex improves in every round, we have at most
|U| × |W | rounds in the memory phase.

→ Where every round consists of at most |W | steps by u and at
most |U| − 1 edges reproduced from memory.

Mar. 12, 2014 Seminar of Distributed Computing 26 / 34

→ At the end of preparation phase the only U-vertices in local
blocking pairs are unmatched.

→ Suppose u is chosen, w is matched. w clearly has improved.
→ All matched U-vertices cannot improve at the end of the round.
→ As one W -vertex improves in every round, we have at most
|U| × |W | rounds in the memory phase.

→ Where every round consists of at most |W | steps by u and at
most |U| − 1 edges reproduced from memory.

Mar. 12, 2014 Seminar of Distributed Computing 26 / 34

Independent Set
A set of vertices in a graph, no two of which are adjacent.

Question: what is the maximal size of target locally stable
matchings?

Mar. 12, 2014 Seminar of Distributed Computing 27 / 34

Theorem 4

Job-market game
The vertices of U are isolated in N.

For every graph G = (V , E) there is a job-market game that
admits a maximum locally stable matching of size |V |+ k if and
only if G holds a maximum independent set of size k.

Mar. 12, 2014 Seminar of Distributed Computing 28 / 34

Maximum independent set → LSM

uv ,1

uv ,2 wv ,1

wv ,2

uv ′,1 uv ′,2 wv ′,1 wv ′,2

Each uv ,1 prefers wv ,2 to every wv ′,2, v ′ ∈ N(v), and every
wv ′,2 to wv ,1.
Each wv ,2 prefers uv ,1 to every uv ′,1, v ′ ∈ N(v), and every uv ′,2
to uv ,2.

Claim: G has a maximum independent set of size k iff N has a
locally stable matching of size n + k.
Mar. 12, 2014 Seminar of Distributed Computing 29 / 34

Proof cont.

uv ,1

uv ,2 wv ,1

wv ,2

uv ′,1 wv ′,2

S is a maximum independent set in G .

M = {{uv ,1, wv ,2}|v ∈ V \ S} ∪ {{uv ,1, wv ,1}, {uv ,2, wv ,2}|v ∈
S}.
For v ∈ S all vertices v ′ ∈ N(S) generate stable edges
{uv ′,1, wv ′,2} that keep uv ,1 from switching to wv ′,2.
Thus {uv ,1, wv ,1} is stable and wv ,2 cannot see uv ,1 which
stabilizes {uv ,2, wv ,2}.

Mar. 12, 2014 Seminar of Distributed Computing 30 / 34

Proof cont.

uv ,1

uv ,2 wv ,1

wv ,2

uv ′,1 wv ′,2

S is a maximum independent set in G .
M = {{uv ,1, wv ,2}|v ∈ V \ S} ∪ {{uv ,1, wv ,1}, {uv ,2, wv ,2}|v ∈
S}.

For v ∈ S all vertices v ′ ∈ N(S) generate stable edges
{uv ′,1, wv ′,2} that keep uv ,1 from switching to wv ′,2.
Thus {uv ,1, wv ,1} is stable and wv ,2 cannot see uv ,1 which
stabilizes {uv ,2, wv ,2}.

Mar. 12, 2014 Seminar of Distributed Computing 30 / 34

Proof cont.

uv ,1

uv ,2 wv ,1

wv ,2

uv ′,1 wv ′,2

S is a maximum independent set in G .
M = {{uv ,1, wv ,2}|v ∈ V \ S} ∪ {{uv ,1, wv ,1}, {uv ,2, wv ,2}|v ∈
S}.
For v ∈ S all vertices v ′ ∈ N(S) generate stable edges
{uv ′,1, wv ′,2} that keep uv ,1 from switching to wv ′,2.

Thus {uv ,1, wv ,1} is stable and wv ,2 cannot see uv ,1 which
stabilizes {uv ,2, wv ,2}.

Mar. 12, 2014 Seminar of Distributed Computing 30 / 34

Proof cont.

uv ,1

uv ,2 wv ,1

wv ,2

uv ′,1 wv ′,2

S is a maximum independent set in G .
M = {{uv ,1, wv ,2}|v ∈ V \ S} ∪ {{uv ,1, wv ,1}, {uv ,2, wv ,2}|v ∈
S}.
For v ∈ S all vertices v ′ ∈ N(S) generate stable edges
{uv ′,1, wv ′,2} that keep uv ,1 from switching to wv ′,2.
Thus {uv ,1, wv ,1} is stable and wv ,2 cannot see uv ,1 which
stabilizes {uv ,2, wv ,2}.

Mar. 12, 2014 Seminar of Distributed Computing 30 / 34

LSM → Maximum independent set

Chose M that every uv ,1 is matched.
Replacing partner of wv ,2 by uv ,1.

No uv ,1 is matched to some wv ′,2 with v 6= v ′
→ Otherwise uv ,1 and wv ,2 can see each other and constitute a

blocking pair.
For S = {v |uv ,2 ∈ M},|S| = |M| − n and S is an independent
set
Every uv ,2 can only be matched to wv ,2, uv ,1 must be matched
to wv ,1.
It is stable if every wv ′,2, v ′ ∈ N(v), is blocked by uv ′,1. Hence
for every v ∈ S, N(v) ∩ S = ∅.

Mar. 12, 2014 Seminar of Distributed Computing 31 / 34

LSM → Maximum independent set

Chose M that every uv ,1 is matched.
Replacing partner of wv ,2 by uv ,1.

No uv ,1 is matched to some wv ′,2 with v 6= v ′
→ Otherwise uv ,1 and wv ,2 can see each other and constitute a

blocking pair.

For S = {v |uv ,2 ∈ M},|S| = |M| − n and S is an independent
set
Every uv ,2 can only be matched to wv ,2, uv ,1 must be matched
to wv ,1.
It is stable if every wv ′,2, v ′ ∈ N(v), is blocked by uv ′,1. Hence
for every v ∈ S, N(v) ∩ S = ∅.

Mar. 12, 2014 Seminar of Distributed Computing 31 / 34

LSM → Maximum independent set

Chose M that every uv ,1 is matched.
Replacing partner of wv ,2 by uv ,1.

No uv ,1 is matched to some wv ′,2 with v 6= v ′
→ Otherwise uv ,1 and wv ,2 can see each other and constitute a

blocking pair.
For S = {v |uv ,2 ∈ M},|S| = |M| − n and S is an independent
set

Every uv ,2 can only be matched to wv ,2, uv ,1 must be matched
to wv ,1.
It is stable if every wv ′,2, v ′ ∈ N(v), is blocked by uv ′,1. Hence
for every v ∈ S, N(v) ∩ S = ∅.

Mar. 12, 2014 Seminar of Distributed Computing 31 / 34

LSM → Maximum independent set

Chose M that every uv ,1 is matched.
Replacing partner of wv ,2 by uv ,1.

No uv ,1 is matched to some wv ′,2 with v 6= v ′
→ Otherwise uv ,1 and wv ,2 can see each other and constitute a

blocking pair.
For S = {v |uv ,2 ∈ M},|S| = |M| − n and S is an independent
set
Every uv ,2 can only be matched to wv ,2, uv ,1 must be matched
to wv ,1.

It is stable if every wv ′,2, v ′ ∈ N(v), is blocked by uv ′,1. Hence
for every v ∈ S, N(v) ∩ S = ∅.

Mar. 12, 2014 Seminar of Distributed Computing 31 / 34

LSM → Maximum independent set

Chose M that every uv ,1 is matched.
Replacing partner of wv ,2 by uv ,1.

No uv ,1 is matched to some wv ′,2 with v 6= v ′
→ Otherwise uv ,1 and wv ,2 can see each other and constitute a

blocking pair.
For S = {v |uv ,2 ∈ M},|S| = |M| − n and S is an independent
set
Every uv ,2 can only be matched to wv ,2, uv ,1 must be matched
to wv ,1.
It is stable if every wv ′,2, v ′ ∈ N(v), is blocked by uv ′,1. Hence
for every v ∈ S, N(v) ∩ S = ∅.

Mar. 12, 2014 Seminar of Distributed Computing 31 / 34

Conclusion

Although existence of LSM is guaranteed, but rechability is
NP-hard to decide.
In correlated network, every locally stable matching can be
reached in polynomial time.
With recency memory, reachability is guaranteed.
We approximately find maximum locally stable matchings in
job-market game.

Mar. 12, 2014 Seminar of Distributed Computing 32 / 34

Questions?

Please

Questions?
Feedback?
. . .

Mar. 12, 2014 Seminar of Distributed Computing 33 / 34

Reference

[1] Hoefer, Martin, and Lisa Wagner. “Locally stable marriage
with strict preferences.” Automata, Languages, and
Programming. Springer Berlin Heidelberg, 2013. 620-631.
[2] Hoefer, Martin, and Lisa Wagner. “Locally stable matching
with general preferences.” arXiv preprint arXiv:1207.1265
(2012).
[3] Gale, David, and Lloyd S. Shapley. “College admissions and
the stability of marriage.” American Mathematical Monthly
(1962): 9-15.

Mar. 12, 2014 Seminar of Distributed Computing 34 / 34

	Introduction and Background
	Simple Example
	Stable Matching
	Blocking pair
	Another Example

	Complexity of Reachability
	Memory
	Maximum Locally Stable Matchings
	Questions
	Reference

