

Local Stable Marriage with Strict Preferences

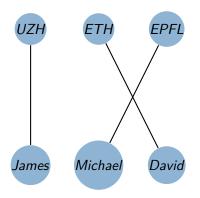
Lei Zhong Seminar of Distributed Computing

Simple example

Preferenes Table

Name	Prefrence	
James	UZH>ETH>EPFL	
Michael	ETH>EPFL>UZH	
David	EPFL>ETH>UZH	

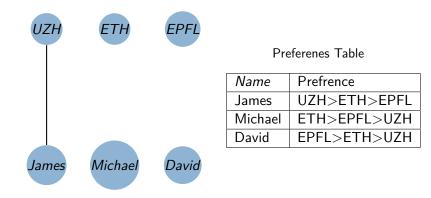
Simple example



Preferenes Table

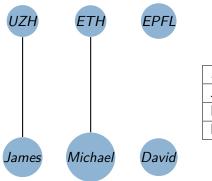
Name	Prefrence	
James	UZH>ETH>EPFL	
Michael	ETH>EPFL>UZH	
David	EPFL>ETH>UZH	

Simple example



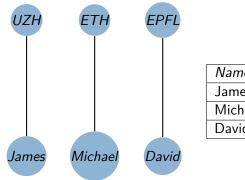
EHzürich

Simple example



Name	Prefrence	
James	UZH>ETH>EPFL	
Michael	ETH>EPFL>UZH	
David	EPFL>ETH>UZH	

Simple example



Preferenes Table

Name	Prefrence	
James	UZH>ETH>EPFL	
Michael	ETH>EPFL>UZH	
David	EPFL>ETH>UZH	

Stable Matching

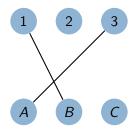
Definition

- Given two sets of elements with their set of preferences.
- A matching is a mapping from the elements of one set to the elements of the other set.
- A matching is stable if there is no blocking pair.

Blocking pair

Definition

A blocking pair is a pair such that both strictly improve by matching to each other.

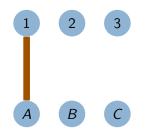


$\{A, 1\}$ is a blocking pair.

Blocking pair

Definition

A blocking pair is a pair such that both strictly improve by matching to each other.



$\{A, 1\}$ is a blocking pair.

Problem modeling

- i A network matching game: (social) network: N = (V, L)
- ii A set of vertices representing agents: V
- iii A set of fixed links: $L \subseteq \{\{u, v\} | u, v \in V, u \neq v\}$
- iv A set of potential matching edges: $E \subseteq \{\{u, v\} | u, v \in V, u \neq v\}$
- v correlated network game: for $\forall e \in E$, $b_u(e) = b_v(e) = b(e) > 0$

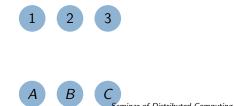
Difference between a link and an edge:

- endurable
- controllable

Assumption: each agent can match only to partners in its 2-hop neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop distance at most 2 in the network.



Assumption: each agent can match only to partners in its 2-hop neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop distance at most 2 in the network.

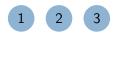
• local blocking pairs \subseteq blocking pairs.

Assumption: each agent can match only to partners in its 2-hop neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop distance at most 2 in the network.

- local blocking pairs \subseteq blocking pairs.
- \rightarrow Every stable matching is a locally stable matching.

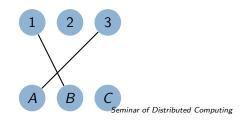


Assumption: each agent can match only to partners in its 2-hop neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop distance at most 2 in the network.

- local blocking pairs \subseteq blocking pairs.
- \rightarrow Every stable matching is a locally stable matching.



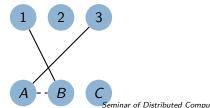
7 / 34

Assumption: each agent can match only to partners in its 2-hop neighborhood of matching edges and links.

Definition

A local blocking pair is a blocking pair of agents that are at hop distance at most 2 in the network.

- local blocking pairs \subseteq blocking pairs.
- \rightarrow Every stable matching is a locally stable matching.



Locally stable matching

A local improvement step is one such step that add one local blocking pair to M and remove all edges that conflict with this new edge.

Definition

A locally stable matching is a matching without local blocking pairs.

Locally stable matching

A local improvement step is one such step that add one local blocking pair to M and remove all edges that conflict with this new edge.

Definition

A locally stable matching is a matching without local blocking pairs.

• Is it easier to find or reach using distributed dynamics than ordinary stable matchings?

Locally stable matching

A local improvement step is one such step that add one local blocking pair to M and remove all edges that conflict with this new edge.

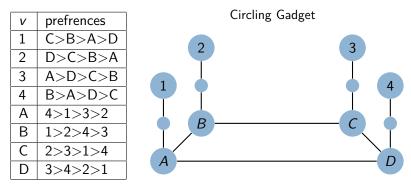
Definition

A locally stable matching is a matching without local blocking pairs.

- Is it easier to find or reach using distributed dynamics than ordinary stable matchings?
- **Answer**: Locally stable matchings have a rich structure and can behave quite differently than ordinary stable matchings.

Another example

Preference-lists



Explanation

Two locally stable matchings: $\{\{1, B\}, \{2, C\}, \{3, D\}, \{4, A\}\}$ and $\{\{1, C\}, \{2, D\}, \{3, A\}, \{4, B\}\}$. Assume 1 is unmatched.

- Assume 1 is unmatched.
- 1 A is not matched with 4
 - $\rightarrow~$ 1 matched with A \rightarrow B matched with 1 \rightarrow some node unmatched

Explanation

Two locally stable matchings: $\{\{1, B\}, \{2, C\}, \{3, D\}, \{4, A\}\}$ and $\{\{1, C\}, \{2, D\}, \{3, A\}, \{4, B\}\}$.

- Assume 1 is unmatched.
- 1 A is not matched with 4
 - $\rightarrow~1$ matched with A \rightarrow B matched with 1 \rightarrow some node unmatched
- 2 A matched with 4
 - 2.1 B is not matched with 2
 - $\rightarrow~$ 4 matches with B \rightarrow A free for 1
 - 2.2 B matches with 2
 - $\rightarrow~$ 2 move to C \rightarrow 4 switch to B

Explanation

Two locally stable matchings: $\{\{1, B\}, \{2, C\}, \{3, D\}, \{4, A\}\}$ and $\{\{1, C\}, \{2, D\}, \{3, A\}, \{4, B\}\}$.

Assume 1 is unmatched.

- 1 A is not matched with 4
 - $\rightarrow~1$ matched with A \rightarrow B matched with 1 \rightarrow some node unmatched
- 2 A matched with 4
 - 2.1 B is not matched with 2
 - $\rightarrow~$ 4 matches with B \rightarrow A free for 1
 - 2.2 B matches with 2
 - $\rightarrow~$ 2 move to C \rightarrow 4 switch to B
- 3 To prevent circle, one vertex must be matched to some vertex outside.

Explanation

Two locally stable matchings: $\{\{1, B\}, \{2, C\}, \{3, D\}, \{4, A\}\}$ and $\{\{1, C\}, \{2, D\}, \{3, A\}, \{4, B\}\}$.

Assume 1 is unmatched.

- 1 A is not matched with 4
 - $\rightarrow~1$ matched with A \rightarrow B matched with 1 \rightarrow some node unmatched
- 2 A matched with 4
 - 2.1 B is not matched with 2
 - $\rightarrow~$ 4 matches with B \rightarrow A free for 1
 - 2.2 B matches with 2
 - $\rightarrow~$ 2 move to C \rightarrow 4 switch to B
- 3 To prevent circle, one vertex must be matched to some vertex outside.
- 4 Existence of LSM is guarantied for the bipartite case, ∃ states for which REACHABILITY is not necessarily true.

Reachability

Given an instance and an initial matching, is there a sequence of local blocking pair resolutions leading to a locally stable matching?

Theorem 1

It is NP-hard to decide REACHABILITY from the initial matching $M = \emptyset$ to a given locally stable matching in a correlated network game.

Proof:

Example of 3SAT

$$\rightarrow (\overline{x_1} \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_3} \lor x_5)$$

- Prove that LSM is reducible to 3SAT and vice versa
- Given a 3SAT formula with k variables x₁,..., x_k and l clauses C₁,..., C_l, where clauses C_j contains the literals /1_j,/2_j and /3_j.
- Divide vertices set V into two disjoint sets U and W, we have

•
$$U = \{u_{x_i} | i = 1...k\} \cup \{u_{C_j} | j = 1...l\} \cup \{b_h | h = 1...k + l - 1\},$$

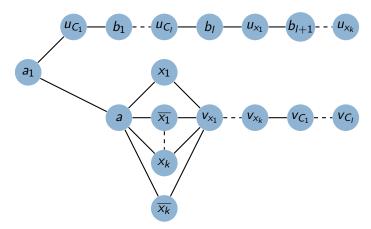
• $W = \{v_{x_i}, x_i, \overline{x_i}, |i = 1 \dots k\} \cup \{v_{C_j} | j = 1 \dots l\} \cup \{a, a_1\}.$

Benefits of matching edges

$u \in U$	$w \in W$	$b({u, w})$	
u _{Cj}	а	j	$j = 1, \ldots, l$
U_{x_i}	а	i + l	$i = 1, \ldots, k$
b _h	а	h + 1/2	$h=1,\ldots,k+l-1$
u _{Cj}	/1 _j //2 _j //3 _j	k+l+1	$j = 1, \ldots, l$
u_{x_i}	$x_i/\overline{x_i}$	k+l+1	$i = 1, \ldots, k$
u _{Cj}	V_{X_i}	k + l + 1 + i	$i=1,\ldots,k,j=1,\ldots,l$
U_{x_i}	$V_{X_i'}$	k + l + 1 + i'	$i=1,\ldots,k,i'=1,\ldots,i$
u _{Cj}	$v_{C'_j}$	2k + l + 1 + j'	$j=1,\ldots,k,j'=1,\ldots,i$

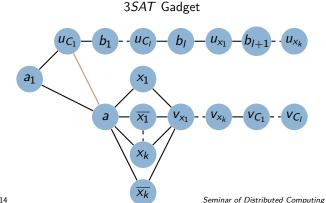
Goal: reach $M^* = \{\{u_s, v_s\} | s \in \{x_1, \dots, x_k\} \cup \{C_1, \dots, C_l\}\}$

3SAT Gadget



$\textbf{3SAT} \rightarrow \textbf{Local Stable Matching}$

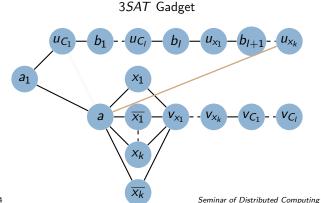
Assume 3SAT is satisfiable.



E Hzürich

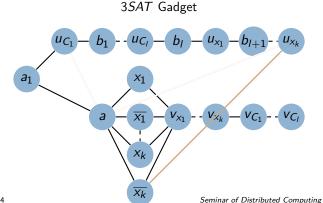
3SAT \rightarrow Local Stable Matching

Assume 3SAT is satisfiable.



$\textbf{3SAT} \rightarrow \textbf{Local Stable Matching}$

Assume 3SAT is satisfiable.



16 / 34

$\textbf{3SAT} \rightarrow \textbf{Local Stable Matching}$

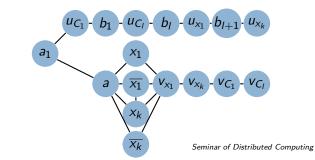
Step 1 First introduce $\{u_{C_j}, a\}$. **Step 2** Move it over the u-and b-vertices to $u_{x_{\nu}}$. **Step 3** Move it to negates its value in the satisfying assignment.

- Every clause is fulfilled
- All the clause *u*-vertex from *a* is not blocked by matching edges of variable *u*-vertex.
- Bypass the existing edges to reach final positions at *M*^{*}.
- Variable-edges can leave the branching to move to final position.

Mar. 12, 2014

Local Stable Matching \rightarrow 3SAT

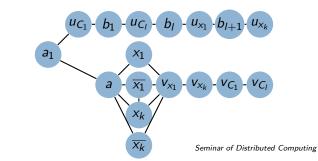
• Assume we can reach M^* from \emptyset .



18 / 34

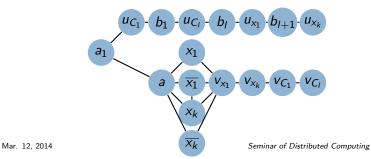
Local Stable Matching \rightarrow 3SAT

- Assume we can reach M^* from \emptyset .
- Clause *u*-vertices have to overtake variable *u*-vertices to reach final position.



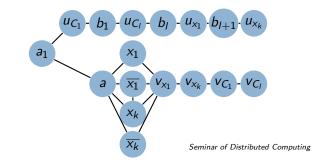
Local Stable Matching \rightarrow 3SAT

- Assume we can reach M^* from \emptyset .
- Clause *u*-vertices have to overtake variable *u*-vertices to reach final position.
- The only place: the branching leading over the x_i and $\overline{x_i}$.

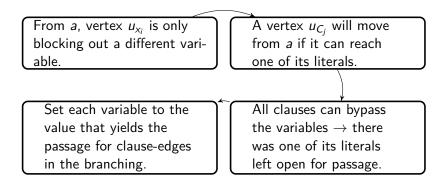


Local Stable Matching \rightarrow 3SAT

- Assume we can reach M^* from \emptyset .
- Clause *u*-vertices have to overtake variable *u*-vertices to reach final position.
- The only place: the branching leading over the x_i and $\overline{x_i}$.
- All variable-edges have to wait at some x_i or $\overline{x_i}$ until the clause-edges have passed.



Local Stable Matching \rightarrow 3SAT



Length of Sequences

Definition

The number of improvement steps required to reach locally stable matchings.

- Consider the number of improvement steps required to reach locally stable matchings.
- In general, we need an exponential number of steps before reaching LSM.
- In contrast, LSM can be reached in polynomial number of steps in correlated case.

Theorem 2

⇒ For every network game with correlated preferences, every locally stable matching $M^* \in E$ and initial matching $M_0 \in E$ such that M^* can be reached from M^0 through local improvement steps,

Theorem 2

- ⇒ For every network game with correlated preferences, every locally stable matching $M^* \in E$ and initial matching $M_0 \in E$ such that M^* can be reached from M^0 through local improvement steps,
 - ☺ there exists a sequence of at most $O(|E|^3)$ local improvement steps leading form M^0 to M^* .

EHzürich

1 Rank all edges by their benefit:

 $\rightarrow r_{max} = max\{r(e)|e \in E\}$

1 Rank all edges by their benefit:

 $\rightarrow r_{max} = max\{r(e)|e \in E\}$

2 Ever edge e has at most r_{max} predecessors.

1 Rank all edges by their benefit:

$$\rightarrow r_{max} = max\{r(e)|e \in E\}$$

- 2 Ever edge e has at most r_{max} predecessors.
- 3 Observations:
 - i An edge can only be deleted by a stronger edge.
 - ii If an edge is created, moved, and finally deleted. \rightarrow No need to introduce it.

1 Rank all edges by their benefit:

$$\rightarrow r_{max} = max\{r(e)|e \in E\}$$

- 2 Ever edge e has at most r_{max} predecessors.
- 3 Observations:
 - i An edge can only be deleted by a stronger edge.
 - ii If an edge is created, moved, and finally deleted. \rightarrow No need to introduce it.
- 4.1 Initial matching is an empty matching.
 - \rightarrow We have $|M^*|$ edges, which each made at most r_{max} steps.

1 Rank all edges by their benefit:

 $\rightarrow r_{max} = max\{r(e)|e \in E\}$

- 2 Ever edge e has at most r_{max} predecessors.
- 3 Observations:
 - i An edge can only be deleted by a stronger edge.
 - ii If an edge is created, moved, and finally deleted. \rightarrow No need to introduce it.
- 4.1 Initial matching is an empty matching.
 - \rightarrow We have $|M^*|$ edges, which each made at most r_{max} steps.
- 4.2 Initial matching is not empty.
 - \rightarrow At most $|M_0| \times r_{max}$ is introduced.

EHzürich

1 Rank all edges by their benefit:

$$\rightarrow r_{max} = max\{r(e)|e \in E\}$$

- 2 Ever edge e has at most r_{max} predecessors.
- 3 Observations:
 - i An edge can only be deleted by a stronger edge.
 - ii If an edge is created, moved, and finally deleted. \rightarrow No need to introduce it.
- 4.1 Initial matching is an empty matching.
 - \rightarrow We have $|M^*|$ edges, which each made at most r_{max} steps.
- 4.2 Initial matching is not empty.
 - \rightarrow At most $|M_0| \times r_{max}$ is introduced.
 - 5 Overall bound: $|M_0| \times r_{max} \times r_{max} + |M^*| \times r_{max} \in O(|E|^3)$.

Recency Memory

With recency memory, each agent remembers the last partner he has been matched to.

 $\ensuremath{\textcircled{}^\circ}$ Interestingly, here we actually can ensure that a LSM can be reached.

Theorem 3

⇒ For every network game with strict preference, links $L \subseteq (U \times W) \cup (W \times W)$, recency memory and every initial matching,

Theorem 3

- ⇒ For every network game with strict preference, links $L \subseteq (U \times W) \cup (W \times W)$, recency memory and every initial matching,
 - © there is a sequence of $O(|U|^2|W|^2)$ many local improvement steps to a locally stable matching.

\hookrightarrow Preparation phase:

- 1 while \exists one $u \in U$ with u matched and u part of a blocking pair
 - allow *u* to switch to the better partner.
- 2 Terminates at most $|U| \times |W|$ steps.

\hookrightarrow Preparation phase:

- 1 while \exists one $u \in U$ with u matched and u part of a blocking pair
 - allow *u* to switch to the better partner.
- 2 Terminates at most $|U| \times |W|$ steps.

\hookrightarrow Memory phase

1 while \exists a $u \in U$ with u part of a blocking pair

Loop

pick u and execute a sequence of local improvement steps **Until** u is not part of any blocking pair anymore.

2 For every edge $e = \{u', w\}$ with $u' \neq u$ that was deleted during the sequence, recreate *e* from the memory of u'.

 $\rightarrow\,$ At the end of preparation phase the only U-vertices in local blocking pairs are unmatched.

- $\rightarrow\,$ At the end of preparation phase the only U-vertices in local blocking pairs are unmatched.
- \rightarrow Suppose *u* is chosen, *w* is matched. *w* clearly has improved.

- \rightarrow At the end of preparation phase the only U-vertices in local blocking pairs are unmatched.
- \rightarrow Suppose *u* is chosen, *w* is matched. *w* clearly has improved.
- \rightarrow All matched *U*-vertices cannot improve at the end of the round.

- \rightarrow At the end of preparation phase the only U-vertices in local blocking pairs are unmatched.
- \rightarrow Suppose *u* is chosen, *w* is matched. *w* clearly has improved.
- \rightarrow All matched *U*-vertices cannot improve at the end of the round.
- $\rightarrow\,$ As one W-vertex improves in every round, we have at most $|U|\times|W|$ rounds in the memory phase.

EHzürich

- $\rightarrow\,$ At the end of preparation phase the only U-vertices in local blocking pairs are unmatched.
- \rightarrow Suppose *u* is chosen, *w* is matched. *w* clearly has improved.
- \rightarrow All matched *U*-vertices cannot improve at the end of the round.
- → As one *W*-vertex improves in every round, we have at most $|U| \times |W|$ rounds in the memory phase.
- \rightarrow Where every round consists of at most |W| steps by u and at most |U| 1 edges reproduced from memory.

Independent Set

A set of vertices in a graph, no two of which are adjacent.

Question: what is the maximal size of target locally stable matchings?

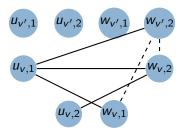
Theorem 4

Job-market game

The vertices of U are isolated in N.

For every graph G = (V, E) there is a job-market game that admits a maximum locally stable matching of size |V| + k if and only if G holds a maximum independent set of size k.

Maximum independent set \rightarrow LSM

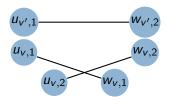


- Each $u_{v,1}$ prefers $w_{v,2}$ to every $w_{v',2}$, $v' \in N(v)$, and every $w_{v',2}$ to $w_{v,1}$.
- Each $w_{v,2}$ prefers $u_{v,1}$ to every $u_{v',1}$, $v' \in N(v)$, and every $u_{v',2}$ to $u_{v,2}$.

Claim: G has a maximum independent set of size k iff N has a locally stable matching of size n + k.

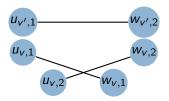
Mar. 12, 2014

Proof cont.



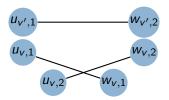
• S is a maximum independent set in G.

Proof cont.



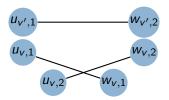
- S is a maximum independent set in G.
- $M = \{\{u_{v,1}, w_{v,2}\} | v \in V \setminus S\} \cup \{\{u_{v,1}, w_{v,1}\}, \{u_{v,2}, w_{v,2}\} | v \in S\}.$

Proof cont.



- S is a maximum independent set in G.
- $M = \{\{u_{v,1}, w_{v,2}\} | v \in V \setminus S\} \cup \{\{u_{v,1}, w_{v,1}\}, \{u_{v,2}, w_{v,2}\} | v \in S\}.$
- For v ∈ S all vertices v' ∈ N(S) generate stable edges
 {u_{v',1}, w_{v',2}} that keep u_{v,1} from switching to w_{v',2}.

Proof cont.



- S is a maximum independent set in G.
- $M = \{\{u_{v,1}, w_{v,2}\} | v \in V \setminus S\} \cup \{\{u_{v,1}, w_{v,1}\}, \{u_{v,2}, w_{v,2}\} | v \in S\}.$
- For $v \in S$ all vertices $v' \in N(S)$ generate stable edges $\{u_{v',1}, w_{v',2}\}$ that keep $u_{v,1}$ from switching to $w_{v',2}$.
- Thus {u_{v,1}, w_{v,1}} is stable and w_{v,2} cannot see u_{v,1} which stabilizes {u_{v,2}, w_{v,2}}.

Mar. 12, 2014

$\textbf{LSM} \rightarrow \textbf{Maximum independent set}$

- Chose *M* that every $u_{v,1}$ is matched.
 - Replacing partner of $w_{v,2}$ by $u_{v,1}$.

$\textbf{LSM} \rightarrow \textbf{Maximum independent set}$

- Chose *M* that every $u_{v,1}$ is matched.
 - Replacing partner of $w_{v,2}$ by $u_{v,1}$.
- No $u_{v,1}$ is matched to some $w_{v',2}$ with $v \neq v'$
 - $\rightarrow \;$ Otherwise $u_{\nu,1}$ and $w_{\nu,2}$ can see each other and constitute a blocking pair.

$\textbf{LSM} \rightarrow \textbf{Maximum independent set}$

- Chose *M* that every $u_{v,1}$ is matched.
 - Replacing partner of $w_{v,2}$ by $u_{v,1}$.
- No $u_{v,1}$ is matched to some $w_{v',2}$ with $v \neq v'$
 - $\rightarrow \,$ Otherwise $u_{\nu,1}$ and $w_{\nu,2}$ can see each other and constitute a blocking pair.
- For $S = \{v | u_{v,2} \in M\}, |S| = |M| n$ and S is an independent set

$LSM \rightarrow Maximum independent set$

- Chose *M* that every $u_{v,1}$ is matched.
 - Replacing partner of $w_{v,2}$ by $u_{v,1}$.
- No $u_{v,1}$ is matched to some $w_{v',2}$ with $v \neq v'$
 - $\rightarrow \,$ Otherwise $u_{\nu,1}$ and $w_{\nu,2}$ can see each other and constitute a blocking pair.
- For $S = \{v | u_{v,2} \in M\}, |S| = |M| n$ and S is an independent set
- Every u_{v,2} can only be matched to w_{v,2}, u_{v,1} must be matched to w_{v,1}.

$LSM \rightarrow Maximum independent set$

- Chose *M* that every $u_{v,1}$ is matched.
 - Replacing partner of $w_{v,2}$ by $u_{v,1}$.
- No $u_{v,1}$ is matched to some $w_{v',2}$ with $v \neq v'$
 - $\rightarrow \,$ Otherwise $u_{\nu,1}$ and $w_{\nu,2}$ can see each other and constitute a blocking pair.
- For $S = \{v | u_{v,2} \in M\}, |S| = |M| n$ and S is an independent set
- Every $u_{v,2}$ can only be matched to $w_{v,2}$, $u_{v,1}$ must be matched to $w_{v,1}$.
- It is stable if every w_{v',2}, v' ∈ N(v), is blocked by u_{v',1}. Hence for every v ∈ S, N(v) ∩ S = Ø.

Mar. 12, 2014

Conclusion

- Although existence of LSM is guaranteed, but rechability is NP-hard to decide.
- In correlated network, every locally stable matching can be reached in polynomial time.
- With recency memory, reachability is guaranteed.
- We approximately find maximum locally stable matchings in job-market game.

Questions?

Please

- Questions?
- Feedback?

• . . .

Reference

[1] Hoefer, Martin, and Lisa Wagner. "Locally stable marriage with strict preferences." Automata, Languages, and Programming. Springer Berlin Heidelberg, 2013. 620-631.

[2] Hoefer, Martin, and Lisa Wagner. "Locally stable matching with general preferences." arXiv preprint arXiv:1207.1265 (2012).

[3] Gale, David, and Lloyd S. Shapley. "College admissions and the stability of marriage." American Mathematical Monthly (1962): 9-15.