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Maximal Matching

@ Maximal set of vertex-disjoint edges




Being greedy




Distributed algorithm

Initially, each node only knows
Its incident edges

S—_C 5>—CQ ‘ Nodes exchange messages

| | to learn more about other nodes
S | | and edges
U£< Ue Ue

@ Time = number of communication rounds




nodes with 1ds
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Knhown bounds

\5_ A Degree

@ Max number of edges incident to a node




Knhown bounds

non-local
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Closing the gap
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Closing the gap
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nodes without 1ds

dnonymous, O"
K-edge-colored |

@ no two edges incident to the same
node share the same color

@ at most, k colors




anonymous,
K-edge-colored
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anonymous, O(A + log¥k)
K-edge-colored

thight bound for distributed maximal matching
IN anonymous, kK-edge-colored graphs

this work previous work
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A<k K colors this work
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Theorem 1

this work

Q(k)

Let k be a positive integer. A deterministic distributed
algorithm that finds a maximal matching in any
anonymous, K-edge-colored graph requires at least k - 1

communication rounds

A<k
Q(k)=Q(A)
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Greedy

Deterministic distributed greedy algorithm
to find a maximal matching
on a k-edge-colored anonymous grapn



Deterministic distributed greedy algorithm
to find a maximal matching
on a k-edge-colored anonymous graph
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Distributed algorithm

radius-k neighbourhoods

Initially, each node only knows
its incident edges, Its
radius-0 neighbourhood
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Deterministic distributed greedy algorithm
to find a maximal matching
on a k-edge-colored anonymous graph

~ : : 2 ~ 3 ~ 4 q
:

same radius-2 view

5" 2 3 4
O:

after 2 communication rounds




Deterministic distributed greedy algorithm
to find a maximal matching
on a k-edge-colored anonymous graph

~ 1 ~ 5‘ 0 ~ 3 ~ 4 q
same radius-2 view

- 2 3 4

to get different (local) output | |
this greeqy algorithm

need one more — @( k -1 )

communication round




greedy algorithm

O(k-1)

Tight lower bound for
deterministic distributed
maximal matching on a

K-edge-colored graph
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pback to O(k-1)




Local output




d-regular graph
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greedy algorithm

O(k-1)

this work

Q(k-1)

Theorem 1

Let k be a positive integer. A deterministic distributed
algorithm that finds a maximal matching in any
anonymous, k-edge-colored graph requires at least K - 1

communication rounds




greedy algorithm this work

O(k-1) Q(k-1)

Theorem 1

Let k be a positive integer. A deterministic distributed algorithm that finds a
maximal matching in any anonymous, k-edge-colored graph requires at least k - 1
communication rounds

Theorem 2
letk>=3andd=k-1

Assume a distributed algorithm that finds a maximal
matching in any d-regular k-color grapnh.
Then there are two d-regular k-colored graphs A, B such
that a node u,_ has the same (d - 1)-radius view in Aand B

and u, Is unmatched in A and matched in B




this work

Q(k-1)
Building a worst case

two d-regular k-colored graphs A, B such that a node u,

has the same d-radius view in A and B
and u, Is unmatched in A and matched in B

K-colors, d-regular
d=K-1




k>=3andd=k-1 this work

Q(k-1)
Group Generators ={ 1,2, ..., k}

Operation: concatenation

1.3=13
32 .1 =321

ldentity element: e

lInverse

1.1=¢€
21 . 1=2.e=2
342 . 213 = 3413

Assoclativity




k>=3andd=k-1 this work

Q(k-1)
Group Generators ={ 1,2, ..., k}

Operation: concatenation

1.3=13
32 .1 =321

ldentity element: e

lInverse

1.1=¢€
21 . 1=2.e=2
342 . 213 = 3413

Assoclativity




k>=3andd=k-1 this work

Q(k-1)
Forbidden color
d-regular, k-color; d =k - 1

3-regular, 3-color 2-regular, 3-color




k>=3andd=k-1 this work

Q(k-1)

Worst case graphs

two d-regular k-colored graphs A, B such that a node e
has the same d-radius view in Aand B

and Uq IS unmatched in A and matched in B
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Simplifying the graph Q(k-1)

leveraging simmetry

same radius-o° view
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Simplifying the graph

leveraging simmetr | |
JiNg Y same radius-o° view

4 4
2 2 2
3 a—1 3 ot 8
2




Templates

3-regular, 4-color
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this work

Templates Q(k-1)
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this work

Q(k-1)

Incompatible outputs
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this work

induction Q(k-1)

Two degree-i templates such that a root node
- produces different outputs;

- radius-(i - 1) neighbourhoods are identical

| = 1: base case
| > 1: by Induction
|=d =K -1: result




this work

Base case Q(k-1)




this work

Base case Q(k-1)
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Base case Q(k-1)
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degree 1 templates, same radius-0 view, different output
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Base case Q(k-1)
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Inductive step Q(k-1)




Inductive step

this work

Q(k-1)




Inductive step

this work

Q(k-1)
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degree-2 templates, same radius-1 view, different output




this work

Q(k-1)
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this work

Q(k-1)

degree-3

L1




this work

Q(k-1)

degree-2 templates, same radius-2 view, different output




Theorem 2

Lletk>=3andd=k-1

Assume a distributed algorithm that finds a maximal
matching in any d-regular k-colored graph.
Then there are two d-regular k-colored graphs A, B such
that a node VR has the same (d - 1)-radius view in A and B

and Uqg IS unmatched in A and matched in B




Theorem 2
letk>=3andd=k-1

Assume a distributed algorithm that finds a maximal
matching in any d-regular k-colored grapn.
Then there are two d-regular k-colored graphs A, B such
that a node u o has the same (d - 1)-radius view in Aand B

and Uq IS unmatched in A and matched in B

° ° A<k

Theorem 1 Q(k-1)= Q(A)

Let k be a positive integer. A deterministic distributed
algorithm that finds a maximal matching in any
anonymous, k-edge-colored graph requires at least K - 1
communication rounds




anonymous, O(A + log*¥k)
K-edge-colored

thight bound for distributed maximal matching
IN anonymous, K-edge-colored graphs

this work previous work
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Distributed maximal matching,

Greedy is optimal
IN anonymous, K-edge-colored graphs

O(A + log* k)
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