

Maximal Matching

Maximal set of vertex-disjoint edges

Being greedy

Distributed algorithm

Initially, each node only knows its incident edges

Nodes exchange messages to learn more about other nodes and edges

Time = number of communication rounds

Known bounds

nodes with ids

18:e4:fe:aa:1e:e7

$$O(\Delta + \log^* n)$$

$$\Omega(\operatorname{polylog}(\Delta) + \log^* n)$$

Δ Degree

Max number of edges incident to a node

Known bounds

 $\begin{array}{c} \text{non-local} \\ O(\Delta + \log^* n) \\ \Omega(\operatorname{polylog}(\Delta) + \log^* n) \end{array}$

$$\log^* n := \begin{cases} 0 & \text{if } n \le 1 \\ 1 + \log^* (\log n) & \text{if } n > 1 \end{cases}$$

Closing the gap

$$O(\Delta + \log^* n)$$

$$O(\Delta + \log^* n)$$

$$O(\log \Delta) + \log^* n$$

Closing the gap

$$O(\Delta + \log^* n)$$

($O(\Delta + \log^* n)$

($O(\Delta$

Simpler model log* not a simpler model log* no

nodes without ids

anonymous, k-edge-colored

- no two edges incident to the same node share the same color
- at most, k colors

anonymous, k-edge-colored

$$O(\Delta + \log^* k)$$

$$\Omega(\log^* k)$$

anonymous, k-edge-colored

 $O(\Delta + \log^* k)$

thight bound for distributed maximal matching in anonymous, k-edge-colored graphs

this work

$$\Omega(\Delta)$$

previous work

$$\Omega(\log^* k)$$

$$\Omega(\Delta + \log^* k)$$

k colors degree Δ

this work

 $\Omega(\Delta)$

$$\Delta \leq k$$

$$\Delta$$
 k

$$\Omega(k) \Rightarrow \Omega(\Delta)$$

Theorem 1

this work $\Omega(k)$

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least k - 1 communication rounds

$$\Delta \leq k$$

$$\Omega(k) \Rightarrow \Omega(\Delta)$$

$$\Omega(k-1) \Rightarrow \Omega(\Delta) \Rightarrow \Omega(\Delta + \log^* k)$$

$$\Omega(\log^* k)$$

Theorem 1

this work
$$\Omega(k-1)$$

Let k be a positive integer. A deterministic distributed algorithm that fing a maximal matching in any anonymous, k-edge-colored graph requires at least k - 1 communication rounds

Deterministic distributed greedy algorithm to find a maximal matching on a k-edge-colored anonymous graph $\Omega(\log^* k)$

Deterministic distributed greedy algorithm to find a maximal matching on a k-edge-colored anonymous graph

Distributed algorithm

radius-k neighbourhoods

Initially, each node only knows its incident edges, its radius-0 neighbourhood

radius-0 neighbourhood

radius-1 neighbourhood

radius-2 neighbourhood

Deterministic distributed greedy algorithm to find a maximal matching on a k-edge-colored anonymous graph

after 2 communication rounds

Deterministic distributed greedy algorithm to find a maximal matching on a k-edge-colored anonymous graph

to get different (local) output

need one more communication round

this greedy algorithm $\Rightarrow \Theta(k-1)$

greedy algorithm $\Theta(k-1)$

Tight lower bound for deterministic distributed maximal matching on a k-edge-colored graph

back to
$$\frac{\text{this work}}{\Omega(k-1)}$$

Local output

d-regular graph

Theorem 1

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least k - 1 communication rounds

this work
$$\Omega(k-1)$$

Theorem 1

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least k - 1 communication rounds

Theorem 2

Let $k \ge 3$ and d = k - 1

Assume a distributed algorithm that finds a maximal matching in any d-regular k-color graph.

Then there are two d-regular k-colored graphs A, B such that a node u_e has the same (d - 1)-radius view in A and B and u_e is unmatched in A and matched in B

this work $\Omega(k-1)$

Building a worst case

two d-regular k-colored graphs A, B such that a node u_e has the same d-radius view in A and B and u_e is unmatched in A and matched in B

k-colors, d-regular

d = k - 1

k >= 3 and d = k - 1

this work
$$\Omega(k-1)$$

Group Generators = $\{1, 2, ..., k\}$

Operation: concatenation

$$1.3 = 13$$
 $32.1 = 321$

Identity element: e

Inverse

1 . 1 =
$$e$$

21 . 1 = 2 . e = 2
342 . 213 = 3413

Associativity

k >= 3 and d = k - 1

this work
$$\Omega(k-1)$$

Group Generators = $\{1, 2, ..., k\}$

Operation: concatenation

$$1.3 = 13$$
 $32.1 = 321$

Identity element: e

Inverse

1 . 1 =
$$e$$

21 . 1 = 2 . e = 2
342 . 213 = 3413

^u13 u_3 ^u32

Associativity

Forbidden color

d-regular, k-color; d = k - 1

3-regular, 3-color

2-regular, 3-color

k >= 3 and d = k - 1

this work
$$\Omega(k-1)$$

Worst case graphs

two d-regular k-colored graphs A, B such that a node *e* has the same d-radius view in A and B and u_e is unmatched in A and matched in B

Simplifying the graph

leveraging simmetry

same radius-∞ view

3-regular, 4-color

Simplifying the graph

leveraging simmetry

same radius-∞ view

3-regular, 4-color

Templates

Incompatible outputs

 $\Omega(k-1)$

Induction

Two degree-i templates such that a root node

- produces different outputs;
- radius-(i 1) neighbourhoods are identical

i = 1: base case

i > 1: by induction

i = d = k - 1: result

this work $\Omega(k-1)$

Base case

Base case

degree 1 templates, same radius-0 view, different output

Base case

this work $\Omega(k-1)$

Inductive step

Inductive step

this work $\Omega(k-1)$

degree-2 templates, same radius-1 view, different output

degree-3

$\Omega(k-1)$

degree-3

$$\Omega(k-1)$$

degree-3

degree-2 templates, same radius-2 view, different output

Theorem 2

Let k >= 3 and d = k - 1

Assume a distributed algorithm that finds a maximal matching in any d-regular k-colored graph.

Then there are two d-regular k-colored graphs A, B such that a node u_e has the same (d - 1)-radius view in A and B and u_e is unmatched in A and matched in B

Theorem 2

Let $k \ge 3$ and d = k - 1

Assume a distributed algorithm that finds a maximal matching in any d-regular k-colored graph.

Then there are two d-regular k-colored graphs A, B such that a node u_e has the same (d - 1)-radius view in A and B and u_e is unmatched in A and matched in B

Theorem 1

$$\Delta \leq k$$

$$\Omega(k-1) \Rightarrow \Omega(\Delta)$$

Let k be a positive integer. A deterministic distributed algorithm that finds a maximal matching in any anonymous, k-edge-colored graph requires at least k - 1 communication rounds

$O(\Delta + \log^* k)$ anonymous, k-edge-colored

thight bound for distributed maximal matching in anonymous, k-edge-colored graphs

this work

$$\Omega(\Delta)$$

previous work

$$\Omega(\log^* k)$$

$$\Omega(\Delta + \log^* k)$$

Juho Hirvonen and Jukka Suomela, University of Helsinki Distributed maximal matching, Greedy is optimal

in anonymous, k-edge-colored graphs

$$\Theta(\Delta + \log^* k)$$

