


1 Butterfly Networks (23 Points)

Letd e  N.  The d-d imensionalbut ter f ly  Bt r (d)  is  agraph wi th  nodeset  V : ld+ 1]  x  [2 ]d  and
edge set E : Et U Ez with

o  E t  -  
{ { ( i , o ) ,  ( i + r , o ) }  |  i  €  [ d ] ,  a  €  l 2 l d )

o  E z :  { { ( i ,  a ) , ( i + I , 1 3 ) }  l o ,  P  e  l 2 l o ,  a  a n d  p  d i f f e r  o n l v  a r  r l i e  i t ä  p o s i t i o n } .

The three-dimensional butterf ly Bf (3) is depicted in F igure 1.

a) (3) In a butterfly BF(d), rvhat is the maximum uumber of shortest paths between any vertex
on layer 0 and any vertex on layer d (so-called end-to-end-paths)? Explain!

b) (3) If the d + 1. layers are merged together, we get a d dimensional hypercube (consisting
of n:2d vert ices). What is t l ie maximum number of shortest paths between any pair of
vert ices in the hl,percube? Explain!

c) ( )  In a butterf l ,v BF(d), describe an instance of a permutation routing problem fbr which
many shortest paths (as many as you can get) pass through the sarne edge. How many paths
pass t l trough this edge? Recall  that a permutation routing problem instance in a butterf ly
requests for each I'ertex on layer 0 a path to a specific vertex on layer d, so that no vertex
on layer d appears ntore than once as a destination.

The packing problem in a butterf ly BF(d) takes a set of packets at a subsequence of s 12d
vertices on layer 0 (rvith one packet per vertex) and routes them to the first s vertices on layer d
in such a way that the relative order of the packets is preserved. Intuitively, this "packs" packets
on vertices with "spaces" in between on layer 0 into consecutive vertices on layer d (see Figure 1).
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Figrrre l :  The subsequence in
Packets from these vertices are

( 0 1 1 )  ( 1 0 1 ) (1 10)

th is example consists of  the (c i rc led) vert ices 000,  010,  011,  101,  and 110,
routed to the first 5 vertices on layer d, preserving the relative order.

d) (7) Initially, a packet at a vertex i on layer 0 does not know its destination vertex on layer d.
Propose an efficient distributed algorithm tliat lets each packet on layer 0 find its destination
vertex number, and show how many steps this takes in total.

e) (6) Assume now that each packet ktrows its destination. Greedy routing sends each packet
on a shortest patli (end-to-end). Prove that all greedy routes are vertex disjoint.
Hint: Prove first that no two such paths enter a vertex on layer 1, and then use induction
over the layers.



2 Problems in Complete Graphs (25 Points)

We are given the complete graph K,, consisting of n nodes with undirected edges between eaclt

pair of nodes. Each node u has a unique identifier id, and each edge e has a positive weight w(e).

You can assume that no two edge weights are equal. Each node further knows the weight of all

incident edges and the identifiers of the nodes at the other end of the edges. Thus, every node

knows al l  other nodes.
We use the synchronous model of communication where in each round each node can send

(potentially different) messages to all its neighbors, receive messages, and perform some local

computation. The size of any message is restricted in that only a constant number of node

identifiers and edge weiglrts, and additionally a constant number of other numbers of the same

magnitude as identifiers and weights, can be sent in a single routrd.

a) (3) A specific node u wants every other node to know all its n - I edge weights. Give an

algorithm tliat achieves this goal as fast as possible, in particular requiring much less than

n rounds!

In the lecture, rve discussed algori thms to compute the rninirnum spanning tree (N{ST) in this

model. Now we are interested in f inding the n l igirtest edges overal l ,  i .e.,  after the algori thm

terminates, every node knows the weights of the n lightest among att (!) edges and which nodes

these edges connect.
Consider the fol lorving simple algori thm: Euery node sends i , ts i th t ightest edge to al l  other

nodes in roundi. After a sufficiently large number of rounds, the algorithm term'inates and each

node knows that the n, smallest wei,ghts zt has learnt belong to the n lightest edges ouerall.

b) (8) Show arl  example (that means, an assignment of edge weights to the nodes) where the

above algorithm is as slow as possible!
Hint: The problem with this simple algorithm is that nodes potentially send edge weights

that have already been broadcast (by other nodes) before.

In order to overcome tlie problem mentioned above, we modify the algorithm in the following

way: In each r-ound, br-oadcast the li,ghtest i,ncident edge weigh,t that has not already been broadcast

before.

c) (10) Prove an upper bound on the number of rounds required when the modified algorithm

is used! N{oreover, prove that your bound is asymptotically tight by providing a worst-case

example (of the same asymptotic time complexity)!

Now, we are going to derive a randomized algorithm whose erTtected time complexity is only

O(logn). Use the fact that a single node can determine the nth smallest among all (!) edge

weights in O(logn) rounds in expectat ion.l

d) (4) Given that node u knows the nth smallest edge weight (after O(logn) rounds), how can

all nodes (u and all other nodes) learn all the weights of the n lightest edges? Describe an

algorithm that solves this problem! The total time complexity must not exceed O(log n)

roundsl

rNote that this algori thm cannot be paral lel izedl

al l  n l ightest edges ' in paral lel in O(log n) t ime.

This means that this subroutine cannot be used to compute
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3 MIS on Planar Graphs (18 Points)

In tlre lecture, we showed that a maximum independent set (N,IIS) on a general graph 6 : (V, E)
can be computed using a randomized algori thm in O(log n) synchronized rounds in expectat ion.
As a reminder, a single round of the algorithm consists of the fbllowing tliree steps:

l- .  Node tr marks i tself  with probabil i ty #^r, where d(t ' )  is the current clegree of t .r .

2. If no higlier degree neighbor of u is also marked, node u joins the NIIS. If a higher degree
neighbor of tr is marked, node u unniarks itself again. If the neighbors have the same degree,
ties are broken arbitrarily, e.g. by identifier.

3. Delete al l  nodes that joined the N'IIS and t l ieir neighbors (that cannot join the N4IS anymore).

It is now your task to prove that this algorithm constructs a N'IIS on a planar graph also in
O(1og n) rounds in expectat ion. A planar graph is a graph that can be drarvn so that no edges
intersect.

Note that this immediately follows from the theorem proven in the lecture, but the proof for
planar graphs is substantially easier, because a planar graph can have at most 3n - 6 edges.

a) (4) Prove that at least nf 7 nodes in a planar graph liave degree at most 6.

b) (5) Analogous to the proof in the lecture, prove that a node with degree at most 6 joins the
MIS in Step 2 with probabil i ty at least 1124.

c) (4) Using both a) and b), prove that the algori thm terminates after O(logn) rounds in
expectat ion.

As all planar graphs have a constant fraciion of nodes rvhose degree is at most 6, it is also
easy to compute a NIIS deterministically using another algorithm presented in the lecture as a
subroutine.

d) (5) Describe a determinist ic algori thm that computes a N,IIS on planar graphs in O(log n log. n)
sync l r ronous rounds!2

2log*n is the number of t imes the logarithm function must

or equal to 1.

be i terat ively appl ied before the result is less than



4 Network Flows (12 Points)

a) (3) State the maxflow-mincut theorem. Explain the relevant terms (marfl,ow and mincut).

b) (4) Prove or disprove the following assertion: A mi,ncut remai,ns a mi,ncut i,f we uniformly

increase the capacity of euerA edge in the network by 1.3

Consider the following method to find a maximum cardinality matching (the maximum number

of disjoint edges) in a general (non-bipartite) graph G : (V,.8) using network flows.

1. Construct a bipartite graph l/, with vertex set -E U l/. (That is, each edge and vertex of G

corresponds to a node in our bipart i te graph.)

2. Add an art i f ic ial source node s and an art i f ic ial sink t.

3. Join s to each node of E, r,vi th capacity 2.

4. Join each node of V to t ,  rvi th capacity 1.

5. For each edge e- (u,,r,) ,  put edges of capacity'  1 betrveen e and z, and e and u.

6. The cardinal i ty of the maximum cardinal i t l '  matching in G is half  of the maxflow from s to

f in this netrvork 11.

The intuit ion behind this algori thm is that each edge in the matching covers 2 vert ices, so by

sending a f low of 2 units to each edge, and placing a capacity of 1 at each node, we can model the

matching probiern as a flow problem.

c) (5) Either prove that tliis algorithm is always correct, or give a counterexample.

3In other words, suppose (A, B) is a mincut in the original network. Then, (A, B) is sti l l a mincut (although
with a different capacity value) in the modified network.



5 Network Failure G2 Points)

We are given an undirected graph G with vertex set V and edge set ,8. An (e ,li)-detection
set is a set of vertices with the property that if (adversarial) deletion of up to k edges breaks the
graph into two components, each containing at least an e fraction of the node set V, then at least

two nodes of the detection set are also disconnected. If any two nodes in the detection set fail to

communicate, we declare a cut.

a) (3) Suppose the graph is a path graph (a l inear chain of nodes). What is the optimal
(smallest) size of a (e ,  k)-detection set?

b) (3) Is it true that if each node in G has degree at least k + 1,, then the adversary cannot
disconnect the network (by deleting at most k edges)? JustiS' your answer.

c) (6) Assume now that you are given an arbitrary tree 7 consisting of n nodes, and a detection
set (a subset of the nodes) in this graph. You can further assume that the uumber of nodes
in the detection set is even.

The goal is to match up each detector ri'ith a partner detector. Describe an asynchronous
distributed algorithm, starting at the leaves of the tree, that finds for each detector a partner

in such a way that all the paths connecting tu'o partner detectors are pairwise edge-disjoint.


