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Abstract

The glass ceiling effect has been defined in a recent US Federal Commission report as
“the unseen, yet unbreakable barrier that keeps minorities and women from rising to the
upper rungs of the corporate ladder, regardless of their qualifications or achievements".
It is well documented that many societies and organizations exhibit a glass ceiling. In this
paper we formally define and study the glass ceiling effect in social networks and propose
a natural mathematical model, called the biased preferential attachment model, that
partially explains the causes of the glass ceiling effect. This model consists of a network
composed of two types of vertices, representing two sub-populations, and accommodates
three well known social phenomena: (i) the “rich get richer" mechanism, (ii) a minority-
majority partition, and (iii) homophily. We prove that our model exhibits a strong
moment glass ceiling effect and that all three conditions are necessary, i.e., removing any
one of them will prevent the appearance of a glass ceiling effect. Additionally, we present
empirical evidence from a mentor-student network of researchers derived from the DBLP
database that exhibits both a glass ceiling effect and the above three phenomena.

1 Introduction

Attaining equality of opportunity is a fundamental value in democratic societies, therefore
existing inequalities present us with a major concern. A particularly sore example is that
many highly-qualified women and members of minority groups are unable to realize their
full potential in society (and specifically in the workforce) due to a phenomenon commonly
referred to as the glass ceiling, a powerful visual image for an invisible barrier blocking women
and minorities from advancing past middle management levels [20]. This concern was raised
in a recent US Federal commission report [18]:

The “glass ceiling"... is the unseen, yet unbreakable barrier that keeps minorities
and women from rising to the upper rungs of the corporate ladder, regardless of
their qualifications or achievements.

The existence of the glass ceiling effect is well documented [8, 16, 31]. In academia, for exam-
ple, gender disparities have been observed in the number of professors [36], earnings [42, 13, 36]
∗Supported in part by the Israel Science Foundation (grant 1549/13).
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funding [30] and patents [10]. A recent study [26] analyzed gender differences in research out-
put, research impact and collaborations based on Thomson Reuters Web of Science databases.
When prominent author positions were analyzed by sole authorship, first-authorship and last-
authorship, it was discovered that papers with women in those leading roles were less fre-
quently cited. The question we focus on in this article concerns the causes of this phenomenon.
What are the invisible mechanisms that combine to create the glass ceiling effect, and in par-
ticular, what is the role of the social network in creating this effect? Many papers discuss
possible causes of the glass ceiling effect and potential solutions to it, e.g., [9, 15, 24, 28], but
to the best of our knowledge, the present work is the first attempt to define the glass ceiling
mathematically, study it in the context of the social network structure, and to propose a
mathematical model capturing this phenomenon.

In order to talk about the glass ceiling we have to agree on a measure of success in a
social network. Following the traditional approach that sees network edges as the “social
capital” of the network, we define successful members of a social network to be high degree
vertices, namely, the vertices that maintain a large number of connections, corresponding
to high influence. Based on this we propose formal definitions for glass ceiling effects as a
first contribution. Note that it is not clear how to capture the nature of a delicate dynamic
mechanism like the glass ceiling in a concise yet precise way. To represent the dynamic nature
we examine sequences of networks and their behavior when the number of vertices grows.

Consider the following three well-accepted observations on human behavior related to
forming networks, namely (i) the “rich get richer” mechanism, (ii) minority-majority partition
(slower growth rate of the red group in the network), and (iii) homophily (affinity towards
those similar to oneself). The main result of the paper is that under these three simple and
standard assumptions the glass ceiling effect naturally arises in social networks. Let us first
briefly describe these three social phenomena.
The “rich get richer” mechanism. This mechanism describes and explains the process of
wealth concentration. It follows the basic idea that newly created wealth is distributed among
members of society in proportion to the amount they have already amassed. In our setting,
where the degree of the vertex captures its level of social wealth, this mechanism predicts
that people may try to connect more often to people who already have many connections. In
order to profit from their social wealth or because they are more visible in the network.
Minority-majority partition. Many social groups exhibit unequal proportions of men and
women. Certain occupations, such as construction, law enforcement, politics and computer
science, tend to have a higher proportion of men. For example, the ratio of women taking up
studies in the computing discipline varies per year and region between 10% and 35% [3, 21, 40,
46]. Other professions, such as elementary school teaching, nursing, and office administration,
are occupied by a higher proportion of women. In fact, it is difficult to find an occupation with
a balanced ratio of genders (this also holds for many other social partitions, e.g., ones based
on ethnicity or family background). This imbalance is the second phenomenon underlying
our model.
Homophily. It is a well established social phenomenon that people tend to associate with
others who are similar to themselves. Characteristics such as gender, ethnicity, age, class
background and education influence the relationships among human beings [27] and similar-
ities make communication and relationship formation easier.

Based on these phenomena we propose a model obtained by applying the classical pref-
erential attachment model (see Barabasi and Albert [2]) to a bi-populated minority-majority
network augmented with homophily. The resulting model is hereafter referred to as the Bi-
ased Preferential Attachment Model. We proof that networks generated by this model exhibit
a glass ceiling structure.

As a running example serving to illustrate the issue, let us consider the social network of
mentor-student relationships in academia. With time, new (male and female) PhD students
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arrive and join the network. Upon arrival, each student needs to select a mentor. Over
time, graduated students may become mentors themselves and some mentors become more
successful than others (e.g., in terms of the number of students they advise). How can one
determine that there is a glass ceiling effect in this network? And if such an effect exists,
what are the roots of its emergence? Is it merely a result of the females being a minority
in the network, or is it some sort of discriminatory process? To complement our theoretical
analysis with data from real networks we study these questions on data from publications in
computer science. Using the definitions and insights from the model we observe homophily
and glass ceiling effects in a mentor-student network derived from this data.

Overview of Contributions

The paper’s main contributions are the following.

(1) Formal definitions for the glass ceiling effect in social networks using graph sequences
of growing size. The definitions capture the dynamic nature of the glass ceiling effect
by measuring the decreasing fraction of minorties among higher degree nodes and the
ratio of the second moment of the degree sequences of the minority and majority.

(2) A model for bi-populated social networks extending the classical preferential attachment
model [2], and augment it by including two additional basic phenomena, namely, a
minority-majority partition, and homophily.

(3) A rigorous analysis of this extended model to study its suitability as a possible mecha-
nism for the emergence of a glass ceiling effect. The main tool used is the study of the
degree distribution with Doob martingales. We also show that omitting any one of the
three ingredients of our model prevents the occurrence of a glass ceiling effect.

(4) Empirical evidence for a mentor-student network exhibiting preferential attachment,
minority-majority partition, homophily, and a glass ceiling effect.

Roadmap

The rest of the paper is organized as follows. In the next section we review related work, then
in Section 3 we introduce the model and the formal definitions of the involved properties:
glass ceiling, influence inequality and homophily tests. In Section 4 we state our two main
theorems, and in Section 5 we provide empirical evidence for the existence of all our necessary
ingredients and for the glass ceiling effect in a student-mentor network of researchers in
computer science. We conclude with a discussion.

2 Related Work

Homophily in social networks. Different characteristics such as gender, ethnicities, age, class
background and education influence the relationships human beings form with each other [27].
McPherson et al. [34] survey a variety of properties and how they lead to particular patterns in
bonding. Gender-based homophily can already be observed in play patterns among children
at school [32, 43]. Eder and Hallinan [12] discovered that young girls are more likely to resolve
intransitivity by deleting friendship choices, while young boys are more likely to add them.
Overall, children are significantly more likely to resolve intransitivity by deleting a cross-sex
friendship than by adding another cross-sex friendship [47]. These results show that gender
influences forming cliques and larger evolving network structures. These trends displaying
homophily and gender differences in resolving problems in the structure of relationships mean
that boys and girls gravitate towards different social circles. As adults, homophilic behavior
persists, and men still tend to have networks that are more homophilic than women do. This
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behavior is even more pronounced in areas where they form the majority and in relationships
exchanging advice and based on respect, e.g., mentoring [22, 23, 5, 41]. A homophilic network
evolution model was studied in [4]. In this model new nodes connect to other nodes in two
phases. First they choose their neighbors with a bias towards their own type (the model
allows a positive as well as a negative bias). In a second phase they choose their neighbors
unbiased from the neighbors of their biased neighbors. The authors show, that the second
phase overcomes the bias in the first phase and if the second phase is unbiased, the network
ends up in an integrated state. They illustrate their model with data on citations in physics
journals.
Gender disparity in science and technology. Gender disparities have been observed in the
number of professors [13, 36], earnings [42], funding [30] and patenting [10]. A related aspect
is the “productivity puzzle”: men are more successful when it comes to number of publications
and name position in the author list [48], for reasons yet unclear. Some conjectures raised
involve (unknown) biased perceptions related to pregnancy/child care [6]. E.g., it was ob-
served in [36] that science faculty members of both sexes exhibit unconscious biases against
women. Simulations showed that even small male-female differences in work performance
ratings can lead to substantially lower promotion rates for women, resulting in proportion-
ately fewer women than men at the top levels of the organization [33]. Gender differences
in research output, research impact and collaborations was analyzed in a study based on
Thomson Reuters Web of Science databases [26]. It was not only revealed that papers with
women in prominent author positions (sole authorship, first-authorship and last-authorship)
were cited less frequently but the authors also found that age plays an important role in
collaborations, authorship position and citations. Thus many of the trends observed therein
might be explained by the under-representation of women among the elders of science. In
other words, fixing the “leaky pipeline” [45] is key for a more equal gender distribution in
science.
Minority of women in Computer Science. In the computing discipline, the ratio of women
taking up studies varies by year and region between 10% and 35% [3, 21, 40, 46] ( except in
Malaysia, where women form a narrow majority [37]). This under-representation has been
investigated [44, 19, 49] and remedial strategies have been propoesd [39, 17]. There is a
positive feedback loop [25]: the lack of women leads to a strong male stereotype which drives
away even more women. Thus the increase of the relative number of women in computer
science is argued to be the best of the investigated strategies, up to a “critical mass" of
women. However, as pointed out by Etzkowitz [14], even achieving a critical mass of 15%
women might not guarantee that the effects of a critical mass come into play.

3 Model and Definitions

3.1 Biased preferential attachment model

Our first contribution is in proposing a simple bi-populated preferential attachment model.
In a gist, our model is obtained by applying the classical preferential attachment model
(see Barabasi and Albert [2]) to a bi-populated minority-majority network augmented with
homophily. The resulting model is hereafter referred to as the Biased Preferential Attachment
Model. Formally, for r ≤ 1/2 and 0 ≤ ρ ≤ 1 let G(n, r, ρ) be a variant of the preferential
attachment model in which r represents the relative arrival rate of the red vertices (and hence
the expected fraction of red vertices in the network converges to r as well, as the relative
size of the initial population becomes smaller over time), and ρ represents the level to which
homophily (incorporated by using rejection sampling) is expressed in the system: for ρ = 1
the system is uniform and exhibits no homophily, whereas for ρ = 0 the system is fully
segregated, and all added edges connect vertex pairs of the same color.
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Let us describe the model in more detail. Denote the social network at time t by Gt =
(Vt, Et), where Vt and Et, respectively, are the sets of vertices and edges in the network at
time t, and let δt(v) denote the degree of vertex v at time t. The process starts with an
arbitrary initial (connected) network G0 in which each vertex has an arbitrary color, red or
blue. (For simplicity we require that a minimal initial network consists of one blue and one
red vertex connected by an edge, but this requirement can be removed if ρ > 0). This initial
network evolves in time as follows. In every time step t a new vertex v enters the network.
This vertex is red with probability r and blue with probability 1− r. On arrival, the vertex v
chooses an existing vertex w ∈ Vt to attach to with probability p proportional to w’s degree
at time t, i.e., P [w is chosen] = δt(w)/

∑
u∈Vt

δt(u). Next, if w’s color is the same as v’s color,

then an edge is inserted between v and w; if the colors differ, then the edge is inserted with
probability ρ, and with probability 1−ρ the selection is rejected, and the process of choosing a
neighbor for v is restarted. This process is repeated until some edge {v, w} has been inserted.
Thus in each time step, one new vertex and one new edge are added to the existing graph.

Figure 1 presents four examples of parameters for our model in the case of a 300-vertex
bi-populated social network. First, Figure 1(a) provides an example for the minority &
homophily case with r = 0.3 and ρ = 0.7 so the red vertices are a strict minority in the
network and there is some homophily in the edge selection. The next three sub-figures
present special cases. Figure 1(b) illustrates the no minority case (equal-size populations,
i.e., r = 0.5) with homophily (ρ = 0.7). Figure 1(c) considers the no homophily case (ρ = 1)
with minority (r = 0.3). The last extreme case, shown in Figure 1(d), is absolute homophily,
where ρ = 0, but the red vertices are still in the minority (r = 0.3). This case results in fully
segregated societies, namely, societies where members connect only to members of their own
color. In this extreme case, the society in effect splits into two separate networks, one for
each of the two populations (except for the single edge connecting the initial red and blue
vertices).

Consider as an example for our model the social network of mentor-student relationships
in academia. With time, new PhD students arrive, but for some fields female students arrive
at a lower rate than male students. Upon arrival, each student needs to select exactly one
mentor, where the selection process is governed by the mechanisms of preferential attachment
and homophily. Namely, initially the student selects the mentor according to the rules of
preferential attachment and then homophily takes its role, rejecting the selection with some
probability if their gender is different enforcing a re-selection. Over time, graduated students
may become mentors and some mentors become more successful than others (in terms of the
number of students they advise). A glass ceiling effect can be observed in this network if,
after a long enough time interval, the fraction of females among the most successful mentors
tends to zero.

We would like to emphasize that the homophily effect that we look at is quite minor
and “seemingly harmless”, in two ways. First, it is “symmetric”, i.e., it applies both to male
students with respect to female mentors and to female students with respect to male mentors.
Second, it does not adversely affect the student, in the sense that the student always gets
admitted in our model. The only tiny (but ominous) sign for the potential dangers of this
homophilic effect is that it does affect the professor: a male professor who rejects (or is
rejected by) some fraction of the female candidates risks little, whereas a female professor
who rejects (or is rejected by) some fraction of the male candidates will eventually have
fewer students overall, since most of the applicants are male. In fact, as we show later on,
this homophily-based consequence will only impact her if her future potential students use
preferential attachment to select their mentors.
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minority & homophily: no minority:
r = 0.3, ρ = 0.7 r = 0.5, ρ = 0.7

(a) (b)

no homophily: absolute homophily:
r = 0.3, ρ = 1 r = 0.3, ρ = 0

(c) (d)

Figure 1: Examples of the Biased Preferential Attachment (BPA) model with various param-
eters. All examples depict a 300-vertex bi-populated network generated by our BPA model
starting from a single edge connecting a blue and a red vertex (with vertex size proportional
to its degree). (a) Minority & homophily: r = 0.3 (resulting in about 30% red vertices) and
ρ = 0.7 (meaning that a new edge that connects red-blue vertices (i.e., a “mixed” edge) is
accepted with probability 0.7 and otherwise rejected and sampled again, according to Pref-
erential Attachment). (b) No minority & homophily: r = 0.5 and ρ = 0.7. (c) Minority &
no-homophily: r = 0.3 and ρ = 1. (d) Minority & absolute homophily: r = 0.3 and ρ = 0
(indicating complete homophily in edge selection which results in two separate networks, one
for the red vertices and the second for the blue vertices, plus a single initial connecting edge).

3.2 Influence inequality and glass ceiling

Our second contribution is to propose formal definitions of the glass ceiling effect in social
networks. Consider a bi-populated network G(n) consisting of m edges and n nodes of two
types, the group R and the group B. We assume that the network size n tends to infinity
with time. Let n(R) and n(B), respectively, denote the number of red and blue nodes, where
n(R) + n(B) = n. The red nodes are assumed to be a minority in the social network, i.e.,
denoting the percentage of red nodes in the network by r, we assume 0 ≤ r < 1

2 . For a node
v in G, let δ(v) denote its degree. Let d(R) and d(B) denote the sum of degrees of the red and
blue nodes, respectively, where d(R) + d(B) = 2m. As the degree of a node corresponds to its
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power, the sum of the degrees of a certain kind of nodes represents the power of this group
in the network. Let topk(R) (respectively, topk(B)) denote the number of red (resp., blue)
nodes that have degree at least k in G. When G(n) is a random graph, we replace variables
by their expectations in the definitions below, e.g., we use E[n(R)], E[d(R)], and E[topk(R)].
Next we provide formal definitions for the social phenomena discussed in the introduction.
Influence inequality for the minority is defined in the following way.

Definition 1 (Influence inequality). A graph sequence G(n) exhibits a influence inequality
effect for the red nodes if the average power of a red node is lower than that of a blue (or a
random) node, i.e., there exists a constant c < 1 such that

lim
n→∞

1
n(R)

∑
v∈R δ(v)

1
n(B)

∑
v∈B δ(v)

=
d(R)/n(R)

d(B)/n(B)
≤ c . (1)

The definition of the glass ceiling effect is more complex. We interpret the most powerful
positions as those held by the highest degree nodes, and offer two alternative definitions.
The first tries to capture the informal, “dictionary” definition, which describes a decreasing
fraction of women among higher degree nodes, i.e., in the tail of the graph degree sequence.
Formally:

Definition 2 (Tail glass ceiling). A graph sequence G(n) exhibits a tail glass ceiling ef-
fect for the red nodes if there exists an increasing function k(n) (for short k) such that
limn→∞ topk(B) =∞ and

lim
n→∞

topk(R)

topk(B)
= 0 .

The second definition considers a more traditional, distribution-oriented measure, the
second moment of the two degree sequences. Formally:

Definition 3 (Moment glass ceiling). A graph sequence G(n) exhibits a moment glass ceiling
g for the red nodes where

g = lim
n→∞

1
n(R)

∑
v∈R δ(v)2

1
n(B)

∑
v∈B δ(v)2

.

When g = 0, we say that G(n) has a strong glass ceiling effect. The intuition behind
this definition is that a larger second moment (and assuming a similar average degree, i.e.,
no influence inequality) will result in a larger variance and therefore a significantly larger
number of high degree nodes. As we show later, the above two definitions for the glass ceiling
are independent, in the sense that neither of the effects implies the other.

Note that these definitions are very general and do not rely on any assumptions of the
degree distribution. In particular it is not necessary for networks that exhibit a glass ceiling
effect to follow a power law degree distribution.

Testing for homophily in a bi-populated network is based on checking whether the number
of mixed (i.e., red-blue) edges is significantly lower than to be expected if neighbors were to
be picked randomly and independently of their color. Formally:

Definition 4 (Homophily Test). [11] A bi-populated social network exhibits homophily if the
fraction of mixed edges is significantly less than 2r(1− r).

The above definition implicitly assumes that there is power equality between the colors
and therefore is not always accurate. A more careful test should take the average degree of
each gender into account.

Definition 5 (Normalized Homophily Test). A bi-populated social network exhibits homophily
if the fraction of mixed edges is significantly less than 2d(R)

2m

(
1− d(R)

2m

)
.

An illustration of these definitions can be found in Figure 2.

7



a

b

c

d

e

f

g

j

h

i

b a c e d j

1

2

3

4

5

6

7

8

f g i h

1

2

3

4

5

6

7

8

(a) (b)

Figure 2: (a) An example bi-populated social network with blue and red populations of 6 and
4 vertices respectively. (b) The degree sequences of both populations (i.e., the sequence spec-
ifying for each vertex its degree in the network). Considering the tail glass ceiling definition,
there are four blue vertices of degree greater or equal to 4, but only two such red vertices
so top4(R)/top4(B) = 1/2. For the moment glass ceiling definition, the second moment for
the blue vertices is 1

6(82 + 72 + 52 + 42 + 32 + 32) = 28.6, while for the red vertices it is
1
4(72 + 52 + 32 + 32) = 23 and the ratio is 23/28.6. To exhibit a glass ceiling, these ratios
should converge to zero as the network size increases. The average degree of the blue vertices
in the network is 5 while the average for the red vertices is 4.5. It is possible that this numbers
remain (almost) the same while the network size increases and the network exhibits a glass
ceiling. Regarding homophily, in a random network with the same population, i.e., 60% blue
vertices and 40% red vertices, one expects to find 36% blue-blue edges, 16% red-red edges
and 48% mixed edge. If we take the degree sequences into account we would expect to see
46.8% mixed edge. In the above example network we observe only about 33% mixed edges,
which indicates the effect of homophily.

4 Theoretical Results

4.1 Influence inequality and glass ceiling

Our main theoretical result (Thm. 4.1) is that in the biased preferential attachment model,
G(n, r, ρ), the glass ceiling effect emerges naturally. Additionally, this process generates a
influence inequality, an independent property that is weaker than the glass ceiling effect.
Influence inequality describes the situation where the average degree of the minority is lower
than that of the majority (although their members possess the same qualifications). Moreover,
we also show (Thm. 4.2) that all three ingredients (unequal entry rate, homophily, preferential
attachment) are necessary to generate what we call a strong glass ceiling effect, i.e., removing
any one of them will prevent the appearance of a glass ceiling effect. One may suspect that
the glass ceiling effect is in fact a byproduct of influence inequality or unequal qualifications;
we show that this is not the case. Minorities can have a smaller average degree without
suffering from a glass ceiling effect. We also note that our results are independent of the
starting condition. Even if the network initially consisted entirely of vertices of one color, if
a majority of the vertices being added are of the opposite color, then eventually the vertices
that rise to the highest positions will be of the new color.

Theorem 4.1. Let 0 < r < 1
2 and 0 < ρ < 1. For G(n, r, ρ) produced by the Biased

Preferential Attachment Model the following holds:

1. G(n, r, ρ) exhibits influence inequality, and

2. G(n, r, ρ) exhibits both a tail and a strong glass ceiling effects.
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Moreover, all three ingredients are necessary to generate a strong glass ceiling effect.

Theorem 4.2. 1. G(n, r, ρ) will not exhibit a glass ceiling effect in the following cases:

(a) If the rate r = 1
2 (no minority).

(b) If ρ = 1 (no homophily)

(c) If ρ = 0 (no heterophily).

2. G(n, r, ρ) will not exhibit a strong glass ceiling effect if the attachment process is uniform
rather than preferential, i.e., a new vertex at time t selects an existing vertex to attach
to uniformly at random from all vertices present at time t − 1 (and for any value of r
and ρ).
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Figure 3: Graphical illustrations of our formal claims concerning the glass ceiling effect in
the Biased Preferential Attachment model. Each figure presents the degree distribution (on
a log-log scale) of the red and blue populations from a 1,000,000-vertex network generated
by the BPA model with the same parameters as the corresponding figure in Figure 1. (a)
Minority & homophily: r = 0.3 and ρ = 0.7. Both populations exhibit a power-law degree
distribution but with different exponents. Since β(R) > β(B), there is a glass ceiling effect for
the red vertices. (The “noise” on the right-hand side of the graph stems from the fact that
there are much fewer samples at the high-end of the range.) (b) No minority & homophily:
r = 0.5 and ρ = 0.7. Both populations exhibit a power-law degree distribution with β = 3,
which indicates no glass ceiling effect. (c) Minority & no-homophily: r = 0.3 and ρ = 1.
Again, the distributions indicate no glass ceiling effect. (d) Minority & absolute homophily:
r = 0.3 and ρ = 0. Again, the distributions indicate no glass ceiling effect.

Let us graphically illustrate the above results. Figure 3 presents the degree distributions
of both the red and blue populations (as well as of the entire population) for four 1,000,000-
vertex networks with parameters identical to the examples in Figure 1. The plots clearly
show (and we prove this formally) that in all cases the degree distribution of both populations
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follows a power-law. (A subset W of vertices in a given network obeys a power-law degree
distribution if the fraction P (k) of vertices of degree k in W behaves for large values of k
as P (k) ∼ k−β for parameter β.) All figures present (in log-log scale) the cumulative degree
distributions, so a power-law corresponds to a straight line (we present the samples together
with the best-fit line). Theorem 4.1 corresponds to Figure 3(a) with theminority & homophily
settings of 0 < r < 1

2 and 0 < ρ < 1. In this case (and only in this case), the power-law
exponents of the red and blue populations, β(R) and β(B) respectively, are different, where
β(R) > β(B); we prove that this will eventually lead to both tail and strong glass ceiling effect
for the red vertices. Theorem 4.2 corresponds to Figures 3(b) and 3(c). The figures show that
in the case of no minority (i.e., r = 0.5) or no homophily (i.e., ρ = 1), both β(R) and β(B)
are the same (in particular they are equal to 3 as in the classical Preferential Attachment
model), and therefore there will be no glass ceiling effect. Figure 3(d) considers the last
extreme case of absolute homophily. Perhaps surprisingly, in this case a glass ceiling effect
also does not occur, as each sub-population forms an absolute majority in its own network
(see again Figure 1(d)). The case of no preferential attachment (which does not lead to a
glass ceiling) is more delicate and presented in Section 4.5.
Proof Overview of Theorem 4.1. The basic idea behind the proof of Theorem 4.1 is to
show that both populations in G(n, r, ρ) have a power law degree distribution but with
different exponents. Once this is established, it is simple to derive the glass ceiling effect
for the population with a higher exponent in the degree distribution. To study the degree
distribution of the red (and similarly the blue) population, we first define αt to be the random
variable that is equal to the ratio of the total degree of the red nodes (i.e., the sum of degrees
of all red nodes) divided by the total degree (i.e., twice the number of edges). We show
that the expected value of αt converges to a fixed ratio independently of how the network
started. The proof of this part is based on tools from dynamic systems. Basically, we show
that there is only one fixed point for our system. However, determining the expectation of
αt is not sufficient for analyzing the degree distribution, and it is also necessary to bound
the rate of convergence and the concentration of αt around its expectation. We used Doob
martingales for this part. Using the high concentration of the total degree, we were able
to adapt standard techniques to prove the power law degree distribution. Next we give an
overview of the proofs and the helping lemmas.

4.2 Proof of Theorem 4.1 Part 1

An urn process. The biased preferential attachment model G(n, r, ρ) process can also be
interpreted as a Polya’s urn process, where each edge in the graph corresponds to two balls,
one for each endpoint, and the balls are colored by the color of the corresponding vertices.
When a new (red or blue) ball y arrives, we choose an existing ball c from the urn uniformly
at random; if c is of the same color as y, then we add to the urn both y and another ball of
the same color as c; otherwise (i.e., if c is of a different color), with probability ρ we still add
to the urn both y and another ball of the same color as c, and with probability 1−ρ we reject
the choice of c and repeat choosing an existing ball c′ from the urn uniformly at random.
To analyze influence inequality, there is no need to keep track of the degrees of individual
vertices; the sum of the degrees of all vertices of R is exactly the number of red balls in the
urn.

Denote by ut(R) (respectively, ut(B)) the number of red (resp., blue) balls present in the
urn at time t ≥ 0. Altogether, the number of balls at time t is ut = ut(R) + ut(B). Initially,
the system contains u0 balls. Noting that exactly two balls join the system in each time step,
we have ut = u0 + 2t. Note that while ut(R) and ut(B) are random variables, ut is not.
Denote by αt the random variable equal to ut(R)/ut, the fraction of red balls in the system
at time t.

10
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Figure 4: Function F (x) with the parameters r = 1/3 and ρ = 1/2, with its only fix point in
the interval [0, 1] and y = x . The arrows represent the iterations of applying F (x) repetitively
onto itself, converging to its fix point.

Convergence of expectations. We first claim that the process of biased preferential attachment
converges to a ratio of α red balls in the system. More formally, we claim that regardless of
the starting condition, there exists a limit

α = lim
n→∞

E[αt] .

We prove our claim step by step and start with presenting a function F (x) describing the
expected percentage growth of red balls from time step t to time step t + 1. F (αt) is the
expected number of red balls at time t+ 1 given the ratio of red balls at time t.

Lemma 4.3. E[αt+1|αt] = αt +
F (αt)− αt

t+ 1
, where

F (x) =

(
1− (1− r) (1− x)

1− x(1− ρ)
+ r

x

1− (1− x)(1− ρ)

)
/2.

Proof. We start from an arbitrary ratio α0 = u0(R)/u0. Observe that given that the new
vertex is blue, the probability p that it attaches to a blue vertex satisfies p = (1 − αt) +
αt(1 − ρ)p, hence p = (1 − αt)/(1 − αt(1 − ρ)). Given that the new vertex is red, the
probability p′ that it attaches to a red vertex satisfies p′ = αt + (1 − αt)(1 − ρ)p′, hence
p′ = αt/(1− (1−αt)(1− ρ)). We know that in each step the sum of the degrees increases by
2 in total so ut+1 = ut + 2 and if Xt is the random variable that denotes the number of new
red balls at time t, we obtain:

Xt+1 =


0 with probability (1− r) (1−αt)

1−αt(1−ρ) , (a blue ball entered and chose a blue ball)
2 with probability r αt

1−(1−αt)(1−ρ) , (a red ball entered and chose a red ball)
1 with the remaining probability, (a blue ball chose a red ball or vice versa)

and we have ut(R) =
∑t

0Xi. We now define:

E[ut+1(R)− ut(R)|αt] =

(
1− (1− r) (1− αt)

1− αt(1− ρ)
+ r

αt
1− (1− αt)(1− ρ)

)
= 2F (αt).

Substituting ut+1(R) = 2(t+1)αt+1 and ut(R) = 2tαt and rewriting yields the Lemma.

We now have a function for the expected value of αt+1 given αt. To prove that at actually
converges to α we have to analyze the function F (x) in more detail. We prove the following
properties of this function:

11



Lemma 4.4. 1. F (x) is monotonically increasing.

2. F (x) has exactly one fixed point, denoted α∗, in [0, 1].

3. The image of the unit interval by F (x) is contained in the unit interval:
F ([0, 1]) =

[
r
2 ,

1+r
2

]
⊂ [0, 1]

4. If x < α∗ then x < F (x) < α∗ and if x > α∗ then x > F (x) > α∗.

5. α∗ < r.

Proof. With a little bit of algebra, we can, and for some reason we prefer, to rewrite F (x) as

F (x) =
1

2

(
r +

rx

x+ (1− x)ρ
+ (1− r) xρ

xρ+ (1− x)

)
.

For the first property, using simple algebra we compute

∂F (x)

∂x
=

1

2

(
ρ− ρr

(1 + (ρ− 1)x)2 +
ρr

(ρ+ x− ρx)2

)
> 0

for each x, r, ρ ∈ [0, 1].
For the second property, we define the function G(x) = F (x) − x. The roots of G(x)

correspond to the fixpoints of F (x) so it is enough to show that G(x) has exactly one real
root in the interval [0, 1]. Using simple algebra it follows that ∂G(x)

∂x > 0 for each x, r, ρ ∈ [0, 1].
Setting G(x) = 0 we get the following equation:

(2− 4ρ+ 2ρ2)x3 + (5ρ− 2− 3ρ2 − 2r + 2rρ)x2 + (2r − 2ρ− 2rρ+ ρ2)x+ rρ = 0. (2)

We observe that G(x) = −∞ when x→ −∞ for each ρ ∈ [0, 1) and that G(0) = rρ ≥ 0.
Which induces that there are 1 or 3 roots in the interval (−∞, 0). Observing that G(x) =∞
when x→∞ and evaluating G(1) = rp− p ≤ 0 for each ρ, r ∈ [0, 1] we see that there are 1
or 3 roots in the interval (1,∞). Knowing that G(x) has exactly 3 roots concludes the claim
that G has exactly one root in [0, 1] which leads to the conclusion that the function F (x) has
exactly one fixed point in [0, 1].

The third property follows from the fact that the function F (x) is strictly monotonically
increasing and by evaluating the function F (x) for the two extreme values x = 0, and x = 1.

The fourth property follows from the fact that the function is strictly monotonically
increasing, that there is only one fix point and that F (x) maps [0, 1] inside [0, 1].

Finally, to show that α∗ < r, since we know that F (x) − x is positive for x < α∗ and
negative for x > α∗, it suffices to show that F (r) < r. This is equivalent to

r +
r2

r + (1− r)ρ
+ (1− r) rρ

rρ+ (1− r)
< 2r,

which is true for all r < 1/2.

Now assume αt < α∗. By Lemma 4.4, αt < F (αt) < α∗, so by Lemma 4.3 we obtain
αt < E[αt+1|αt] < α∗.

With that we have shown that the expected value of αt does converge to the fix point
α∗ of F (x). Figure 4 shows an instance of F (x) with the parameters r = 1/3 and ρ = 1/2.
You can see its only fix point in the interval [0, 1] on the intersection of F (x) with the line
y = x. If the function F (x) is applied repetitively it will converge to its fix point, no matter
if the initial value was larger or smaller than the fix point. We still need to bound the rate
of convergence of F (x) and show:
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Lemma 4.5. |α∗ − E[αt]| = O(1/ 3
√
t).

Proof. Assume that αt < α∗ (the other case is similar).

E[αt+1] = E[αt] +
E[F (αt)− αt]

t+ 1
(3)

Let ∆ = α∗−r/3
α∗ and the line L(x) = ∆ ·x+r/3. Note that L shares the point (α∗, F (α∗))

with F (x) but is strictly below F (x) in the range [0, α∗] it (See Lemma 4.20). Thus

E[F (αt] ≥ E[α∗ − εt∆],

where εt = α∗ − αt.
Substituting into Equation (3), we get

E[αt+1] ≥ E[αt] +
E[α∗ − εt∆− αt]

t+ 1

= E[αt] +
E[εt](1−∆)

t+ 1
= α∗ − E[εt] +

E[εt](1−∆)

t+ 1
,

so the expected error at time t+ 1 is

E[εt+1] ≤ E[εt](1−
1−∆

t+ 1
).

Solving for E[εt] we have

E[εt] = ε0(1− 1−∆

2
)(1− 1−∆

3
) · · · (1− 1−∆

t
) = ε0 exp(−

t∑
i=1

1−∆

i
) = O(

ε0
t1−∆

),

Note that since r/2 ≤ α∗ < r we have ∆ < 2/3, and so E[εt] = O(1/ 3
√
t).

With the previous steps we have proven both, the convergence of α to α∗ as well as we
have bound the convergence rate. We now investigate the fix point α∗.

Theorem 4.6. For any initial configuration, as t goes to infinity, the expected fraction of red
balls in the urn, E(αt), converges to the unique α∗ in [0, 1] satisfying the equation

2α∗ = 1− (1− r) (1− α∗)
1− α∗(1− ρ)

+ r
α∗

1− (1− α∗)(1− ρ)
. (4)

Hence the limit α∗ is the solution of the cubic equation Eq. (5).

(4ρ− 2ρ2 − 2)α3 + (2 + 3ρ2 − 5ρ+ 2r − 2rρ)α2 + (2ρ− 2r + 2rρ− ρ2)α− rρ = 0

Note that this limit is independent of the initial values u0 and α0 of the system. Having
shown the independence of the fix point α∗ of the initial configuration of the urn and the
convergence to it, we can now claim:

Corollary 4.7. Let 0 < ρ < 1, 0 < r < 1/2. Then G(n, r, ρ) has a influence inequality effect.

Proof. The expected degree of a red node tends to 2α∗/r, which is strictly less than 2, the
expected degree of a random node, because of Lemma 4.4 Part 5.

Thus we have proven the influence inequality part of Theorem 4.1.
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4.3 Proof of Theorem 4.1 Part 2

Concentration. To prove the glass ceiling effect we first bound the degree distribution. To
do this we need to bound the rate by which ut(R) converge to α · t. Let Xi ∈ {0, 1, 2} be the
number of new red balls in the system at time i. Note that ut(R) =

∑t
0Xi. Let

X̄i = (X1, X2, . . . , Xi)

be a tuple that captures all random variables X1, X2, . . . , Xi and let

Ψi = EXi+1,Xi+2,...,Xt

[ t∑
j=0

Xj |X̄i

]
.

Observe that (Ψi)i is a Doob Martingale [35], and note that Ψ0 = E
[∑t

i=0Xi

]
= E

[
ut(R)

]
.

Theorem 4.8 (Azuma’s inequality [1]). Let Ψt be a martingale such that for all i, almost
surely |Ψi −Ψi−1| < ci. Then for all positive t and all positive reals x,

Pr(Ψt −Ψ0 ≥ x) ≤ exp
(
−x2

2
∑

i c
2
i

)
.

Lemma 4.9. Let Ci = |Ψi −Ψi−1|. Then Ci = O(
√
t/i).

Proof. Observe that for c = 0, 1, 2,

Ψi −Ψi−1 = EXi+1,...,Xt

E(

t∑
j=i

Xj |Xi = c)− EXi(
t∑
j=i

Xj)

 |X̄i

 .
To bound Ci = |Ψi − Ψi−1|, since each additional ball creates an independent effect on its
descendents (the red balls that are connected to it), we have: E(Ci) ≤ 2zi, where

zi = E
[
ai,t | bi

]
where ai,t = number of additional red balls at times [i, t], and bi = one additional red ball at
time i. We have the recurrence: zt = 1, and for i < t

zi = 1 +
γ

2(i+ 1)
zi+1 +

γ

2(i+ 2)
zi+2 + · · ·+ γ

2t
zt

where γ/(2i) is the probability of selecting a particular marked red ball at time i: we always
have γ ≤ 1, and γ depends on the homophily parameter ρ.

We apply some algebraic changes and let yi = zi/2i. It is easy to see that the recurrence
becomes yt = 1/(2t), and yi = (1 + (2 + γ)/(2i))yi+1. Solving the recurrence yields

yi =

(
1 +

2 + γ

2i

)(
1 +

2 + γ

2(i+ 1)

)
· · · 1

2t
= O

 1

2t
exp

 t∑
j=i

2 + γ

2j

 = O

(
1

2t

(
t

i

) 2+γ
2

)
.

(5)

Since γ ≤ 1, we obtain yi = O((1/i)
√
t/i) and |Ci| = O(zi) = O(

√
t/i).

Recall that αt = ut(R)/(2t). By Theorem 4.8 and Lemma 4.9 then

Lemma 4.10. Pr
[
|ut(R)− 2tE(αt)| > O(2

√
t log t)

]
≤ 1

t4
.
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Proof. By Lemma 4.9

t∑
i=1

C2
i ≤ O(

t∑
i=1

t

i
) ≤ ct log t.

We now use Theorem 4.8 for x = Θ(2
√
ct log t), note that Ψt = ut(R) and Ψ0 = E[ut(R)], and

obtain:

Pr
[
|ut(R)− E[ut(R)]| > O(

√
4t log t)

]
≤ 2 exp

(
−4t log2 t

t log t

)
= O

(
1

t4

)
.

Combining Lemmas 4.5 and 4.10 yields:

Corollary 4.11.

Pr

[
|αt − α∗| > max

{
2 log t√

t
,

1
3
√
t

}]
<

1

t4
.

4.4 Degree distribution

We investigate the degree distribution of the red and blue vertices in a graph generated by
the above described process, following the analysis outline of [7] for the basic preferential
attachment model.

Let mk,t(B) (resp., mk,t(R)) denote the number of blue (resp., red) vertices of degree k at
time t. For x ∈ {R, B}, define

Mk(x) = lim
t→∞

E(mk,t(x))

t
. (6)

Theorem 4.12. The expected degree distributions of the blue and red vertices follow a power
law, namely, Mk(B) ∝ k−β(B) and Mk(R) ∝ k−β(R). If 0 < r < 1/2 and 0 < ρ < 1 then
β(R) > 3 > β(B).

Equipped with Theorem 4.12, Part 2 of Theorem 4.1 follows easily. Indeed, for the tail
glass ceiling effect, let k(n) = n

1
β(R) . Then

E[topk(R)] = n(R)
∑
k′≥k

Mk′(R) ,

E[topk(B)] = n(B)
∑
k′≥k

Mk′(B).

For k′ = n
1
β(R) we have nMk′(R) = O(n · n−

β(R)
β(R) ) = O(1) while nMk′(B) = Ω

(
n · n−

β(B)
β(R)

)
=

Ω(n
1−β(B)

β(R) ) = Ω(nε) for ε > 0. The result then follows since n(R) < n(B) andMk′(R) < Mk′(B)
for k′ > k.

For the moment glass ceiling effect we can show similarly:

g = lim
n→∞

∑
k2Mk(R)∑
k2Mk(B)

= lim
n→∞

O(n3−β(R))

Ω(n3−β(B))
= lim

n→∞
O

(
1

nε′

)
= 0

for some ε′ > 0.
The rest of this section sketches a proof of Theorem 4.12. Note that m0,0(B) = u0(B).

We derive a recurrence for E(mk,t(B)). A blue vertex of degree k at time t could have arisen
from three scenarios: (s1) at time t− 1 it was already a blue vertex of degree k and no edge
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was added to it at time t. (s2) at time t− 1 it was a blue vertex of degree k− 1 and an edge
was added to it at time t. (s3) in the special case where k = 1, at time t− 1 it did not exist
yet and it has arrived as a new blue vertex at time t. Thus letting Ft be the history of the
process up to time t, for any k > 1, the expectation of mk,t+1(B) conditioned on Ft satisfies

E(mk,t+1(B)|Ft) = mk,t(B)

(
1−

rut(B)ρ k
ut(B)

ut(R) + ut(B)ρ
−

(1− r)ut(B) k
ut(B)

ut(R)ρ+ ut(B)

)

+ mk−1,t(B)

(
rut(B)ρ k−1

ut(B)

ut(R) + ut(B)ρ
+

(1− r)ut(B) k−1
ut(B)

ut(R)ρ+ ut(B)

)
.

For k = 1 we similarly have

E(m1,t+1(B)|Ft) = m1,t(B)

(
1− ρr

ut(R) + ut(B)ρ
− 1− r
ut(R)ρ+ ut(B)

)
+ (1− r) . (7)

Recalling again that αt = ut(R)/(2t), the above can be rewritten as

E(mk,t+1(B)|Ft) = mk,t(B)

(
1− rρk

2t(αt + (1− αt)ρ)
− (1− r)k

2t(αtρ+ (1− αt))

)
+ mk−1,t(B)

(
rρ(k − 1)

2t(αt + (1− αt)ρ)
+

(1− r)(k − 1)

2t(αtρ+ (1− αt))

)
and for k = 1,

E(m1,t+1(B)|Ft) = m1,t(B)

(
1− ρr

2t(αt + (1− αt)ρ)
− 1− r

2t(αtρ+ (1− αt))

)
+ (1− r). (8)

This can be expressed as

E(mk,t+1(B)|Ft) = mk,t(B)

(
1−At

k

t

)
+mk−1,t(B)At

k − 1

t
,

E(m1,t+1(B)|Ft) = m1,t(B)

(
1− At

t

)
+ (1− r), (9)

using the notation

At =
rρ

2αt + 2(1− αt)ρ
+

(1− r)
2αtρ+ 2(1− αt)

.

Note that At is a random variable so we next bound its divergence. Let

CB =
rρ

2α+ 2(1− α)ρ
+

(1− r)
2αρ+ 2(1− α)

CR =
(1− r)ρ

2(αρ+ 1− α)
+

r

2(α+ (1− α)ρ))
.

We have

Lemma 4.13. Pr

[
|At − CB| > max

{
2 log t√

t
,

1
3
√
t

}]
<

1

t4
.

We use the following lemma.

Lemma 4.14. [7] Let (at), (bt), (ct) be three sequences such that at+1 = (1 − bt
t )at + ct,

limt→∞ bt = b > 0 and limt→∞ ct = c. Then limt→∞ at/t exists and its value is

lim
t→∞

at
t

=
c

1 + b
. (10)
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Lemma 4.15.

• M1(B) exists and equals (1− r)/(1 + CB),

• For k ≥ 2, Mk(B) exists and equals
Mk−1(B) · (k − 1)CB/(1 + kCB),

• M1(R) exists and equals r/(1 + CR), and

• For k ≥ 2, Mk(R) exists and equals
Mk−1(R) · (k − 1)CR/(1 + kCR),

It is possible to show the following about CB and CR:

Lemma 4.16.

• If 0 < r < 1/2 and 0 < ρ < 1 then CR <
1
2 < CB

• If r = 1/2 then CR = CB = 1/2.

• If ρ = 0 or ρ = 1 then CR = CB = 1/2.

To show that the degree distributions of both the red and the blue vertices follow power
laws we recall that a power law distribution has the following property: Mk ∝ k−β for large
k, where β is independent of k. If Mk ∝ k−β , then

Mk

Mk−1
=

k−β

(k − 1)−β
=

(
1− 1

k

)β
= 1− β

k
+O

(
1

k2

)
.

Solving for the blue vertices, Mk(B) and the blue exponent β(B), and using Lemma 4.15, we
get:

Mk(B)

Mk−1(B)
=

(k − 1) · CB

1 + k · CB
= 1− CB + 1

k · CB + 1
= 1−

1 + 1
CB

k
+O

(
1

k2

)
hence β(B) = 1 + 1/CB. Similarly, for red vertices of degree k, Mk(R) decays according
to a power law with exponent β(R) = 1 + 1/CR. Note that when CR <

1
2 < CB we have

β(R) > 3 > β(B) thus proving Theorem 4.12.

4.5 Testing Competing Explanations: Proof of Theorem 4.2

No Minority.

If r = 1/2 then by Lemma 4.16 CR = CB, so the degree distribution of the two sub-populations
is the same and a glass ceiling effect does not emerge.

No Homophily.

If there is no homophily, namely, ρ = 1 and r < 1/2, then by Lemma 4.16 CR = CB, so the
degree distribution of the two sub-populations is the same and again no glass ceiling effect
emerges.
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No Preferential Attachment.

Let U(n, r, ρ) be a random graph model similar to G(n, r, ρ) except that when a new vertex
z arrives at time t it chooses its neighbor v ∈ Vt uniformly at random (with probability 1/t).
For simplicity we start at time t = 0 with a single vertex (with arbitrary color). Let M̃k(R)
and M̃k(B) denote, respectively, the expected number of red and blue vertices of degree k in
U(n, r, ρ). First we prove the following Lemma.

Lemma 4.17. For any 0 < r < 1/2 and any 0 ≤ ρ ≤ 1, the expected number of red and
blue vertices of degree k in a random graph U(n, r, ρ) follows a geometric distribution. In
particular:

M̃k(R) = r · pr · (1− pr)k−1

and
M̃k(B) = (1− r) · pb · (1− pb)k−1,

where pr = 1
1+p∗r

, pb = 1
1+p∗b

, p∗r = r
1−(1−r)(1−q) + q(1−r)

1−r(1−q) and p∗b = rq
1−(1−r)(1−q) + 1−r

1−r(1−q) .

Proof. As before, let m̃k,t(B) (resp., m̃k,t(R)) denote the number of blue (resp., red) vertices
of degree k at time t. Again, we will derive a recurrence for E(m̃k,t(B)). Consider a red vertex
v and let prr be the probability that v is selected given that the new arrived vertex is a red
vertex. Then prr = 1

t + t−1
t (1− r)(1− q)prr, so prr = 1

1−(1−r)(1−q)+(1−r)(1−q)/t
1
t . If the new

arrived vertex is blue then the probability that v will be selected is pbr = q
t + t−1

t r(1− q)pbr,
so pbr = q

1−r(1−q)+r(1−q)/t
1
t . Similarly, if v is blue then the probability it is selected if the

new vertex is red is prb = q
1−(1−r)(1−q)+(1−r)(1−q)/t

1
t and pbb = 1

1−r(1−q)+r(1−q)/t
1
t is the new

vertex is blue.
Let Ft be the history of the process up to time t. Thus for any k > 1,

E(m̃k,t+1(B)|Ft) = m̃k,t(B)(1− rprb − (1− r)pbb) + m̃k−1,t(B)(rprb + (1− r)pbb).

For k = 1 we have

E(m̃1,t+1(B)|Ft) = m̃1,t(1− rprb − (1− r)pbb) + (1− r).

Taking the expectation on both sides we have

E(m̃k,t+1(B)) = E(m̃k,t)(B)(1− rprb − (1− r)pbb) + E(m̃k−1,t)(B)(rprb + (1− r)pbb).

E(m̃1,t+1(B)) = E(m̃1,t)(1− rprb − (1− r)pbb) + (1− r).

Let
M̃k(B) = lim

t→∞

E(m̃k,t(B))

t
. (11)

and
p∗b = lim

t→∞
(rprb − (1− r)pbb)t =

rq

1− (1− r)(1− q)
+

1− r
1− r(1− q)

.

Then using Lemma 4.14 and setting at, bt and ct accordantly we have

• M̃1(B) = 1−r
1+p∗b

• M̃k(B) = M̃k−1
p∗b

1+p∗b
= M̃k−1(1− 1

1+p∗b
) = M̃1(1− 1

1+p∗b
)k−1.

Similarly, letting

p∗r = lim
t→∞

(rprr − (1− r)pbr)t =
r

1− (1− r)(1− q)
+

q(1− r)
1− r(1− q)

we get
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• M̃1(R) = r
1+p∗r

• M̃k(R) = M̃k−1
p∗r

1+p∗r
= M̃k−1(1− 1

1+p∗r
) = M̃1(1− 1

1+p∗r
)k−1

Setting pb = 1
1+p∗b

and pr = 1
1+p∗r

the result follows.

Theorem 4.18. For any 0 < r < 1/2 and any 0 ≤ ρ ≤ 1, the random graph U(n, r, ρ) does
not exhibit a strong glass ceiling effect.

Proof. Since both degree distributions follow a geometric distribution we have:

g = lim
n→∞

∑
k2M̃k(R)∑
k2M̃k(B)

=
r(1− 2pr)/p

2
r

(1− r)(1− 2pb)/p
2
b

= Ω(1).

4.6 Testing Competing Explanations:
Unequal Rates and Unequal Qualification

Another possible competing explanation to the glass ceiling effect may be based on the con-
jecture that the effect occurs in areas where women have lower qualifications and skills than
men. As we interpret the degree of a vertex as representing its power, unequal qualifications
can be modeled by assuming that when a red (minority) vertex joins the network, it does
so with a lower degree (fewer new edges) than does a blue vertex. This provides a “trivial”
explanation to influence inequality, but will it cause a glass ceiling effect? We show that this
is not the case: assuming no homophily, even if the minority has lower average degree, no
glass ceiling effect emerges.

To formally model unequal qualifications, consider a random model similar to the unbiased
preferential attachment modelG(n, r, ρ = 1) that we denote byG∆(n, r), operating as follows.
At each time t a new vertex w joins the graph. Its color is red with probability r and blue
with probability (1− r). If w is red, then it generates one new edge according to preferential
attachment as before. If w is blue then it generates ∆ new edges, one at a time, according
to preferential attachment.

We prove the following.

Theorem 4.19. Let 0 < r < 1
2 and ∆ a constant integer. Then G∆(n, r) does not exhibit a

tail glass ceiling effect. Formally, for every k s.t. limn→∞ topk(B) =∞,

lim
n→∞

topk(R)

topk(B)
> c,

where c > 0 is a constant that depends only on r and ∆.

Proof. Instead of G∆(n, r), let us consider an equivalent process G∆
1 (n, r) defined as follows.

First generate G1(∆n, r) without coloring the vertices, according to the preferential attach-
ment model. Then, consider the vertices of G1(∆n, r) in order of arrival, v1, v2, . . . , v∆n.
Generate G∆

1 (n, r) and its vertices v1, v2, . . . , vn as follows. Initially j = i = 0. Assume by in-
duction that vertices v1, v2, . . . , vi were already generated by processing vertices v1, v2, . . . , vj .
With probability r, vi+1 is red, in which case set the neighbors of vi+1 to be the vertices of
G∆

1 corresponding to the neighbors of vj+1 and increment j by 1. With probability 1 − r
vertex vi+1 is blue, in which case set vi+1 to be the “merging" of vj+1, vj+2, . . . , , vj+∆ into a
single blue vertex. That is, the set of neighbors of vi+1 is taken to be the union the sets of
vertices of G∆

1 corresponding to the neighbors of vj+1, vj+2, . . . , , vj+∆; then increment j by
∆. Once n vertices are generated in this way, we ignore all remaining vertices vj′ that were
not used, as well as their edges. This defines G∆

1 (n, r).
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For the analysis, let n∗ denote the number of vertices used from G1(∆n, r) and note that
n ≤ n∗ ≤ ∆n. Let G1(∆n, r)[n∗] denote the induced subgrapgh of G1(∆n, r) from vertices
v1, v2, . . . , vn

∗ . We prove that G∆
1 (n, r) does not exhibit a glass ceiling effect and therefore

G∆(n, r) doesn’t either.
Let topk(R, G) denote the expected number of red vertices of degree at least k in the

graph G. Consider a red vertex of degree k in G∆
1 (n, r). The expected number of red vertices

of degree at least k in G∆
1 (n, r) is the same as in G1(∆n, r)[n∗].

Let M̂k(R) and M̂k(B) denote, respectively, the expected number of red and blue vertices
of degree k in G1(∆n, r)[n∗]. Note that G1(∆n, r)[n∗] follows a power law for both the red
and blue vertices, and with the same β, namely, M̂k(R) ∝ k−β and M̂k(B) ∝ k−β for large k.
Hence for constants c′ and c′′ we have:

topk(R, G
∆
1 (n, r)) = topk(R, G1(∆n, r)[n∗]) =

r

r + ∆(1− r)
topk(G1(∆n, r)[n∗])

≥ r

r + ∆(1− r)
topk(G1(∆n, r)[n]) =

r

r + ∆(1− r)

∫ n

k
n · c′ · i−βdi

=
r

r + ∆(1− r)
c′′ · n
β − 1

k−(β−1).

Similarly, the number of blue vertices of degree at least k in G∆
1 (n, r) can be upper bounded

by the number of blue vertices of degree at least k/∆ in G1(∆n, r)[n∗], since merging ∆ blue
vertices of degree less than k/∆ cannot yield a blue vertex of higher degree than k. For
constants c′ and c′′ we have:

topk(B, G
∆
1 (n, r)) ≤ top k

∆
+(B, G1(∆n, r)) =

∆(1− r)
r + ∆(1− r)

top k
∆

+(G1(∆n, r))

=
∆(1− r)

r + ∆(1− r)

∫ ∆n

k
∆

∆n · c′ · i−βdi

=
∆(1− r)

r + ∆(1− r)
c′′ ·∆n
β − 1

k−(β−1)∆β−1.

Putting it all together, we have that in G∆
1 (n, r) there is no tail glass ceiling effect:

top(R)k
top(B)k

≥ r

(1− r)∆β+1
.

A similar argument shows that there is also no strong glass ceiling effect.
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4.7 Auxiliary Lemma

The next lemma states that for any r/2 ≤ α ≤ r, the straight line joining the points (0, r/3)
and (α, F (α)) is below the function F (x) for all x ∈ [0, α].

Lemma 4.20. For all r ∈ (0, 1/2), ρ ∈ [0, 1], r/2 ≤ α ≤ r, and x ∈ [0, α]

F (x) ≥ r

3
+ x

F (α)− r/3
α

Proof. We need to show that ψ(x) ≡ F (x) − F (α)−r/3
α · x − r

3 ≥ 0. Note that ψ(x) can be
rewritten as

ψ(x) =
1

6

(
r
(
x
(

3w − 1

α

)
+ 1
)

+ 3ρx

(
1

α(−ρ) + α− 1
+

1

(ρ− 1)x+ 1

))
(12)

where w = − 1

α(−ρ) + α+ ρ
+ ρ
( 1

α(ρ− 1) + 1
+

1

−ρx+ x− 1

)
+

1

ρ− ρx+ x
.

We arrange ψ(x) as N(x)
D(x) , then the denominator can be written as:

D(x) = 6α(αρ− α+ 1)(αρ− α− ρ)(ρx− x+ 1)(−ρ+ ρx− x)

which is positive, so the sign of ψ(x) is determined by the numerator N(x). The advantage
of working with the numerator is that it is a polynomial. Some calculations yield that

N(x) = (x− α)rρ(1 + α(ρ− 1))(−ρ+ α(ρ− 1))

+ (x− α)r(ρ− 1)2x2
(

2(α− 1)α(ρ2 + ρ− 2) + ρ
)

− (x− α)r(ρ− 1)x
(

2α2(ρ3 − 3ρ+ 2)− α(ρ(ρ(2ρ+ 3)− 3) + 4) + (ρ− 1)ρ
)

− (x− α)3α(ρ− 1)ρx(α(ρ− 1)− ρ)((ρ− 1)x− ρ) .

Clearly N(x) has a root at α, i.e., N(α) = 0. Since the degree of N(x) is 3 it follows that it
has at most three real roots λ1 ≤ λ2 ≤ λ3. Assume that λ2 = α. A simple calculation shows
that the leading coefficient of the polynomial N(x) is αρ(−r)(α(ρ−1) + 1)(α(ρ−1)−ρ) and
therefore it is positive. This implies that

lim
x→−∞

N(x) = −∞

and that
lim
x→∞

N(x) = ∞.

Next we claim that N [0] > 0. Setting x = 0 in N(x) we get that N(0) = αρ(−r)(α(ρ− 1) +
1)(α(ρ− 1)− ρ), which is positive in the range of the variables r, α, ρ. This shows that some
root of N is less than 0, i.e., λ1 < 0.

Next we show that there is one root of N that is greater than 1/2, i.e., λ3 > 1/2. To do
this, we consider N(1/2) and show that it is negative, i.e., N(1/2) < 0. A simple calculation
shows that

N(1/2) = (
1

2
− α)r

1

2
(1− ρ)

(
2α2(ρ3 − 3ρ+ 2)− α(ρ(ρ(2ρ+ 3)− 3) + 4) + (ρ− 1)ρ

)
+ (

1

2
− α)r

(1

4
(ρ− 1)2(2(α− 1)α(ρ2 + ρ− 2) + ρ) + ρ(α(ρ− 1) + 1)(α(ρ− 1)− ρ)

)
− (

1

2
− α)

3

2
α(
ρ− 1

2
− ρ)(ρ− 1)ρ(α(ρ− 1)− ρ).
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Viewing N(0) as a function of r, we notice that N(0) is a monotonically linear descending
function of r and therefore one can assume that r = α. In this case, i.e., r = α, we get that

N(1/2) < (
1

2
− α)α

1

2
(1− ρ)

(
2α2(ρ3 − 3ρ+ 2) − α(ρ(ρ(2ρ+ 3)− 3) + 4) + (ρ− 1)ρ

)
+ (

1

2
− α)α

(1

4
(ρ− 1)2(2(α− 1)α(ρ2 + ρ− 2) + ρ) + ρ(α(ρ− 1) + 1)(α(ρ− 1)− ρ)

)
− (

1

2
− α)

3

2
α(
ρ− 1

2
− ρ)(ρ− 1)ρ(α(ρ− 1)− ρ).

Now a simple calculation show that this is a monotonically descending function of ρ. Setting
ρ = 0, we get

N(1/2) <

(
1

2
− α

)
α

(
1

2

(
4α2 − 4α

)
+ (1− α)α

)
,

which is less than 0 for all 0 < α < 1/2 so λ2 > 1/2. This in turn imply that ψ(x) ≥ 0 when
x ∈ [0, α].

4.8 Independence of tail and moment glass ceiling effects

To establish the independence of the two definitions of the glass ceiling effect, consider two
sets of degree sequences, denoted A and B, where each set contains two degree sequences, for
the red and blue vertices respectively. For simplicity, each degree sequence is of size n and
the combined graph has 2n vertices. For each such set it is easy to construct a graph with
the given degree sequences, for example by the random configuration model (which generates
a random graph for every given degree sequence). Set A exhibits a tail glass ceiling effect but
not a strong moment glass ceiling effect, whereas set B exhibits a strong glass ceiling effect
but not a tail glass ceiling effect.
Set A. Let the degree sequence of the red vertices consist of n −

√
n vertices of degree 1

and
√
n vertices of degree h = blog nc. The degree sequence of the blue vertices consists of

n−
√
n vertices of degree 1 and

√
n vertices of degree 3h.

Taking k = 2h, we get limn→∞ topk(B) =∞ and

lim
n→∞

topk(R)

topk(B)
=

0√
n

= 0.

However, the network does not exhibit a strong moment glass ceiling effect, as

lim
n→∞

1
n(R)

∑
v∈R δ(v)2

1
n(B)

∑
v∈B δ(v)2

= lim
n→∞

n−
√
n+
√
nh

n−
√
n+ 9

√
nh

= 1− o(1) ≥ 1

2
.

Set B. Let the degree sequence of the red vertices consist of n vertices of degree 2 (e.g., a
ring). The degree sequence of the blue vertices consists of n− 1 vertices of degree 1 and one
vertex of degree n− 1 (e.g., a star graph).

Taking k > 1, we get limn→∞ topk(B) = 1 and the condition does not hold. If we take
k = 1 then

lim
n→∞

topk(R)

topk(B)
=
n

n
= 1.

Hence there is no tail glass ceiling effect. However, the network does exhibit a strong moment
glass ceiling effect, as

lim
n→∞

1
n(R)

∑
v∈R δ(v)2

1
n(B)

∑
v∈B δ(v)2

= lim
n→∞

∑n
1 22

n− 1 + (n− 1)2
= lim

n→∞

4n

n(n− 1)
= 0.
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5 Empirical Observations

To provide empirical evidence illustrating the results of our analysis in real-life, we studied
a mentor-student network of researchers in computer science, extracted from DBLP [29], a
dataset recording most of the publications in computer science. A filtering process creates a
list of edges connecting students to mentors. For each edge we determined the gender of the
student and the mentor and the year in which the connection was established. The resulting
network spans over 30 years and has 434232 authors and 389296 edges. In the remainder of
this section we describe the data collection and the assignment of gender to names followed by
a temporal analysis of the minority-majority partition, influence inequality and glass ceiling
effects.

5.1 Data Collection and Gender Assignment

Assigning Gender to Names

Unfortunately, the DBLP dataset (as well as the genealogy dataset) does not include direct
information about the gender of the authors. In order to determine the gender of the authors,
we made use of the fact that in most languages the first name also encodes the gender.
Difficulties arise with unisex names, names that lose their gender information while being
translated to the Latin alphabet (such as Chinese names), as well as single letter abbreviations
(such as “A. Smith”). In order to match first names with their corresponding gender we built
a dictionary including first names, their corresponding gender and a number between [0, 1]
describing the probability of the person with this first name being assigned the correct gender.

In order to build our name / gender dictionary we used four different datasets.
Dataset 1: US Birth Names (85547 names). This dataset uses all names from Social Security
card applications for births that occurred in the United States after 1879 until 20121. For
each year of birth there is a list of names and their number of occurence for each gender. We
summed up the counts over all years, i.e., we produced an entry for the total count of each
name for both genders. From this list a name was assigned to be female or male respectively
if its gender’s count was more than 90% of the total count of occurences for both genders.
Otherwise, the name was assumed to fit both genders. The female score of a name would
thus be countf/(countf + countm).
Dataset 2: US Census 1990 Data (5163 names). This dataset has been composed by the
Census Bureau in the US2 and contains the names and the frequency of names for the sample
male and female population respective according to the 1990 census. As an example: If, in
the population of the 1990 census, 2000 people were named “Patricia” and 1900 were female,
we assign it the gender “female” with probability 0.95 (score).
Dataset 3: Popular US Baby Names (4411 names). This dataset is from from the US
Social Security Administration’s statistics3 for popular baby names and contains for every
year between 1960 and 2010 the 100 most popular baby names. For each year and name
the average probability of usage between 1960 and 2010 was calculated. In order to assign a
name its gender, we compared the male probabiltiy to the female probability and assigned
the conditional probability and the gender with the higher probability.
Dataset 4: Baby Name Lists for Parents (19833 names). The last dataset used is based on
the gender information on a homepage collecting information on names made to help parents
to choose a name for their baby4. This site notes for each name whether is used as a female,

1http://www.ssa.gov/OACT/babynames/limits.html
2http://www.census.gov/genealogy/www/data/1990surnames/names_files.html
3http://www.ssa.gov/cgi-bin/popularnames.cgi
4http://www.behindthename.com
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Total Number of Authors in DBLP 1359616 100%
Female 172532 12.69%
Male 618830 45.52%

Names fits both 53330 3.92%
Excluded from top 1000 452 0.03%
Not found in name list 514472 37.84%

Table 1: The numbers of authors identified as female or male, or as having a name that fits
both genders in the dictionary version v1. Also listed is the number of authors that have
been excluded from the top 1000 authors. Note that this leads to an gender ratio of 21.08%
females for the names with a gender assigned to them.

male or unisex name. However, there is no information on the frequency of its use for each
gender. The score for a female only or male only name is hence set to 1.

The datasets mentioned above were unified via the following protocol. First, generate a
list L based on Dataset 1. Each entry of the list consists of the tuple (name, gender, score).
Second, process Dataset 2: for each name of Dataset 1 that is already in L, check if the
gender is the same, in which case the list is not modified. If the gender differs, then the name
is declared to be unisex. If the name is not in L, add it together with the score of Dataset 2.
Repeat the same process with Datasets 3 and 4.

In total, these sources led to a collection of 96,314 distinct names, including 36,316 names
with a score of more than 0.9 for males and 58,827 names with a score of more than 0.9
for females. To assign a gender to the authors in DBLP we looked up their first name in
our dictionary. If the probability of the name being female or male was over 90%, then the
corresponding gender was assigned to the author. We refer to the resulting dictionary as
version v0.
Cross Checking and Validation of Influential Authors. To make sure that the very active
authors are identified correctly and to prevent a case where a name is representing several
authors with the same name (a known problem in DBLP), we carried out a number of heuristic
cross checks and validations. In particular, for the top 1000 authors in the dataset, we ran a
script that filtered out potentially problematic nodes. Over all this resulted in excluding 452
(0.03%) nodes from the dataset. We refer to the resulting dictionary version v1. We believe
that our version v1 dictionary is a cleaner and more accurate one, and therefore we present
in the main paper results that are based on it. But in fact, the overall results of versions v0
and v1 are very similar. Table 1 summarizes the numbers of the gender assigning process.

Construction of Mentorship Graph

The empirical part of this article focuses on mentor relationships, as they are significantly
influenced by homophily, as described in [22]. According to the Oxford Dictionary, a mentor
is “an experienced person in a company or educational institution who trains and coun-
sels new employees or students”. In a scientific context, this typically includes guidance
on writing research articles, especially for the first publications. Thus, mentors are of-
ten co-authors of young researchers in the first few years of their career. Clearly, a men-
tor has to have some experience, i.e., the mentor has started publishing a few years ear-
lier than the mentee. Apart from websites such as the Mathematics Genealogy Project
(“http://genealogy.math.ndsu.nodak.edu/”), which collects data on PhD students and their
advisors in the field of mathematics, we are unaware of databases on scientific mentoring5.
Therefore, we base our empirical findings on a mentoring graph constructed from the publi-
cation data base DBLP, an on-line reference for bibliographic information on major computer

5we empirically studied the Mathematics Genealogy Project, with similar results, but do not report it here
since the network size is much smaller.
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Parameter Value %

Number of Females 90035 20.73
Number of Males 344197 79.27
Sum of Females and Males 434232 100.00
Mixed Edges 101607 26.09
Female-Female edges 16074 4.12
Male-Male Edges 271615 69.77
Total number of edges 389296 100.00
Sum of Female degrees 133755 17.18
Sum of Male degrees 644837 82.82
Sum of edges 778592 100.00
Number of Female Mentors 10819 14.34
Number of Male Mentors 64638 85.66
Sum of Female and Male Mentors 75457 100.00
Females Avg. Degree 1.48
Males Avg. Degree 1.87
Avg Degree 1.79
Female Mentors Avg. Degree 4.60
Male Mentors Avg. Degree 5.25
Mentors Avg. Degree 5.16

Table 2: DBLP mentor graph statistics

science publications. It has evolved from an early small experimental web server to a popular
open-data service for the computer science community. The entire DBLP dataset is freely
available as a large XML file containing all bibliographic records. For each publication, this
database provides the authors, the year, and the journal or conference, among other data.

For each author in DBLP, we looked at the set of co-authors to find potential mentors.
More precisely, we considered all people that co-authored an article in the first four years of a
young researcher (we only considered papers with up to 20 authors) . In addition we relied on
the assumption that the mentor has significantly more experience than the mentee. We looked
at the years when the researchers wrote their first article. A person was only considered as a
potential mentor of a mentee if the difference in the number of years between the dates of their
first articles exceeded four. Like this we computed a set of eligible mentoring candidates for
each author in DBLP. Among these candidates, we selected the one with the highest number
of early papers written (if there are several authors competing for this position, we picked
one at random).

The DBLP snapshot downloaded on December 23, 2013 contains 8,867,408 articles with
two or more authors, written by a total of 1,282,790 people. Among them 871,839 have a
set of at least one mentor candidate, i.e., 68.01 % of the authors in DBLP can be assigned a
mentor with this method.

When using the same procedure but requiring an experience difference of at least 5 or 6
years, the percentage of authors than can be assigned an author decreases to 65% and 62%
respectively. The changes in our observations however is negligible. Table 2 gives general
statistics on the mentor graph. Note that any author with degree 2 or above is a mentor.

5.2 Temporal Analysis

As may be expected based on previously reported studies, our mentor-student network ex-
hibits a minority-majority partition (namely, a low proportion of up to 21% females), ho-
mophily, power law distribution and a glass ceiling effect.
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Figure 5: Female rate and normalized power in the computer science mentor graph. (a)
The rate (i.e., percentage in the population) of females over time, compared with their nor-
malized power, defined as d(R)/(2m). Males have more power than expected by their rate,
while females have less power than expected by their rate. (b) Evidence for homophily: a
comparison of the observed number of “mixed” edges to the expected value assuming there
is no homophily. We consider two cases: (i) the expected number of mixed edges ignoring
the difference between the male and female average degree (expected: 127963.09 std: 293.08)
and (ii) the expected number of mixed edges while considering the different degree sequences
for males and females (expected: 110777.11 std: 281.52). In both cases the observed value
(101607 edges) significantly deviates from the expectation (the error bars indicate the ex-
pected value ± 10 times the standard deviation) with extremely low p-values.

Figure 5(a) reveals that over time, the fraction of females in the network (n(R)/n, the
shaded red area) has increased, but it is still below 21%. Also the average degree for females
vertices is lower (1.48 vs 1.87). Figure 5(b) presents an indication for homophily in the
mentoring selection process. This is done by the homophily test of [11], which compares the
expected number of “mixed" (female-male) edges to the observed one (see also Section 3.2).

Figure 6 presents indications for the glass ceiling effect. Figure 6(a) shows that the fraction
of females among the vertices of degree k or higher, namely, topk(R)/topk(B), decreases
continuously as k increases. The first major decrease occurs when moving from the group
of “students” (i.e., degree 1 vertices) to the group of researchers of degree 2 or higher: the
fraction of females drops from top1(R) ≈ 21% to top2(R) < 15%. It is important to note
that the data indicates that even at the high end of the graph, a few female researchers
with very high degrees are still present; however, our definitions for the glass ceiling ignore
this extremal effect, which is caused by a few individuals, and concentrate on the averages
over large samples. Indeed, when the sample size is large enough, the fraction of the female
researchers decreases. Figure 6(b) shows a strong indication that the degree distribution of
the vertices (females, males and combined) follows a power law. This in turn is associated
with a preferential attachment mechanism that is known to result in a power law degree
distribution. Note that the power-law exponent β for the graph of the female researchers is
β = 2.91 (in the best fit), which is higher than the corresponding exponent in the graph for
the male researchers, β = 2.58. Our analysis (presented in 4.2 and 4.3) establishes that if
the degree distribution of both sub-populations follow a power law and the exponent for the
minority sub-population is higher than that of the majority sub-population, then a strong
moment glass ceiling effect will appear.

5.3 Data and Code Files

All data and code files are available at http://www.glassceiling.pignolet.ch/.
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Figure 6: Glass ceiling effect in mentor graph: (a) percentage of females in the mentor
population of degree at least k. Female start with 21% in the population and drop to below
15% when considering degree at least 2 (faculty members). It continues to decrease (ignoring
small samples at the end, see text). Vertex size and darker color represent larger sample
space. (b) The power-law-like degree distribution for both females and males. The exponent
β for females is higher than for males, demonstrating the glass ceiling effect.

6 Discussion and Conclusion

One obvious limitation of our model is that it is somewhat simplistic and captures only one
possible mechanism for generating a glass ceiling effect. It ignores many important aspects of
real life (such as sexual tension, fear, family responsibilities and jealousy, to name a few) and
alternative (co-existing) mechanisms that contribute to the effect. For instance, our model
cannot be used to explain the occurrence of a glass ceiling effect in contexts where pairwise
individual interactions play a less dominant role than in academia. To account for the glass
ceiling effect in such contexts as well as others, one may consider alternative explanations.
In particular, a common possible explanation is the “leaky pipeline" phenomenon, namely,
the phenomenon that women tend to quit or slow down their careers in order to invest more
time in their families. This phenomenon can be modeled mathematically in several different
ways. One such way is by introducing vertex departures in addition to vertex arrivals, with
a bias in the form of increased departure rate of the minority group. But in fact, such a
dynamic “leaky pipeline" model allows several reasonable sub-models that will not generate a
glass ceiling effect, as well as some other sub-models that do. Moreover, the cause and effect
relationships between glass ceiling and leaky pipeline are not necessarily one-directional;
while the glass ceiling effect may indeed be the outcome of the “leaky pipeline" phenomenon
in certain settings, there are other settings where it may be its (partial) cause. An interesting
direction for future work would be to describe a more complete model, most likely combining
a number of different mechanisms contributing jointly to the glass ceiling effect. In any case,
we find it remarkable that the simple mathematical mechanism presented here (based on
homophily) is sufficient to explain (at least parts of) the glass ceiling effect, despite the fact
that it does not utilize the “leaky pipeline".

Our findings may suggest ways to deal with the glass ceiling phenomenon. By better
understanding the roots of the glass ceiling effect, one can address each of the elements and
attempt to mitigate them or deal with those elements that are easier to manage. Our research
indicates that for certain mechanisms involved in the formation of a glass ceiling, removing
one element may eliminate the glass ceiling effect. Hence, while it might be difficult to modify
the human tendencies of homophily and preferential attachment one could attempt to balance
the proportions of minorities within the population or impose a proportional representation
of successful women at the top level. Both of these options may be classified as variants
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of affirmative action, but the latter, even if more common, seems to avoid the roots of the
problem. In particular, a more equally represented society could be created by encouraging
minorities to enter the system, as our findings indicate that increasing the ratio of minorities
at the entry stage may mitigate the glass ceiling effect at least partially. This conclusion is
in line with a common view [38, 45], which states that fixing the “leaky pipeline” is key for a
more equal gender distribution in science. By determining and examining the causes of the
glass ceiling effect, we can work on alleviating the glass ceiling effect, resulting in a richer
and more diverse community.

Acknowledgements

The authors thank Eli Upfal for suggesting the use of a Doob Martingale and the anonymous
reviewers of this paper.

References

[1] N. Alon and J. H. Spencer. The probabilistic method. John Wiley & Sons, 2004.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[3] S. J. Bock, L. J. Taylor, Z. E. Phillips, and W. Sun. Women and minorities in computer
science majors: Results on barriers from interviews and a survey. WOMEN, 14(1):143–
152, 2013.

[4] Y. Bramoullé, S. Currarini, M. O. Jackson, P. Pin, and B. W. Rogers. Homophily and
long-run integration in social networks. Journal of Economic Theory, 147(5):1754–1786,
2012.

[5] D. J. Brass. Men’s and women’s networks: A study of interaction patterns and influence
in an organization. Academy of Management Journal, 28(2):327–343, 1985.

[6] S. J. Ceci and W. M. Williams. Understanding current causes of women’s underrepre-
sentation in science. Proceedings of the National Academy of Sciences, 108(8):3157–3162,
2011.

[7] F. R. K. Chung and L. Lu. Complex graphs and networks, volume 107 of CBMS Regional
Conference Series in Mathematics. AMS Bookstore, 2006.

[8] D. A. Cotter, J. M. Hermsen, S. Ovadia, and R. Vanneman. The glass ceiling effect.
Social forces, 80(2):655–681, 2001.

[9] S. A. Davies-Netzley. Women above the glass ceiling perceptions on corporate mobility
and strategies for success. Gender & Society, 12(3):339–355, 1998.

[10] W. W. Ding, F. Murray, and T. E. Stuart. Gender differences in patenting in the
academic life sciences. Science, 313(5787):665–667, 2006.

[11] D. Easley and J. Kleinberg. Networks, crowds, and markets. Cambridge Univ Press,
6(1):6–1, 2010.

[12] D. Eder and M. T. Hallinan. Sex differences in children’s friendships. American Socio-
logical Review, pages 237–250, 1978.

[13] Education at a Glance. Organisation for economic co-operation and development.
OECD, 2012.

28



[14] H. Etzkowitz, C. Kemelgor, M. Neuschatz, B. Uzzi, and J. Alonzo. The paradox of
critical mass for women in science. Science, 266:51–54, 1994.

[15] A. Eyring and B. A. Stead. Shattering the glass ceiling: Some successful corporate
practices. Journal of Business Ethics, 17(3):245–251, 1998.

[16] E. Falk and E. Grizard. The glass ceiling persists: The 3rd annual appc report on women
leaders in communication companies. The Annenberg Public Policy Center, University
of Pennsylvania. Retrieved March, 4:2005, 2003.

[17] W. Faulkner and M. Lie. Gender in the information society strategies of inclusion.
Gender, Technology and Development, 11(2):157–177, 2007.

[18] Federal Glass Ceiling Commission. Solid investments: Making full use of the nation’s
human capital. US Government, Department of Labor. Washington, DC, 1995.

[19] A. Fisher, J. Margolis, and F. Miller. Undergraduate women in computer science: Expe-
rience, motivation and culture. In Proceedings of the Twenty-eighth SIGCSE Technical
Symposium on Computer Science Education, pages 106–110. ACM, 1997.

[20] N. Frenkiel. The up and comers: Bryant takes aim at the settlers-in. Adweek, March,
1984.

[21] C. Hill, C. Corbett, and A. St Rose. Why So Few? Women in Science, Technology,
Engineering, and Mathematics. ERIC, 2010.

[22] H. Ibarra. Homophily and differential returns: Sex differences in network structure and
access in an advertising firm. Administrative science quarterly, pages 422–447, 1992.

[23] H. Ibarra. Paving an alternative route: Gender differences in managerial networks. Social
Psychology Quarterly, pages 91–102, 1997.

[24] A. P. Kottis. Women in management: The “glass ceiling" and how to break it. Women
in Management Review, 8(4), 1993.

[25] V. A. Lagesen. The strength of numbers: Strategies to include women into computer
science. Social Studies of Science, 37(1):67–92, 2007.

[26] V. Lariviere, C. Ni, Y. Gingras, B. Cronin, and C. R. Sugimoto. Bibliometrics: Global
gender disparities in science. Nature, 504:211–213, 2013.

[27] P. F. Lazarsfeld, R. K. Merton, et al. Friendship as a social process: A substantive and
methodological analysis. Freedom and control in modern society, 18(1):18–66, 1954.

[28] S.-J. Leslie, A. Cimpian, M. Meyer, and E. Freeland. Expectations of brilliance underlie
gender distributions across academic disciplines. Science, 347(6219):262–265, 2015.

[29] M. Ley. Dblp: some lessons learned. Proceedings of the VLDB Endowment, 2, 2009.

[30] T. J. Ley and B. H. Hamilton. The gender gap in nih grant applications. Science,
322(5907):1472–1474, 2008.

[31] P. Longo and C. J. Straehley. Whack! i’ve hit the glass ceiling! women’s efforts to gain
status in surgery. Gender medicine, 5(1):88–100, 2008.

[32] E. E. Maccoby. The two sexes: Growing up apart, coming together. Harvard University
Press, 1998.

29



[33] R. F. Martell, D. M. Lane, and C. Emrich. Male-female differences: A computer simu-
lation. 1996.

[34] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, pages 415–444, 2001.

[35] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

[36] C. A. Moss-Racusin, J. F. Dovidio, V. L. Brescoll, M. J. Graham, and J. Handelsman.
Science facultyís subtle gender biases favor male students. Proceedings of the National
Academy of Sciences, 109(41):16474–16479, 2012.

[37] M. Othman and R. Latih. Women in computer science: No shortage here! Commun.
ACM, 49(3):111–114, Mar. 2006.

[38] A. N. Pell. Fixing the leaky pipeline: women scientists in academia. Journal of animal
science, 74(11):2843–2848, 1996.

[39] E. S. Roberts, M. Kassianidou, and L. Irani. Encouraging women in computer science.
SIGCSE Bull., pages 84–88, 2002.

[40] S. Sassler, J. Glass, Y. Levitte, and K. Michelmore. The missing women in stem?
accounting for gender differences in entrance into stem occupations. In Annual meeting
of the Population Association of America Presentation, 2011.

[41] J. M. Sheltzer and J. C. Smith. Elite male faculty in the life sciences employ fewer
women. Proceedings of the National Academy of Sciences, 2014.

[42] H. Shen. Mind the gender gap. Nature, 2013.

[43] L. Smith-Lovin and J. M. McPherson. You are who you know: A network approach to
gender. Theory on gender/feminism on theory, pages 223–51, 1993.

[44] E. Spertus. Why are there so few female computer scientists? Technical report, Cam-
bridge, MA, USA, 1991.

[45] P. E. Stephan and S. G. Levin. Leaving careers in IT: gender differences in retention.
The Journal of Technology Transfer, 30(4):383–396, 2005.

[46] R. Stross. What has driven women out of computer science? New York Times, 15, 2008.

[47] N. B. Tuma and M. T. Hallinan. The effects of sex, race, and achievement on schoolchil-
dren’s friendships. Social Forces, 57(4):1265–1285, 1979.

[48] J. D. West, J. Jacquet, M. M. King, S. J. Correll, and C. T. Bergstrom. The role of
gender in scholarly authorship. PloS one, 8(7):e66212, 2013.

[49] M. A. Whitecraft and W. M. Williams. Why Aren’t More Women in Computer Science?
In Making Software: What Really Works, and Why We Believe. 2011.

30


