ETH zürich

Anonymity On The Web

Francesco Locatello Michael König ETH Zürich

April 29, 2015

Who needs anonymity?

Who needs anonymity?

• Identity thieves

- Identity thieves
- Irresponsible corporations

- Identity thieves
- Irresponsible corporations
- Sensitive topics

- Identity thieves
- Irresponsible corporations
- Sensitive topics
- Circumvent censorship

How to retain it?

Tor mission: "Tor aims to provide protection for ordinary people who want to follow the law."

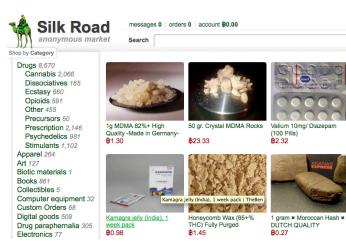
What to do with Tor:

What to do with Tor:

Access web sites anonymously

What to do with Tor:

Access web sites anonymously


Host web servers with anonymous location

Tor in real life

Tor in real life

TorBrowser 🔻	🗴 The Hidden Wiki × C Galaxy × 📴 The Tor ver						ion of Facebook × +							
+ + @ +	😫 🎯 torbookdjwhj	nju4.onion							☆ マ C 💽 - Start	page	٩	•	∔ †	;¢, ▼
	Torbook						Login ID:	e logged in	Password:	ord?	in			Î
	Torboo in your	k helps you o life.	connect an	d share w	vith the pa	eople	"Full Na	e and alway me: mai: Captcha C r c c	J 9	S 2 1	5			
🚯 📵	6 🗎	0.0	6								es 🔺	() 🙀 🖡	03:26 04/03/	p.m. /2014

Tor in real life

Go

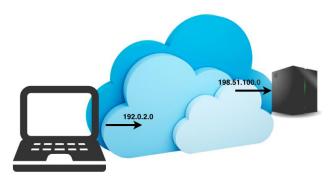
Citalopram 10x 20mg table

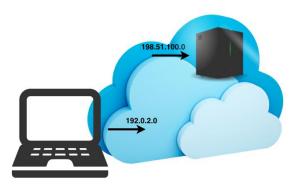
₿0.10

Anonymity On The Web

Anonymity On The Web

Definition:


Allow users to communicate privately by hiding their identities from the recipient or third parties on the internet.


The web cloud

Direct connection

Tor breaks this link

Host website anonymously: no registered domain name, no hosting account

Outline

Tor

1

Structure

- Strengths
- Weaknesses

2 Dissent

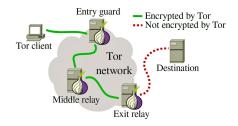
• Foundations of Anonymity

How to use Tor: Download the Tor client also called Onion proxy

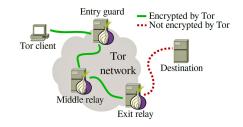
How to use Tor: Download the Tor client also called Onion proxy

What does Tor do for you: Tor protects the transport of data, it doesn't hide user informations (Tor browser).

Proxy

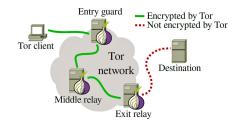


Proxy

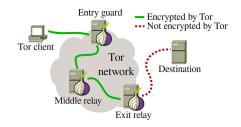


Do you trust the proxy?

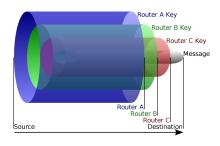
The topology of the Tor Network



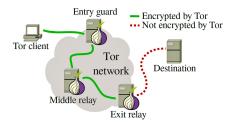
The topology of the Tor Network

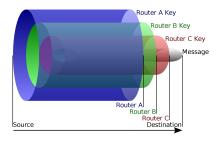

• Ran by volunteers all over the world

The topology of the Tor Network

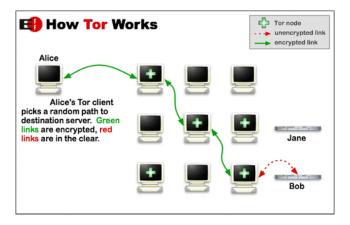

- Ran by volunteers all over the world
- Learning what sites you visit

The topology of the Tor Network

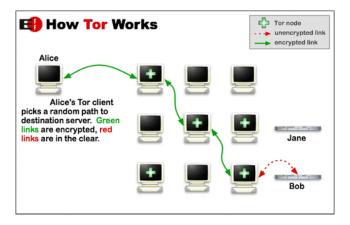



- Ran by volunteers all over the world
- Learning what sites you visit
- Learning your location

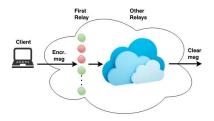
The Onion Routing

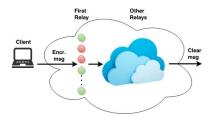


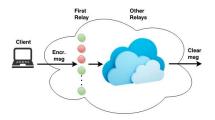
The Onion Routing



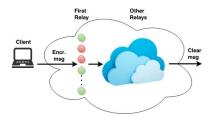
Connection Scheme


Performance: Latency and Bandwidth


Performance: Latency and Bandwidth


Possible Attacks:

- Side channel analysis introduction
 - Global traffic analysis (1)
 - Active attack: congestion (2)
- Intersection attack (3)
- Software exploitation and self identification (4)



$$c = \#$$
 of controlled relays $n = \#$ of relays

$$c = \#$$
 of controlled relays
 $n = \#$ of relays

correlation of traffic with p = ???

$$c = \#$$
 of controlled relays
 $n = \#$ of relays

correlation of traffic with $p = \frac{c}{n}$

Execution Analysis

• Break cryptography

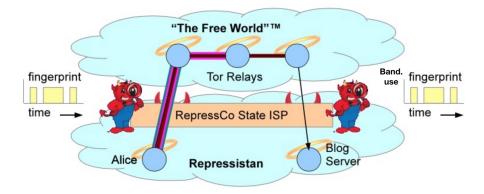
Execution Analysis

• Break cryptography

Traffic Analysis

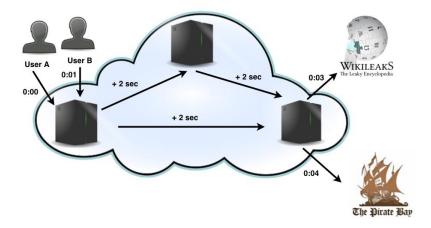
• Correlate time and size of packets

Execution Analysis

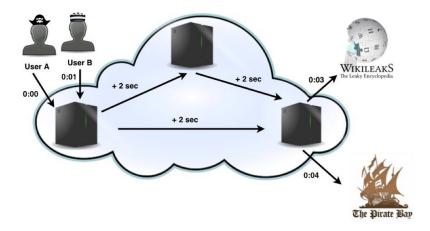

• Break cryptography

Traffic Analysis

- Correlate time and size of packets
- Deduce the path through the network

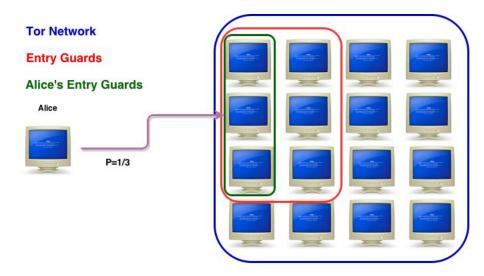

Global Traffic Analysis on Tor (1)

Global Traffic Analysis on Tor (1)



A Simple Example

A Simple Example



A Simple Example

How Tor handles it:

How Tor handles it:

Why entry guards:

Those relays are not controlled or observed

Those relays are not controlled or observed

Those relays are observed or controlled

Explanation: analysis over a month

Probability being safe with entry guards: $p = (1 - \frac{c}{n})^3$

Probability being safe with entry guards: $p = (1 - \frac{c}{n})^3$

Probability being safe without entry guards:

$$p_{\texttt{all safe}} = p_{\texttt{safe}}^{\texttt{number of connections}} = 0$$

for number of connection sufficiently big.

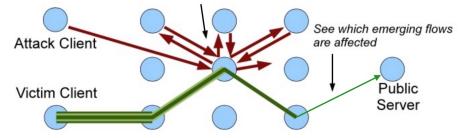
Active Attack: Congestion (2)

Active Attack: Congestion (2)

Assumptions:

Assumptions:

The attacker can either be "in the network" or own or have compromised a web server

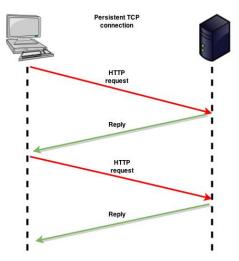

Assumptions:

The attacker can either be "in the network" or own or have compromised a web server

The attacker wishes to determine the set of relays through which a **long lived circuit** owned by a particular user passes (SSH).

Strategy

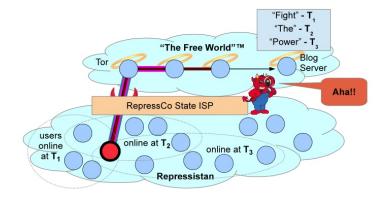
Induce heavy load to cause congestion and forwarding delays



Intersection Attack: framework (3)

Intersection Attack: framework (3)

One time interaction are rare


Intersection Attack: framework (3)

Intersection Attack: framework (3)

Effectiveness

Real Life Examples

Forbes	-	New Posts +2	Most Popular	Lists	Video	Subscribe to Forbes	S
Log in Sign up	Connect	< 🗗 🔽 in >					

Runa A. Sandvik Contributor

I cover all things privacy, security and technology. full blo →

Opinions expressed by Forbes Contributors are their own.

TECH 12/18/2013 @ 1:46PM | 59,109 views

Harvard Student Receives F For Tor Failure While Sending 'Anonymous' Bomb Threat

+ Comment Now + Follow Comments

On Tuesday, the FBI filed a criminal complaint against a Harvard University sophomore student for making bomb threats that led school officials to delay some final exams, including his, that had been scheduled for Monday. According to the five-page complaint, the student "took

steps to disguise his identity" by using Tor, a software which allows users to browse the web anonymously, and Guerrilla Mail, a service which allows users to create free, temporary email addresses.

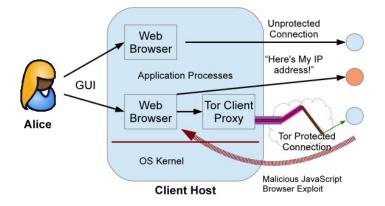
Real Life Examples

The Washington Post 0

apps.washingtonpost.com

Documents obtained by The Washington Post indicate that the National Security Agency is collecting billions of records a day to track the location of mobile phone users around the world. This bulk collection, performed under the NSA's international surveillance authority. taps into the telephony links of major telecommunications providers including some here in the United States.

The NSA collects this location and travel habit data to do "target development" - to find unknown associates of targets it already knows about.


To accomplish this, the NSA compiles information on a vast database of devices and their locations. Most of those collected, by definition, are suspected of no wrongdoing. Officials say they do not purposely collect U.S. phone locations in bulk, but a large number are swept up "incidentally."

Using these vast location databases, the NSA applies sophisticated analytics techniques to identify what it calls co-travelers - unknown associates who might be traveling with, or meeting up with a known target. HERE IS HOW IT WORKS

Read related story

Software Exploits and Self Identification (4)

Software Exploits and Self Identification (4)

Attack	Tor	Dissent
Global Traffic analysis (1)		
Congestion attack (2)		
Intersection attack (3)		
Software exploits (4)		

Attack	Tor	Dissent
Global Traffic analysis (1)	×	
Congestion attack (2)	×	
Intersection attack (3)	×	
Software exploits (4)	×	

Dissent: Introduction

Dissent: Introduction

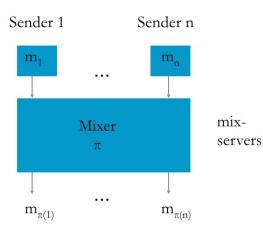
$\bullet \bullet \bullet \checkmark$		0 =	🖨 GitHub, Inc.	Ċ	∆ 0 0 +
	GitHub This repo	sitory Search	Explore Features	Enterprise Blog	Sign up Sign In
	DeDiS / Disser	nt		() Watch 28	Star 167 V Fork 26
	Provably Anonymous C	verlay http://dedis.cs.yale.edu/2	2010/anon/		
	@ 942 commits	2 branches	S 1 release	5 contributors	<> Code
				_	① Issues 2
	0 P branch: master -	Dissent / +		12	11 Pull requests 0
	use default images, not spe	cial images that we have no use for			
	avidiw authored on Nov	r 11, 2014	lat	est conmit 84c79e038d 🕃	4~ Pulse
	ill conf	Rewrite of the session handling code	following the design	a year ago	di Graphs
	ill doc	Beginnings of a Dissent use-cases document for the RATPAC		7 months ago	
	iiii ext	Some initial porting to Qt5 the big re-	maining issues is Url parsing n	2 years ago	HTTPS clone URL
	illi src	[Application] Check keys before start	ing	6 months ago	https://github.com
	illi utilis	use default images, not special images that we have no use for 5		5 months ago	Subversion.
	.gitignore	updated gitignore		2 years ago	Clone in Desktop
	DESIGN	DESIGN doc update		6 months ago	Ownload ZIP
	README	README tweak		11 months ago	
	README.doxy	Doxygen / Documentation stuff		3 years ago	
		TODO fix		a year ago	
	WEB_USE	few tweaks to readme to reflect char	ges in config files	2 years ago	
	application.pro	[Web] Cleaned up WebServices		3 years ago	

• Verifiable shuffles

- Verifiable shuffles
- Dining cryptographers

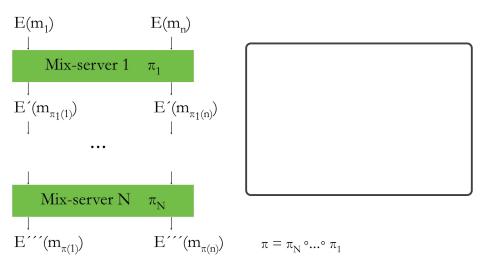
- Verifiable shuffles
- Dining cryptographers

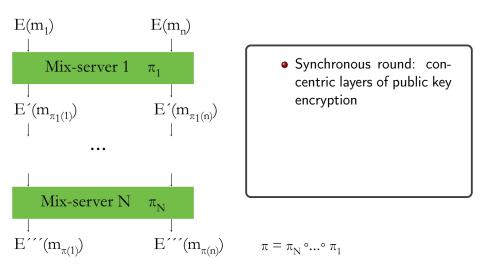
Framework:

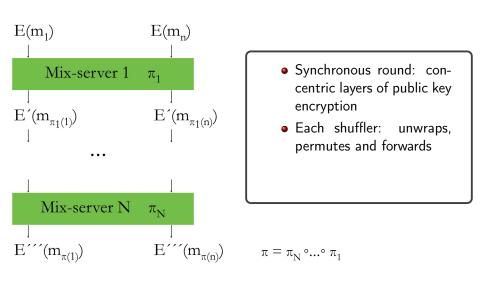

- Verifiable shuffles
- Dining cryptographers

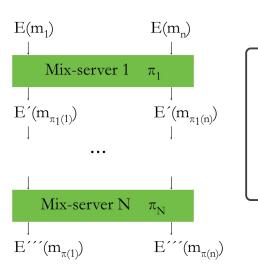
Framework:

• A group of users wants to share secrets between themselves


Verifiable Shuffles: Mixing Server


Verifiable Shuffles: Mixing Server

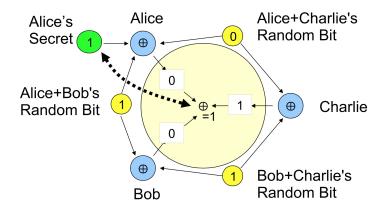



System Overview

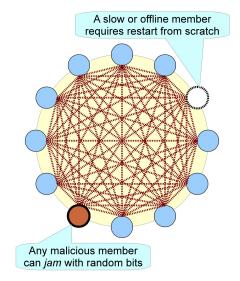
- Synchronous round: concentric layers of public key encryption
- Each shuffler: unwraps, permutes and forwards
- The final shuffler: broadcasts

 $\pi=\pi_N\circ...\circ\,\pi_1$

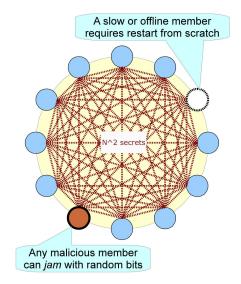
Considerations


• Provable anonymity

- Provable anonymity
- Worst possible traffic at each shuffler


- Provable anonymity
- Worst possible traffic at each shuffler
- Practical only when high latencies are tolerable

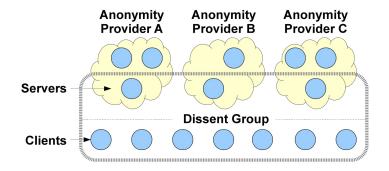
The only well studied foundation for anonymity not based on sequential relaying is Dining Cryptographers or **DC-nets**.


Dining cryptographers

Considerations

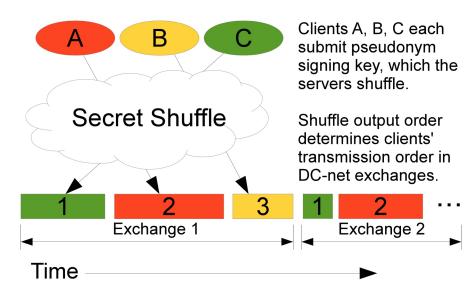
Considerations

Weak anonymity among many nodes via onion routing

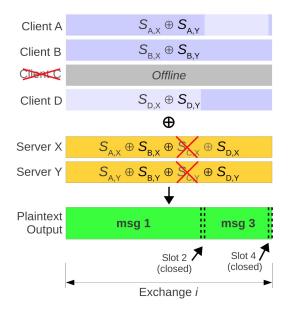

Weak anonymity among many nodes via onion routing

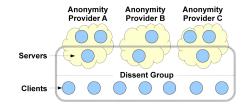
Strong anonymity among few nodes with DC-nets

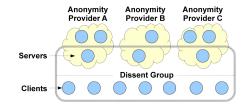
• Client/server architecture


- Client/server architecture
- Clients trust only that at least one server in the set is honest, but need not know or choose which server to trust

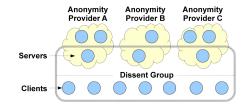
Anytrust

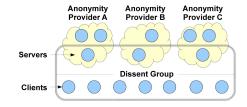

Dissent Protocol Outline Setup

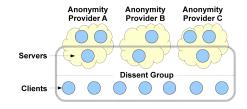

Dissent Protocol Outline Setup

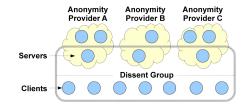

Round Structure

Round Structure

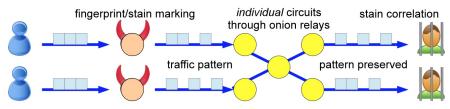




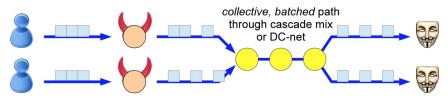

 $\bullet~$ Client: shares secrets with only M << N servers


- Client: shares secrets with only M << N servers
- Client: compute M pseudo-random bits per clear text bit

- Client: shares secrets with only $M \ll N$ servers
- Client: compute M pseudo-random bits per clear text bit
- Server: compute N pseudo-random bits per clear text bit



- Client: shares secrets with only M << N servers
- Client: compute M pseudo-random bits per clear text bit
- Server: compute N pseudo-random bits per clear text bit
- Parallelizable computation



- Client: shares secrets with only M << N servers
- Client: compute M pseudo-random bits per clear text bit
- Server: compute N pseudo-random bits per clear text bit
- Parallelizable computation
- Network churns tolerance

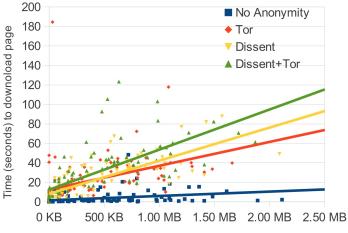
Handling attacks

(a) Onion routing is vulnerable to passive and active fingerprinting attacks

(b) Cascade mixes or verifiable shuffles collectively "scrub" traffic patterns

Attack	Tor	Dissent
Global Traffic analysis (1)	×	
Congestion attack (2)	×	
Intersection attack (3)	×	
Software exploits (4)	×	

Attack	Tor	Dissent
Global Traffic analysis (1)	×	1
Congestion attack (2)	×	
Intersection attack (3)	×	
Software exploits (4)	×	


Attack	Tor	Dissent
Global Traffic analysis (1)	×	1
Congestion attack (2)	×	1
Intersection attack (3)	×	
Software exploits (4)	×	

Attack	Tor	Dissent
Global Traffic analysis (1)	×	1
Congestion attack (2)	×	1
Intersection attack (3)	×	×
Software exploits (4)	×	

Attack	Tor	Dissent
Global Traffic analysis (1)	×	1
Congestion attack (2)	×	1
Intersection attack (3)	×	×
Software exploits (4)	×	×

- Scalability still limited
- Intersection attacks
- Handling server failure

Latency Considerations

Size (bytes) of all index page content (HTML page, images, JS, CSS)

• Latency security tradeoff for the transport of the data

- Latency security tradeoff for the transport of the data
 - Low latency: Tor
 - Weak anonymity guarantees

- Latency security tradeoff for the transport of the data
 - Low latency: Tor
 - Weak anonymity guarantees
 - Strong anonymity: Dissent
 - High latency

• Attacks against anonymity can be done at multiple levels

- Attacks against anonymity can be done at multiple levels
- There are no out of the box solutions, but....

- Attacks against anonymity can be done at multiple levels
- There are no out of the box solutions, but....
- There exist a set of tools that can help to provide the required level of anonymity (Tor, Tor Browser, VM, Dissent).

Questions?