

Sleep Sensing

Distributed Systems Seminar FS 2015 (D-INFK)

Speaker Dominik Kovacs

Supervisor Jara Uitto

1

Motivation

The Hours of Our Lives

How much time do we sleep during a lifetime, compared with other activities?

Why Sleep Sensing?

Dyssomnia

Apnea

Restless Leg Syndrome

Narcolepsy

Improve Sleep Quality

American Academy of Sleep Medicine (AASM) 2007

Sleep Cycle and its Sleep Stages

- N1 (Light Sleep)
 - Can be awakened easily
 - Slow eye movements and muscle activity
 - Sudden muscle contractions followed by a sensation of falling
- N2 (Light Sleep)
 - Eye movement stops
 - Brain waves become slower
- N3 (Deep Sleep)
 - Extremely slow brain waves (delta waves)
 - Difficult to be awakened
 - No eye movement or muscle activity
- REM (Rapid Eye Movements)
 - Rapid and irregular breathing, increasing heart rate
 - Skeletal muscles paralyzed
 - Dreaming

American Academy of Sleep Medicine (AASM) 2007

- Total sleep time $TST = T_R + T_{N1} + T_{N2} + T_{N3} = TRT T_W$
- Sleep efficiency: $\frac{\text{TST}}{\text{TRT}} \cdot 100$
- Wakefulness after sleep onset WASO = T_W SOL

Change of Hypnogram over the age

Hours of sleep

- Increase in #awakenings
- Decrease in REM sleep
- Decrease in N3 (deep) sleep

Sleep Sensing

Ways of Measuring Sleep

Ways of Measuring Sleep Subjective vs Objective

- Subjective (Questionnaire)
 - Falling asleep
 - Overall sleep quality
 - Number of awakenings
 - Feeling after wakeup

- Objective
 - Sleep onset latency (SOL)
 - Number of movements
 - Number of awakenings
 - Total time in REM sleep

Ways of Measuring Sleep

Polysomnography (PSG)

Actigraphy

Ways of Measuring Sleep

Actigraphy Placements

On-Body

Off-Body

Objective Sleep Measurements PSG vs Actigraphy

[wikimedia.org]

[http://www.healthcare.philips.com/main/homehealth/sleep/actiwatch/default.wpd]

Building a sleep sensing App

How to measure sleep with your smartphone

Accelerometer

Microphone

Light Sensor

Gyroscope

Magnetic Field

Pressure

Ambient Temperature

Relative Humidity

Common sleep-related smartphone tasks

Task	How?	Difficulty?
Detect snoring	On-board microphone	Easy
Detect sleep talking	On-board microphone	Easy
Detect sleep walking	Accelerometer/Gyroscope	Easy
Offer Smart Alarm	Accelerometer, Timer	Medium
Measure Sleep Quality	Accelerometer, Timer	Medium
Detect Sleep Stages	[Intentionally left blank]	Hard

DEER HUNTING

You're doing it wrong...

Sleep Hunter

[Weixi Gu et al. 2014 Intelligent Sleep Stage Mining Service with Smartphones]

Figure 2. The architecture of Sleep Hunter

Smart Alarm / Smart Call Service

Sleep Hunter

[Weixi Gu et al. 2014 Intelligent Sleep Stage Mining Service with Smartphones]

Figure 2. The architecture of Sleep Hunter

Body Movement Detection Vibration Sampling

Raw Acceleration Data

Acceleration Variance

$$V(i) \coloneqq a(i) - a(i-1)$$

Body Movement Detection Noise Elimination

26

Body Movement Detection Noise Elimination

Body Movement Detection Classification

Figure 3. Acceleration trace of body movement

Naive Bayes classifier Example

- Given Macro movements, which sleep stage to classify?
 - P(Light|Macro), P(REM|Macro), P(Deep|Macro)
- Bayes Rule
 - $P(Light|Macro) = \frac{P(Macro|Light) \cdot P(Light)}{P(Macro)}$
 - $P(Light|Macro) = \frac{\frac{8}{10} \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{\frac{8}{30}}{\frac{1}{2}} = \frac{16}{30} = \frac{8}{15}$
 - $P(REM|Macro) = \frac{\frac{1}{10} \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{\frac{1}{30}}{\frac{1}{2}} = \frac{2}{30} = \frac{1}{15}$
 - $P(Deep|Macro) = \frac{\frac{1}{10} \cdot \frac{1}{3}}{\frac{1}{2}} = \frac{\frac{1}{30}}{\frac{1}{2}} = \frac{2}{30} = \frac{1}{15}$

Sleep Hunter

[Weixi Gu et al. 2014 Intelligent Sleep Stage Mining Service with Smartphones]

Figure 2. The architecture of Sleep Hunter

Acoustic Event Detection Common acoustic events

Normal breathing: 12-20 breaths per minute

Rapid (tachypneic) breathing: >20 breaths per minute

Abnormal (apneustic) breathing

Sleep talking (Somniloquy)

REM Sleep

Acoustic Event Detection Acoustic Sampling

Microphone

- Divide audio stream into equally long frames
 - Assign frames to acoustic events
 - Analyze frequency domain of each frame

Acoustic Event Detection Noise Elimination

Typical acoustic noise	How to detect it	
Ambient noise	Root-mean-square (RMS) error $< Th_{rms}$ Spectral entropy $> Th_{entropy}$	(see Slide 34) (see Slide 37)
Body movement	Body movement	
Traffic noise	Specific acoustic features (see Slide 41)	

Acoustic Event Detection Root-Mean-Square (RMS)

RMS over a set of discrete values x_i where $1 \le i \le n$

$$x_{rms} = \sqrt{\frac{1}{n}(x_1^2 + x_2^2 + \dots + x_n^2)}$$

■ RMS over a continuous function f(t) over the interval $T_1 \le t \le T_2$

$$f_{rms} = \sqrt{\frac{1}{T_2 - T_1}} \int_{T_1}^{T_2} [f(t)]^2 dt$$

Acoustic Event Detection Time-domain Feature Selection

Zero Crossing Rate (ZCR) (Indicator)

$$\frac{1}{2} \sum_{j=1}^{m} |\operatorname{sign}(s_j) - \operatorname{sign}(s_{j-1})|^{0}$$

$$= \frac{1}{2} (... + 0 + 2 + 0 + \cdots)$$

Signal Processing Time domain and Frequency domain

Acoustic Event Detection Frequency-domain Feature Selection: Spectral Entropy

- Entropy of a discrete random variable X with possible values $\{x_1, ..., x_n\}$ and probability mass function P(X)
 - Information of X

$$-\sum_{i} P(x_i) \cdot \log P(x_i)$$

- Spectral entropy of $f_t(j)$ the magnitude of the jth frequency in the spectrum of frame f_t
 - Flatness of the frequency spectrum, noise-likeness

$$-\sum_{j=1}^{N} f_t(j) \cdot \log f_t(j)$$

Acoustic Event Detection Frequency-domain Feature Selection

- Spectral Centroid
 - Balancing point of the power spectral distribution

$$Cen_t = \frac{\sum_{j=1}^{N} j \cdot |f_t(j)|}{\sum_{j=1}^{N} |f_t(j)|}$$

Figure 40. Two spectra with different centroids, the first at 200 Hz., the second at 216.7 Hz.

Example of first centroid:

$$Cen_1 = \frac{100\text{Hz} \cdot 8 + 200\text{Hz} \cdot 6 + 300\text{Hz} \cdot 4 + 400\text{Hz} \cdot 2}{8 + 6 + 4 + 2} = 200\text{Hz}$$

Acoustic Event Detection Frequency-domain Feature Selection

- Spectral Flux
 - Stability of acoustic events
 - Comparison with previous frame f_{t-1}

$$-\sum_{j=1}^{N} (f_t(j) - f_{t-1}(j))^2$$

Acoustic Event Detection Frequency-domain Feature Selection

- Bandwidth
 - Highest frequency minus lowest frequency
- Spectral Rolloff
 - Indicates the percentage frequency bin below a predefined threshold, which is usually set to be 95%
 - Reflects the skewness of the spectral distribution

$$\max\left(h\left|\sum_{j=1}^{h} f_t(j) < threshold\right)$$

Acoustic Event Detection Feature Selection

Features

Sleep Hunter

Figure 2. The architecture of Sleep Hunter

Reference Model

Performance Analysis Datasets

Performance Analysis Confusion Matrix

Ground	Predictions				
Truth	REM	Light Sleep	Deep Sleep		
REM	538	206	39	68.71%	=
Light Sleep	246	630	77	66.11%	Se
Deep Sleep	61	108	174	50.73%	~
	63.67%	66.74%	60.00%	64.55%	
		Accu	racy		

Recall:
$$TPR_i = \frac{TP_i}{P_i}$$

Recall:
$$TPR_i = \frac{TP_i}{P_i}$$
 E.g. $TPR_{REM} = \frac{538}{538 + 206 + 39} = .687$

Precision:
$$PPV_i = \frac{TP_i}{TP_i + FP_i}$$

Precision:
$$PPV_i = \frac{TP_i}{TP_i + FP_i}$$
 E.g. $PPV_{REM} = \frac{538}{538 + 246 + 61} = .6367$

Accuracy:
$$ACC = \frac{TP + TN}{P + N} = \frac{538 + 630 + 174}{538 + 206 + 39 + 246 + 630 + 77 + 61 + 108 + 174} = .6455$$

Performance Analysis Comparison to other Actigraphs

Stage	Light Sl	еер	Deep Sleep		
Device	Precision	Recall	Precision	Recall	
Sleep Hunter	66.74%	66.11%	60.00%	50.73%	
Jawbone UP	37.74%	65.14%	34.62%	29.03%	
Sleep As Android	25.71%	32.14%	36.36%	49.61%	

Figure 13. Performance comparison

	REM		Light Sleep		Deep Sleep	
Features	Precision	Recall	Precision	Recall	Precision	Recall
BM	39.62%	34.91%	37.84%	47.11%	30.12%	28.27%
BM+AE	45.41%	39.67%	47.83%	49.31%	38.34%	33.27%
BM+AE+IC	46.13%	41.81%	49.10%	52.27%	42.91%	35.84%
BM+AE+IC+SD	60.89%	67.99%	63.36%	59.15%	57.96%	46.53%
BM+AE+IC+SD+PF	63.67%	68.71%	66.74%	66.11%	60.00%	50.73%

Table 3. Evaluation of sleep-related features

Conclusion

Q&A

