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1. Introduction

The traveling salesman problem has long been of great interest. The prob-
lem has been formulated in several different ways. We use the following for-
mulation:

A traveling salesman graph G is a complete weighted undirected graph spec-
ified by a pair (N, d) where N is a set of nodes, d is a distance function map-
ping pairs of nodes (or edges) into real numbers, and d satisfies

(a) d(i, j) = d(j, i) for all i and j in N ,

(b) d(i, j) ≥ 0 for all i and j in N ,

(c) d(i, j) + d(j, k) ≥ d(i, k) for all i, j, k in N .

Condition (c) is referred to as the triangle inequality. The number d(i, j) is
called the length or weight of (i, j).

A tour for a traveling salesman graph G is a circuit on the graph containing
each node exactly once (i.e. a Hamiltonian circuit). The length of a tour is
the sum of the lengths of the edges composing the circuit. An optimal tour or
solution for G is a tour of minimal length. The traveling salesman problem is
to take a traveling salesman graph and find an optimal tour.

The traveling salesman problem is sometimes formulated (Bellmore and
Nemhauser [1]) as the problem of finding a minimal length circuit contain-
ing each node at least once for an undirected graph in which the distances are
not constrained by the triangle inequality. However, a problem stated in this
manner can always be reduced (Hardgrave and Nemhauser [6]) to the problem
considered here by the technique of changing each d(i, j) to the length of the
shortest path between i and j. This conversion can be done in time proportional
to the cube of the number of nodes (Floyd [4]). Each tour in the new problem
corresponds to a circuit of the same length in the original problem, and the two
problems have solutions of the same length. Therefore, our results, which are
stated in terms of the new problem, also apply to the original problem.

Another formulation requires that a shortest tour be found for distances not
constrained by the triangle inequality. A problem stated this way can always
be reduced to the type of problem considered here by adding a suitably large
constant k to each distance. The altered problem has the same optimal tour as
the original, but the lengths of the optimal tours will differ by the amount n · k
where n is the number of nodes. Our results do not apply to this formulation,
since our results pertain to the tour lengths.

The best known methods of solving the traveling salesman problem take an
amount of time exponential in the number of nodes. Furthermore, the problem
is easily seen to be NP-hard. Karp [8] shows that determining whether an
undirected graph has a Hamiltonian circuit is NP-complete. This problem can
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be reduced to a traveling salesman problem by forming the complete weighted
graph whose edges are of length one if there is a corresponding edge in the
original graph, and of length two otherwise. For an n node graph, the minimal
tour of the new graph has length n if and only if the original graph has a
Hamiltonian circuit.

In view of the computational difficulties in obtaining optimal tours, a num-
ber of algorithms have been published which run faster but do not necessarily
produce an optimal tour. A number of these approximation algorithms have
been experimentally observed to perform well, but there has not been a theo-
retical characterization of how the obtained tours compare with the optimal.

In this paper, we analyze some of these methods to bound the ratio of the
obtained tour length to the optimal tour length. In some cases, these bounds
grow as a function of the number of nodes and in other cases a constant bound
is found for all traveling salesman problems. In contrast, if the distance func-
tion is unconstrained by the triangle inequality then for any constant k ≥ 1,
the problem of finding a tour with a ratio bounded by k is NP-complete (Sahni
and Gonzalez [16]).

Another approximation method was recently announced and analyzed in
Christofides [2]. This method produces a better worst case approximation than
the methods analyzed here, but requires more running time.

In the material which follows, we exclude the trivial case where the dis-
tance function is identically zero. This assumption together with the triangle
inequality implies that every tour has a length greater than zero. We also adopt
the convention that OPTIMAL represents the length of the optimal tour. Under
the assumption of nontriviality,

OPTIMAL > 0. (1.1)

2. Nearest Neighbor Algorithm

The first approximation algorithm we study is the nearest neighbor method
(Bellmore and Nemhauser [1]), also called the next best method in Gavett [5].
In this algorithm, a path is constructed as follows:

1. Start with an arbitrary node.

2. Find the node not yet on the path which is closest to the node last added
and add to the path the edge connecting these two nodes.

3. When all nodes have been added to the path, add an edge connecting the
starting node and the last node added.

We assume that when there are ties in step 2, they can be broken arbitrarily.
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We note that the nearest neighbor algorithm can be programmed to operate
in time proportional to n2 where n is the number of nodes. This time is linear
in the input length if the input is a list of all distances.

Let NEARNEIBER be the length of the tour obtained by the nearest neigh-
bor algorithm. Let lg denote the logarithm to the base 2, and �x� denote the
smallest integer greater than or equal to x.

THEOREM 1. For a traveling salesman graph with n nodes

NEARNEIBER
OPTIMAL

≤ 1
2

�lg(n)� +
1
2
.

The proof of Theorem 1 is given after the proof of the following lemma.

LEMMA 1. Suppose that for a n node graph (N, d) there is a mapping assign-
ing each node p a number lp such that the following two conditions hold:

(a) d(p, q) ≥ min(lp, lq) for all nodes p and q.

(b) lp ≤ 1
2 OPTIMAL for all nodes p.

Then
∑

lp ≤ 1
2(�lg(n)� + 1) OPTIMAL.

Proof. We can assume without loss of generality that node set N is {i | 1 ≤
i ≤ n} and that li ≥ lj whenever i ≤ j. The key to the proof is the following
inequality:

OPTIMAL ≥ 2
min(2k,n)∑

i=k+1

li (2.1)

for all k satisfying 1 ≤ k ≤ n.
To prove (2.1), we let H be the complete subgraph defined on the set of

nodes
{i | 1 ≤ i ≤ min(2k, n)}.

We let T be the tour in H which visits the nodes of H in the same order as
these nodes are visited in an optimal tour of the original graph. Let LENGTH
be the length of T . By the triangle inequality, each edge (b, c) of T must have
a length which is less than or equal to the length of the path from b to c used in
the optimal tour. Since the edges of T sum to LENGTH and the corresponding
paths in the original graph sum to OPTIMAL we conclude that

OPTIMAL ≥ LENGTH. (2.2)



Traveling Salesman Problem 49

By condition (a) of the Lemma, for each (i, j) in T , d(i, j) ≥ min(li, lj).
Therefore,

LENGTH ≥
∑

(i,j)∈T

min(li, lj) =
∑

i∈H

αili (2.3)

where αi is the number of edges (i, j) in T for which i > j (and hence li =
min(li, lj)).

We want to obtain a lower bound on the right hand side of (2.3). Observe
that each αi is at most 2 (because i is the endpoint of only two edges in tour T )
and that the αi sum to the number of edges in T . Because k is at least half of
the number of edges in T , we certainly get a lower bound on the right hand
side of (2.3) if we assume that the k largest li have α1 = 0 and the remaining
min(2k, n) − k of the li have αi = 2. By assumption, the k largest are {li|1 ≤
i ≤ k} so the estimated lower bound is

∑

i∈H

αili ≥ 2
min(2k,n)∑

i=k+1

li (2.4)

and (2.2), (2.3), and (2.4) together establish (2.1).
We now sum inequalities (2.1) for all values of k equal to a power of two

less than s, namely:

�lg(n)�−1∑

j=0

OPTIMAL ≥
�lg(n)�−1∑

j=0

2 ·
min(2j+1,n)∑

i=2j+1

li,

which reduces to

�lg(n)� · OPTIMAL ≥ 2 ·
n∑

i=2

li. (2.5)

Now condition (b) of the lemma implies

OPTIMAL ≥ 2 · l1 (2.6)

and (2.5) and (2.6) combine to give the conclusion of the lemma. �

Proof of Theorem 1. For each node p, let lp be the length of the edge leaving
node p and going to the node selected as the nearest neighbor to p. We want to
show that the lp satisfy the conditions of Lemma 1.

If node p was selected by the algorithm before node q, then q was a candidate
for the closest unselected node to node p. This means that edge (p, q) is no
shorter than the edge selected and hence

d(p, q) ≥ lp. (2.7)
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Conversely, if q was selected before p, then

d(p, q) ≥ lq. (2.8)

Since one of the nodes was selected before the other, either (2.7) or (2.8)
must hold and condition (a) of Lemma 1 must be satisfied.

To prove condition (b) it suffices to prove that for any edge (p, q)

d(p, q) ≤ 1
2

· OPTIMAL. (2.9)

The optimal tour can be considered to consist of two disjoint parts, each of
which is a path between nodes p and q. From the triangle inequality, the length
of any path between p and q cannot be less than d(p, q), establishing (2.9).

Because the lp are the lengths of the pairs comprising tour T ,

∑
lp = NEARNEIBER. (2.10)

The conclusion of Lemma 1 together with (2.10) and (1.1) imply the in-
equality of Theorem 1. �

THEOREM 2. For each m > 3, there exists a traveling salesman graph with
n = 2m − 1 nodes such that

NEARNEIBER
OPTIMAL

>
1
3

lg(n + 1) +
4
9
.

Proof. For all i ≥ 1, we define an incomplete weighted graph Fi with three
distinguished nodes. The distinguished nodes are called the start node, the
middle node, and the right node. These graphs are defined recursively using
Fig. 3.1 where the start node appears to the left, the middle node in the middle,
and the right node on the right. Each Fi has a path Pi which goes from the start
node to the middle node visiting each node of Fi on the way. The Pi are also
defined recursively in Fig. 3.1.

Graph F1 consists of precisely three nodes with each pair of nodes having
an edge of weight 1. Path P1 consists of two edges, the edge from the start
node to the right node and the edge from the right node to the middle node.

To construct graph Fi+1, one takes two copies of Fi (which we call the left
copy and right copy) and one additional node (which becomes the middle node
of Fi+1). This additional node is called D in Fig. 3.1. The additional node
D is connected to the right node of the left copy (node C) and the start node
of the right copy (node E) by edges of length 1. The additional node D is
also connected to the middle node of the right copy (node F ) by an edge of
length li (defined below). Finally, the middle node of the left copy (node B) is
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Figure 3.1.

connected to the start node of the right copy (node E) by an edge of length li.
The start node of Fi+1 is the start node of the left copy (node A) and the right
node is the right node of the right copy (node G). The path Pi+1 consists of
the two copies of path Pi plus the two edges (B, E) and (F, D) of length li.
The length li is given by the formula

li =
1
6
(4 · 2i − (−1)i + 3). (2.11)

Let Li be the length of path Pi. Length Li is described by the difference
equation

Li+1 = 2 · Li + 2 · li

since Pi+1 consists of two copies of Pi and two edges of length li. Given that
L1 = 2, the solution of this difference equation is

Li =
1
9
(6 · i · 2i + 8 · 2i + (−1)i − 9). (2.12)

For each Fi, we define a graph Gi obtained by connecting the start and right
nodes of Fi by an edge of length 1, and connecting the middle node to the
start node with an edge of length li − 1. The start node of Fi is then also
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Figure 3.2.

referred to as the start node of Gi. Figure 3.2 is a picture of G4. We define
Ḡi to be the complete graph on the nodes of Gi where d(a, b) is the length of
the minimal path from a to b in Gi. Therefore, the distances in Ḡi satisfy the
triangle inequality.

Graph Ḡi has two important properties:

(a) the edges of Gi have the same lengths in Ḡi as they have in Gi;

(b) if the nearest neighbor method is started with the start node of Gi, the
method can (with suitable resolution of ties) produce path Pi followed
by the edge of length li − 1 returning from the middle node (which is the
last node of path Pi) to the start node.

We return to prove properties (a) and (b) after completing the main thread
of the proof.

Each Ḡi has an optimal tour whose length is equal to the number of nodes
n in Ḡi (namely 2i+1 − 1). This tour is found, starting with the start node, by
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visiting the nodes in left to right order and then returning from the right node
back to the start node. Each of the edges in this tour has weight one.

The example satisfying the theorem is Ḡm−1. Its ratio is exactly

NEARNEIBER
OPTIMAL

= (Li + li − 1)/n where i = lg(n + 1) − 1.

This ratio is greater than the ratio indicated in the theorem.
All that remains is to prove properties (a) and (b). Referring back to Fig. 3.1,

we first show that for each Fi+1

AB = BC = EF = FG = li − 1, (2.13)

AC = EG = li+1 − 2, (2.14)

BE = DF = li, (2.15)

AD = DG = li+1 − 1, (2.16)

AG = li+2 − 2. (2.17)

The notation XY indicates the length of the shortest path between X and Y
in Fi+1. The equations are routinely verified for i = 1. We continue by
induction. Assume that (2.12)–(2.16) are true for i ≤ I − 1 (i.e. for FI ).
Figure 3.3 shows the relevant nodes in FI+1 before the two copies of FI are
connected. Associated with each pair of nodes from the same copy of FI , an
edge is shown whose weight is the length of the shortest path in FI connecting
these nodes. These shortest path lengths in FI are specified by the induction
hypothesis. For instance, edge (A, B) in Fig. 3.3 connects the start and middle
nodes of FI and from (2.15), the shortest path length in FI connecting these
nodes is lI − 1. Figure 3.4 shows Fig. 3.3 with the addition of the four edges
created in the construction of FI+1 from the two copies of FI . Because each
of the edge weights in Fig. 3.3 represents a shortest path in FI , by applying
formula (2.11) for lI to all possible paths in FI+1, we can conclude that each of
the edge weights in Fig. 3.4 is the length of the shortest path in FI+1 connecting
the end nodes of the edges. This establishes equations (2.12)–(2.14) for FI+1.

Figure 3.3.
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Figure 3.4.

Equations (2.15) and (2.16) are established by a similar consideration of all
paths in Fig. 3.4. The path of length lI+2 − 2 from A to G is ABEG.

We note also that (2.12)–(2.15) also hold when FI+1 is converted to GI+1.
This is proven by connecting A and G in Fig. 3.4 by an edge of weight one
and A and D by an edge of length lI+1 − 1 and again checking the paths. Note
also that the shortest path from A to D is the edge (A, D).

Now we return to property (a). Equation (2.14) shows that, as each Fi+1 is
constructed, the newly added edges constitute the shortest paths between their
endpoints. All distances among points in an Fi are maintained when that Fi is
embedded in Fi+1, because the distances among the three exit points at Fi are
maintained. (Compare (2.12) with (2.15) and (2.13) with (2.16).)

We have already noted that the final edge added in constructing a Gi is also
a shortest path and the fact that the length one edges are also shortest paths
requires no argument. Thus property (a) is established.

Property (b) is established by observing that the middle node of an Fi is
reached only after all of the nodes of Fi have been visited, and the node at the
end of the edge of length li is at least as close as any node reached by a path
through the start or right nodes. These nodes are already distance li−1 away
from the middle node and are at least distance 1 from a node not yet selected. �

One way to improve a nearest neighbor result is to repeat the method for
each possible starting node and then take the minimum solution among these.
This idea is described in Gavett [5]. However, for the examples used to prove
Theorem 2, the result of this method (with suitable resolution of ties) is also
proportional to lg(n).

3. Insertion Methods

We now consider a class of methods we call insertion methods. The basic
idea of these methods is to construct the approximation tour by a sequence
of steps in which tours are constructed for progressively larger subsets of the
nodes.
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DEFINITION. Given a traveling salesman graph (N, d), a tour T on a subset S
of N will be called a subtour of (N, d). We write a ∈ T to mean a ∈ S. We
treat a one node subset as a tour without edges.

DEFINITION. Given a traveling salesman graph (N, d), a subtour T , and a
node k in N which is not in T , we define TOUR(T, k) to be a subtour obtained
as follows:

if T passes through more than one point, then

(a) find an edge (x, y) in T which minimizes

d(x, k) + d(k, y) − d(x, y), (3.1)

(b) delete edge (x, y) and add edges (x, k) and (k, y) to obtain TOUR(T, k);

if T passes through a single node i, then make TOUR(T, k) the two node tour
consisting of edges (i, k) and (k, i).

In either case, we say that TOUR(T, k) is obtained by inserting k into T .
Formula (3.1) represents the difference in length between tour T and the

tour obtained by replacing (x, y) by (x, k) and (k, y). Thus, when T has two
or more nodes, TOUR(T, k) is the shortest tour that can be obtained from
T and k by the alteration described in step (b). When T has only one node,
TOUR(T, k) is the only tour that can be made from k and the point in T .

DEFINITION. An approximation method is called an insertion method if it
takes a traveling salesman graph (N, d) with n nodes and constructs a sequence
of subtours T1, . . . , Tn so that

1. T1 consists of a single node a0,

2. for each i < n, there is a node ai not in Ti such that

Ti+1 = TOUR(Ti, ai), (3.2)

3. Tn is the approximation.

In later sections, we consider specific selection criteria for choosing the
nodes ai. Here we are concerned with results which hold regardless of the
selection method.

DEFINITION. Given a subtour T and a node k not in T , we define COST(T, k)
to be the length of TOUR(T, k) minus the length of T .

An important consequence of the triangle inequality is the following:
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LEMMA 2. If (N, d) is a traveling salesman graph, T is a subtour, k a node
not in T , and j a node in T , then

COST(T, k) ≤ 2 · d(k, j). (3.3)

Proof. In the case that T has only one node, the result is obvious. When T
consists of more than one node, j is an endpoint of some edge (i, j) in T .
Because k is inserted to minimize (3.1),

COST(T, k) ≤ d(i, k) + d(k, j) − d(i, j) (3.4)

where the right-hand side is (3.1) with (i, j) substituted for (x, y). The triangle
inequality says

d(i, k) − d(i, j) ≤ d(j, k). (3.5)

Inequalities (3.4) and (3.5) together with d(j, k) = d(k, j) give (3.3). �

We let INSERT represent the length of a path constructed by an insertion
algorithm.

THEOREM 3. For a traveling salesman graph with n nodes,

INSERT
OPTIMAL

≤ �lg(n)� + 1. (3.6)

Proof. Let (N, d) be the graph and let Ti for 1 ≤ i ≤ n and ai for 0 ≤ i < n
be the subtours and nodes referred to in the definition of an insertion method.
An obvious consequence of the definition of cost is

INSERT =
n−1∑

i=1

COST(Ti, ai) (3.7)

For each node ai in N − {a0}, define

lai =
1
2

· COST(Ti, ai) (3.8)

and define
la0 = 0. (3.9)

We want to show that the lp for p in N satisfy the hypothesis of Lemma 1.
To verify condition (a), consider two nodes ai and aj with i > j. By our
naming conventions, i > j means that aj belongs to Ti and ai was inserted in
Ti. By Lemma 2,

COST(Ti, ai) ≤ 2 · d(ai, aj). (3.10)
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With (3.8) this implies
lai ≤ d(ai, aj), (3.11)

which implies condition (a).
Condition (b) is trivial for la0 . For other lai , (3.8) requires us to prove

COST(Ti, ai) ≤ OPTIMAL. (3.12)

In the case of a1, this cost is just 2d(a0, a1) and by the triangle inequality,
OPTIMAL is at least as large as the distance between two points and back. For
i > 1, ai is inserted between two distinct points x and y with cost

d(x, ai) + d(ai, y) − d(x, y), (3.13)

which is the length of the added edges minus the length of the deleted edge.
There is a subpath of the optimal tour between x and ai which does not contain
y and a disjoint subpath between ai and y not containing x. By the triangle in-
equality, these subpaths are no shorter than d(x, ai) and d(ai, y) respectively
and hence (3.13) must be no greater than OPTIMAL and condition (b) is es-
tablished.

Lemma 1 together with (3.8), (3.9), (3.7), and (1.1) imply the theorem. �

We do not know if the logarithmic growth permitted by Theorem 3 can
actually be achieved. In fact, we know of no examples such that INSERT/
OPTIMAL > 4 so there could even be a constant upper bound. In the next
section we present some insertion methods for which we can establish a con-
stant upper bound.

4. Nearest Insertion and Cheapest Insertion

We now consider two insertion methods which produce a tour no longer
than twice the optimal regardless of the number of nodes in the problem. We
call these two methods the nearest insertion method and the cheapest insertion
method.

Given a subtour T and a node p, we define the distance d(T, p) between T
and p as

min{d(x, p) for x in T }. (4.1)

We say that a tour is constructed by nearest insertion if each ai,1 ≤ i < n,
in the definition of an insertion method satisfies

d(Ti, ai) = min{d(Ti, x) for x in N − Ti}. (4.2)

We say a tour is constructed by cheapest insertion if the ai satisfy

COST(Ti, ai) = min{COST(Ti, x) for x in N − Ti}. (4.3)
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The nearest insertion method is easily programmed to run in a time propor-
tional to n2. The only programming trick is to compute the value of d(Ti+1, x)
as the minimum of the two numbers d(Ti, x) and d(ai, x). Thus the nearest
insertion method runs in time proportional to the nearest neighbor method.

The cheapest insertion method is described in Nicholson [12]. The fastest
algorithm we have devised for the cheapest insertion method runs proportional
to n2 · log(n). Each time a node ai is inserted in Ti, the new subtour Ti+1

contains two new edges not in Ti. For each new edge (x, ai) in Ti+1, the
algorithm involves performing a sort of the n − (i + 1) values of

d(x, k) + d(k, ai) − d(x, ai)

obtained for all k in N − Ti+1.

THEOREM 4. If a tour of length INSERT is obtained by nearest insertion or
cheapest insertion, then

INSERT
OPTIMAL

< 2. (4.4)

We prove this theorem after proving the following lemma:

LEMMA 3. Suppose that, for a traveling salesman graph (N, d) with n nodes,
a tour of length INSERT is constructed by the insertion method of Sect. 3.
Suppose further that for i satisfying 1 ≤ i < n, the tour Ti and node ai

selected by the insertion method satisfy

COST(Ti, ai) ≤ 2 · d(p, q) (4.5)

for all nodes p and q such that p is in Ti and q is not in Ti. Then

INSERT ≤ 2 · TREE, (4.6)

where TREE is the length of a minimal spanning tree for (N, d).

Proof. Let M be a minimal spanning tree. The idea of the proof is to establish
a correspondence between steps in the insertion procedure and edges of M .
For the step of inserting node ai into Ti, the corresponding edge of M will
have one endpoint in Ti and the other endpoint in N − Ti. Thus (4.5) can be
used to show that the cost of each step is no more than twice the corresponding
edge.

First, since M is a tree, there is a unique path in M connecting each pair
of nodes. For each node ai with i > 0, we say that node aj is compatible
with node ai if j < i and all the intermediate nodes in the unique path in M
connecting ai and aj have indices greater than i. Thus aj compatible with ai
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implies that aj is the first node in Ti encountered in the path from ai to aj . For
each ai with i > 0, the critical node is the node with the largest index that is
compatible with ai. The critical path for ai is the unique path in M between
ai and its critical node. The critical edge for ai is the edge in the critical path,
one of whose endpoints is the critical node. Observe that the critical edge for
ai has one endpoint (the critical node) in Ti, and the other endpoint in N − Ti.

We now show that no two nodes can have the same critical edge. Assume
to the contrary that ai and aj (with j > i) have the same critical edge. Let the
endpoints of this critical edge be ak and al with l > k. For any critical edge,
the node with the lower index is the critical node and the node with the higher
index is on the critical path, so node ak is the critical node for both ai and aj .
Thus, the critical paths for ai and aj both pass through al before reaching ak.
Therefore, there is a path P in M connecting aj and ai, such that every edge in
P belongs to either the critical path for aj or the critical path for ai (or both).
Therefore every intermediate node on P has an index greater than i. Since the
path P from aj reaches a node of lower index (ai), some node am along path P
is compatible with aj . Now m ≥ i because am is on path P and i > k because
ak is a compatible node for ai. This implies m > k and so am is a compatible
node for aj with a higher index than ak. This contradicts the assumption that
ak is critical for aj . Therefore no two nodes can have the same critical edge.
Thus given a minimal spanning tree we can associate a unique edge in that tree
with each node inserted by the insertion method.

Let ei be the critical edge for node ai. Since one endpoint of ei is in Ti and
the other endpoint is not, by (4.5).

COST(Ti, ai) ≤ 2 · d(ei). (4.7)

Summing (4.7) gives

n−1∑

i=1

COST(Ti, ai) ≤ 2 ·
n−1∑

i=1

d(ei). (4.8)

The left-hand side of (4.8) is INSERT by (3.8). Since M consists of n − 1
edges, and each ei is distinct, the right-hand side of (4.8) is 2 · TREE. Thus
(4.8) implies (4.6). �

Proof of Theorem 4. We first show that, for both insertion methods, (4.5) holds.
For the nearest insertion, there is for each i by (4.2) a node yi in Ti such that

d(yi, ai) ≤ d(p, q) (4.9)

for all p in Ti and q in N − Ti. Lemma 2 says that

COST(Ti, ai) ≤ 2 · d(yi, ai) (4.10)
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and (4.9) and (4.10) imply (4.5). For the cheapest insertion, the cost of insert-
ing ai is by (4.3) even less than the cost of inserting an ai chosen to satisfy
(4.2). Therefore (4.5) must also hold in this case and Lemma 3 applies to both
cases.

The optimal tour can be made into a tree by deleting its longest edge and
this longest edge has a length at least OPTIMAL/n where n is the number of
nodes in the problem. Since the minimal spanning tree is no longer than this
tree,

TREE ≤
(

1 − 1
n

)

· OPTIMAL. (4.11)

Equations (4.11), (4.6), and (1.1) imply (4.4). �

COROLLARY. For a traveling salesman graph on n nodes, (4.4) in Theorem 4
may be replaced by

INSERT
OPTIMAL

≤ 2 ·
(

1 − 1
n

)

. (4.12)

For the nearest insertion method, a simpler correspondence than that in the
proof of Lemma 3 can be established between the cost of the insertion steps and
the edges of a minimal spanning tree. Since each ai is selected in accordance
with (4.2), there is an edge (x, ai) such that x is in Ti and

d(x, ai) = min{d(p, q) for p in Ti and q in N − Ti}. (4.13)

Let ei be this edge (x, ai) and observe from Lemma 2 that

COST(Ti, ai) ≤ 2 · ei.

Moreover, the set of edges {ei | 1 ≤ i < n} constitute a minimal spanning tree
since the method of selecting edges satisfying (4.13) is a method of construct-
ing a minimal spanning tree (Kruskal [9], Prim [13]).

We now show that there exist traveling salesman graphs for which the bound
(4.12) is actually achieved. The examples can be interpreted as cities placed
uniformly on a circular road. The case for 8 nodes is shown in Fig. 3.5. The
optimal path is simply to go around the circle. The insertion methods may
construct a path such as that in the figure, a path which goes almost all the way
around and then doubles back on itself. Thus, each edge of the circle (except
one) is traveled twice instead of the one time actually required, and the ratio of
the path obtained to OPTIMAL is roughly two.

THEOREM 5. For n ≥ 6, there exists a traveling salesman graph on n nodes
such that

INSERT
OPTIMAL

= 2 ·
(

1 − 1
n

)

(4.14)

for either the nearest insertion or cheapest insertion methods.
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Figure 3.5.

Proof. We define graph (Nn, dn) as follows:

Nn = {i | 1 ≤ i ≤ n},

dn(i, j) = smallest nonnegative integer m

such that i − j ≡ m (mod n) or j − i ≡ m (mod n).

We define T1 to be the tour on set {1}, we define

T2 = {(1, 2), (2, 1)}

and for 3 ≤ i ≤ n we define

Ti = {(1, 2), (i − 1, i)} ∪ {(j, j + 2)|1 ≤ j ≤ i − 2}.

Figure 3.5 shows T8 for the case n = 8.
We define

ai = i + 1 for 0 ≤ i < n.

Obviously the Ti defined above are tours. We will show that the Ti together
with the ai satisfy (3.2), (4.2), and (4.3).

Ti+1 is obtained from Ti by deleting edge (i − 1, i) and adding edges (i − 1,
i + 1) and (i, i + 1).

We compute that
COST(Ti, ai) = 2
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and that (i − 1, i) is the edge in Ti which minimizes (3.1); this proves (3.2).
We also compute that

d(Ti, ai) = 1

because d(ai−1, ai) = (i + 1) − i = 1 and (4.2) is satisfied because 1 is
the shortest distance between distinct nodes. It can also be calculated that no
insertion can cost less than 2 and so (4.2) holds. We omit these calculations
but note that they require the assumption n ≥ 6.

We note finally that the approximation Tn has two edges of length one and
n − 2 edges of length two for a total length of 2 · (n − 1). The optimal tour
is obviously the tour of length n that starts with node 1 and visits the nodes in
numerical order. Equation (4.14) is obtained by dividing these two lengths. �

For i > 3 in the above proof, the insertion of ai into Ti to obtain Ti+1 in-
volves a tie between edges (i − 1, i) and (i − 2, i), both of which minimize
(3.1). An example with no ties in (3.1) is obtained from the example by de-
creasing the length of all edges greater than 1 by a small number ε. The choice
(i − 1, i) of the proof becomes the unique choice and the construction proceeds
as in the proof. The resulting ratio is very close (depending on ε) to (4.14).

Theorem 5 shows that, in the worst case, nearest insertion can create paths
which double back on themselves and are roughly twice as long as necessary.
We examined a number of problems with nodes placed randomly on a plane,
and observed that the nearest insertion method often produced paths in which
portions doubled back on themselves.

5. Farthest Insert

There is another insertion method which has some intuitive and empirical
appeal, a method we call farthest insertion.

We say that a tour is constructed by farthest insertion if each ai, 1 ≤ i < n,
in the definition of an insertion method satisfies

d(Ti, ai) = max{d(Ti, x) for x in N − Ti}. (5.1)

Contrasting (5.1) with (4.2), we observe that farthest insertion has a max
where nearest insertion has a min. The intuitive appeal is that the method
establishes the general outline of the approximate tour at the outset and then
fills in the details. The early establishment of a general outline is appealing
because we expect better performance when the number of nodes is small.
Inserting nearby points late in the approximation is appealing because the short
edges used late in the procedure are less likely to be accidentally deleted by
some still later insertion.

The empirical appeal is that, in a series of experiments, we found that far-
thest insertion usually produced a better tour than nearest insertion, cheapest
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insertion, and the nearest neighbor. For example, when tried on problems ob-
tained by placing 50 nodes randomly on a unit square, nearest insertion was
from 7 to 22% worse than farthest insertion, nearest neighbor was from 0 to
38% worse, and cheapest insertion ranged from 7% better to 12% worse. The
usual ranking was thus farthest insertion first, cheapest insertion second, near-
est insertion third, and nearest neighbor last.

The largest example we tried was 2000 points placed uniformly at random
in the unit square. The score was farthest insertion 36.8, nearest insertion 41.4,
and nearest neighbor 39.9. A path of length 37.2 was obtained by randomly se-
lecting the order in which points were chosen for insertion. The farthest inser-
tion path was no more than 1.25 times the optimal since the minimal spanning
tree had length 29.5.

The advantage of picking random or arbitrary points for insertion is that
virtually no computation time is needed to select an arbitrary point. On the
2000 city problem, the nearest neighbor tour was constructed in 751 seconds,
the arbitrary insertion in 820 seconds, and the nearest and farthest insertions in
1628 seconds each.

Theorems 2 and 4 tell us that, in the worst case, the nearest neighbor paths
become progressively worse than the nearest insertion paths as the number of
nodes increase. We found no evidence of such a trend in our experiments. For
example, in the 2000 node example described above, nearest neighbor actually
did better than nearest insertion.

Altogether, our experiments suggest that the performance of the methods is
not strongly tied to their worst case behavior.

6. Some Other Approximation Methods

There are a variety of other approximation methods for which the cost of
each step in the construction of the tour corresponds to a unique edge in a
minimal spanning tree and for which the reasoning of Lemma 3 and Theorem 4
can be used to demonstrate a worst case ratio bound of 2. In this section, we
discuss two such methods.

The first method, which we call nearest addition, is similar to nearest in-
sertion. The nearest addition method takes a traveling salesman graph (N, d)
with n nodes and constructs a sequence of subtours T1, T2, . . . , Tn so that

1. T1 consists of a single node a0;

2. for each i < n there are nodes ai in N − Ti and bi in Ti such that

d(bi, ai) = min{d(y, x) for y in Ti and x in N − Ti}. (6.1)

and Ti+1 is constructed from Ti by deleting some edge (c, bi) from Ti

and adding the two edges (c, ai) and (bi, ai);

3. Tn is the approximation.
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At each step of the procedure, the closest node is selected and added to the
subtour next to the node to which it is the closest.

The increase in length between Ti and Ti+1 is

d(c, ai) + d(bi, ai) − d(c, bi). (6.2)

From the triangle inequality

d(c, ai) ≤ d(c, bi) − d(bi, ai) (6.3)

so that (6.2) is bounded by 2 · d(bi, ai). The set of edges (bi, ai) selected in
accordance with (6.1) is identical to the set of edges that would be selected
for the nearest insertion method in accordance with (4.2), and constitutes a
minimal spanning tree. Therefore results similar to Lemma 3 and Theorem 4
apply, and the ratio of the obtained tour length to the optimal tour length is
bounded by 2.

Another approximation method is one we call nearest merger. First, given
two disjoint subtours (i.e., subtours having no nodes in common) T1 and T2,
their merger MERGE(T1, T2) is defined as follows:

(a) If T1 consists of a single node k, then

MERGE(T1, T2) = TOUR(T2, k)

else if T2 consists of a single node k1, then

MERGE(T1, T2) = TOUR(T1, k).

(b) If T1 and T2 each contain at least two nodes, let a, b, c, d be nodes such
that (a, b) is an edge in T1, (c, d) is an edge in T2 and

d(a, c) + d(b, d) − d(a, b) − d(c, d) (6.4)

is minimized. Then MERGE(T1, T2) is the tour obtained from T1 and
T2 by deleting (a, b) and (c, d) and adding (a, c) and (b, d).

The nearest merger method takes a problem (N, d) with n nodes and con-
structs a sequence S1, . . . , Sn such that each Si is a set of n − i + 1 disjoint
subtours covering all the nodes in N . The sequence is constructed as follows:

1. S1 consists of n subtours, each containing a single node.

2. For each i < n, find an edge (ai, ci) such that

d(ai, ci) = min{d(x, y) for x and y in different subtours in Si}. (6.5)

Then Si+1 is obtained from Si by merging the subtours containing ai

and ci.

At each step in the procedure, the two closest subtours are merged.
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Observe that in a merger corresponding to (6.4), from the triangle inequality

d(b, d) ≤ d(b, a) + d(a, c) + d(c, d)

so that (6.4) is bounded by 2 · d(a, c). Also observe that the set of edges (ai, ci)
chosen in accordance with (6.5) form a minimal spanning tree (Kruskal [9]).
From these facts, results similar to Lemma 3 and Theorem 4 can be proved for
nearest merger, and so the ratio of the obtained tour length to the optimal tour
length is bounded by 2.

We also observe that Theorem 5 is also true for both nearest addition and
nearest merger. For the examples in the proof of Theorem 5 both of these
methods produce the same approximate tour as nearest insertion and cheapest
insertion.

One possible way to improve nearest insertion, cheapest insertion, and near-
est addition is to repeat each of these methods for each possible starting node
and then take the minimum solution among these. However, for the examples
in the proof of Theorem 5, these methods produce tours of the same length for
all starting nodes. Therefore the approach of trying all starting nodes does not
improve the worst case ratio.

The methods of this section and Sect. 4 are all proven to have constant
bounds because of comparisons with the minimal spanning tree. There are also
known bounded methods which actually construct a tour by first constructing
the minimal spanning tree. One widely known but unpublished method is to
construct the minimal spanning tree, double its edges to obtain an Eulerian cir-
cuit containing each point at least once, and then make the circuit into a tour
by removing extra occurrences of each node. This method also has an upper
bound of 2.

The method of Christofides [2] also starts with the minimal spanning tree,
but this is converted into an Eulerian circuit by solving the matching problem
among the nodes of odd order. This method has an upper bound of 3

2 , an im-
provement on the bounds for the methods studied here. However, the running
time of this method is n3, which is slower than the n2 methods studied here.

7. k-Optimality

One approach to obtaining approximate solutions is to first find some tour
and then perturb it somewhat to see if a better tour results. If a better tour
does result, the original tour is discarded and perturbations on the new tour
are tried. Methods of this kind are described in Croes [3], Lin [10], Reiter
and Sherman [14], Roberts and Flores [15] and Nicholson [12]. The local
optimum obtained by these perturbation methods can be further adjusted to
obtain a global optimum (Croes [3]). Lin and Kernighan [11] generalize these
techniques in a powerful way.
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Define a k-change of a tour as the deletion of k edges and their replacement
by k other edges so that another tour is obtained.

Define a tour as k-optimal (Lin [10]) if no k-change produces a better tour.
Lin [10] describes a method whereby several random initial tours are ob-

tained, each is improved until a 3-optimal tour is obtained and the best of these
3-optimal tours is used.

In this section, we investigate how far a k-optimal tour can be from the
optimal tour.

THEOREM 6. For each n ≥ 8 there exists a traveling salesman graph having
a tour which is k-optimal for all k ≤ n/4, and for which the length of that
tour, LOCALOPT, satisfies

LOCALOPT
OPTIMAL

= 2 ·
(

1 − 1
n

)

. (7.1)

Proof. The example is the graph (Nn, dn) and tour Tn constructed in the proof
of Theorem 5. In particular, the tour shown in Fig. 3.5 will be shown to be
2-optimal.

For each n, define the set of edges

En = {(1, n)} ∪ {(i, i + 1) for 1 ≤ i < n}

En is the set of edges which have length one. Because of the way function dn

is defined, each pair of points (a, b) from Nn is connected by some path in En

of length equal to dn(a, b). For each tour T , there is a circuit α(T ) obtained by
replacing each edge of T by a path of equal length from En. Circuit α(T ) has
the same length as T and visits each node at least once. Circuit α(Tn) visits
node 1 and n once and every other node twice.

For each edge e in En and each tour T , we let COUNT(e, T ) be the number
of times edge e occurs in circuit α(T ). For tour Tn we have

COUNT((i, i + 1), Tn) = 2 for 1 ≤ i < n, (7.2)

COUNT((1, n), Tn) = 0. (7.3)

Because the edges of En are of unit length, the length L(T ) of tour T is given
by

L(T ) =
∑

e in En

COUNT(e, T ). (7.4)

We say that a tour T is even if COUNT(e, T ) is even for all e in En. We say
that a tour T is odd if COUNT(e, T ) is odd for all e in En. We next show that
any tour must be either odd or even.
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By construction, each node a is the endpoint of exactly two edges of En,
namely (a, a + 1) and (a, a − 1) (mod n). Since each occurrence of a in α(T )
is associated with two edges of α(T )

COUNT((a, a + 1), T ) + COUNT((a, a − 1), T ) = 2 · ja (7.5)

where ja is the number of times node a occurs in circuit α(T ). Therefore,
COUNT((a, a + 1), T ) and COUNT((a, a − 1), T ) sum to an even number
and are either both even or both odd. Since the edges in En form a connected
graph, if T were neither odd nor even, some node would have one incident
edge with an odd count and its other incident edge with an even count. This
contradicts (7.5), so T is either odd or even.

For any tour T , there can be only one edge e in En such that COUNT(e, T )
= 0 since otherwise the tour could not be connected. Therefore, Tn with its one
edge of count 0 and other edges of count 2 (see (7.1) and (7.2) is the shortest
even tour. Consequently, any tour improving on Tn must be odd.

Now suppose that tour Tn is changed by a k-change to an odd tour. Since
the largest edges of Tn, are of length 2, the decrease resulting from deleting k
edges is at most 2k. Since at most 2k of the counts in α(T ) are reduced, and
since En has n edges, n − 2k edges of En do not get their counts decreased.
When edges are added to complete the k-change, the counts for the edges not
decreased must in fact be increased in order to change from an even number to
an odd number. Therefore, the increases are at least n − 2k. If the k-change is
to improve the tour length, the decreases must be greater than the increases or

2k > n − 2k.

This inequality is only true when k > n/4 so T is indeed k-optimal for k ≤
n/4.

We already know from the proof of Theorem 5 that Tn and the optimal tour
have ratio 2 · (1 − 1/n) so the theorem is proved. �

COROLLARY. For any k and n such that 4 · k ≤ n, the nearest insertion and
cheapest insertion methods can result in a k-optimal tour such that

INSERT
OPTIMAL

= 2 ·
(

1 − 1
n

)

.

Proof. We have just shown that the example used to establish Theorem 5 is
also k-optimal if 4 · k ≤ n. �
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