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a b s t r a c t

We study the problem of exploring an unknown undirected connected graph. Beginning in
some start vertex, a searcher must visit each node of the graph by traversing edges. Upon
visiting a vertex for the first time, the searcher learns all incident edges and their respective
traversal costs. The goal is to find a tour ofminimum total cost. Kalyanasundaramand Pruhs
(Constructing competitive tours from local information, Theoretical Computer Science 130,
pp. 125–138, 1994) proposed a sophisticated generalization of a Depth First Search that is
16-competitive on planar graphs. While the algorithm is feasible on arbitrary graphs, the
questionwhether it has constant competitive ratio in general has remained open. Ourmain
result is an involved lower bound construction that answers this question negatively. On
the positive side, we prove that the algorithm has constant competitive ratio on any class
of graphs with bounded genus. Furthermore, we provide a constant competitive algorithm
for general graphs with a bounded number of distinct weights.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In an exploration problem an agent, or searcher, has to construct a complete map of an environment without any a
priori knowledge of its topology. The searcher makes all its decisions based on partial local knowledge and gathers new
information on its exploration tour. Exploration problems appear in various contexts, such as robot motion planning in
hazardous or inaccessible terrain, maintaining security of large networks, and searching, indexing, and analyzing digital
data on the internet [39,7,25].

We study the online graph exploration problem on undirected connected graphsG = (V , E). We assume that the vertices
are labeled so that the searcher is able to distinguish them. Each edge e = (u, v) ∈ E has a non-negative real weight |e|, also
called the length or the cost of the edge. Beginning in a distinguished start vertex s ∈ V , the searcher learns G according to
the following online paradigm, also known as fixed graph scenario [30]: whenever the searcher visits a vertex, it learns all
incident edges, their weights, and the labels of their end vertices. To explore a new vertex, the searcher traverses previously
learned edges in the graph. For traversing an edge, the searcher has to pay the respective edge cost. The task is to find a tour
that visits all vertices V and returns to the start vertex. The goal is to find a tour of minimum total length. An illustration of
this model (see [30]) is the scenario where vertices correspond to cities and upon arrival in a city the searcher sees the road
signs of routes to other cities including distance information.

A standard technique to measure the quality of online algorithms is competitive analysis [10], which compares the
outcome of an algorithm with an optimal offline solution. For our graph exploration problem, the corresponding offline
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problem is the fundamental Traveling Salesman Problem (TSP), one of the most studied optimization problems which is in
general even NP-hard to approximate [34,27]. It asks for a shortest tour that visits every vertex of a graph known in advance.
For a positive number c , we call an online exploration algorithm c-competitive, if it computes for any instance a tour of total
length at most c times the optimal offline tour through all vertices. The competitive ratio of an algorithm is the infimum over
all c such that the algorithm is c-competitive.

For general graphs with arbitrary weights no constant competitive algorithm is known. A promising candidate was
introduced by Kalyanasundaram and Pruhs [30]. Their algorithm ShortCut is a sophisticated generalization of DFS obtained
by introducing a parameterized blocking condition that determines when to diverge from DFS. They prove an upper bound
of 16 on its competitive ratio in planar graphs. The algorithm itself is defined for general graphs. However, since its
introduction almost two decades ago, it has been open if ShortCut has constant competitive ratio in general. There has been
no progress on this question since then, and in fact, all subsequent results concernedwith our graph exploration setting only
apply to simple cycles: Asahiro et al. [2] showed that NN yields a competitive ratio of 3/2 on simple cycles. Additionally,
a lower bound of 5/4 for any deterministic online algorithm is proven. Both lower and upper bounds were improved by
Miyazaki et al. [35]. They give a more sophisticated algorithm which takes additionally the current total tour length into
account. They prove that, on simple cycles, this algorithm achieves the best possible competitive ratio of 1 +

√
3. It is not

clear how the algorithm can be generalized and applied to more complex graphs.
In the special case that all edges have equal weight, a standard Depth First Search (DFS) is 2-competitive. It yields a total

tour not larger than twice the size of a minimum spanning tree (MST ), a lower bound on the optimal tour. This is optimal in
the unit-weight case as Miyazaki et al. [35] showed.

In the traditional offline environment, the simple and fast greedy algorithm Nearest Neighbor (NN) has been studied
intensively. It repeatedly chooses the next vertex to be visited as an unexplored vertex closest to the current location. Note
that in the online scenario, even though only partial information on the input graph is available, the nearest neighbor can
always be identified. Moreover, a shortest path to the nearest neighbor can be determined online. Thus, the worst case ratio
for the greedy algorithm of Θ(log n) shown by Rosenkrantz et al. [40] also applies to our online scenario. This worst case
ratio is tight even on planar unit-weight graphs, which follows from a nice and simple lower bound construction of graphical
instances by Hurkens and Woeginger [28].

1.1. Our contribution

We revisit algorithm ShortCut proposed by Kalyanasundaram and Pruhs [30]. We elaborate on the sophistication of the
underlying idea, but report also a precarious issue in the given formal implementation. We propose a reformulation, which
we call Blocking, highlighting the elaborate idea from [30], and adapt the proof of [30] to assure that the reformulation has
constant competitive ratio for planar graphs. Here, a concise observation allows us to simplify the proof and to generalize it
to graphs of bounded genus. More precisely, we generalize the upper bound on the competitive ratio of 16 for planar graphs
to a bound of 16(1 + 2g) for graphs of genus at most g .

As our main result we show that Blocking does not have a constant competitive ratio on general graphs. We use a
classical construction of Erdős [17] of graphs with large girth and large minimum degree to construct complex graphs for
which Blocking has arbitrarily large competitive ratio. Considering the fact that we have shown that Blocking is constant
competitive for classes of graphs that have bounded genus, it seems plausible that similarly heavy machinery is indeed
necessary for the lower bound construction. Interestingly, the lower bound construction requires only two different edge
weights. For this case, we show a constant competitive algorithm. More generally, we provide in this paper an online
algorithm that is 2k-competitive on general graphs with at most k distinct weights. Our algorithm generalizes DFS to an
algorithm that hierarchically performs depth first searches on subgraphs induced by restrictedweights. For arbitrary graphs
with arbitrary weights we roundweights up to the nearest power of 2 and apply the same algorithm.With this modification
the algorithm has a competitive ratio of Θ(log n) in general.

1.2. Related work

Exploration and search problems in unknown environments have been studied extensively and there is an immense body
of literature on them; see the surveys [7,39,26] and [31, Chap. 1]. Such problems have been studied already in the 1960s,
mainly from a game-theoretic perspective with one player searching for another player that is hiding; see, e.g., the book by
Gal [24]. More recent research on online motion planning, aiming explicitly for worst-case performance guarantees on the
total travel distance, was initiated by Baeza-Yates et al. [5].

Exploration problems are closely related to search problems. In search problems, the searcher must find a shortest path
to an object (of any type, e.g., point, infinite line, etc.) in an unknown location. Exploration problems however, ask for a walk
through an unknown environment such that any point of the environment is ‘‘visible’’ from some point of the walk. Details
on the respective definition of visible depend on the particular specification of the environment and the searcher. While the
solution in a search problem is compared to the offline shortest path from the origin to the object’s location, an exploration
tour is compared to an optimal tour after which the searcher has seen the entire environment. Generally, the geometry of
the search environment can be arbitrary — a bounded or unbounded space, with or without obstacles, two, three, or higher
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dimensional. However, in many particular applications, it is possible to abstract from the geometry of the real environment
and model the unknown search space as a graph, in which the searcher may only move along edges.

Some of the first formal models for exploring an unknown graph were proposed by Papadimitriou and Yannakakis [38]
in the context of finding a shortest path between two given points. Deng and Papadimitriou [11] initiated research on fully
exploring a graph (drawing a map). In contrast to our problem, they consider the task of exploring all edges in a directed
labeled unknown graph (with unit-weight edges). In this model, the searcher is given at any time the number of unexplored
edges leaving the vertex, but not their endpoints. Notice that the corresponding offline problem is the polynomially solvable
Chinese postman problem [16], in contrast to the TSP in our setting. In this variant the deficiency of a graph [32], a
parameter measuring how far the graph is from being Eulerian, plays a crucial role. This exploration problem has been
studied extensively in directed [1,21,20,33] and undirected graphs [37,12]. Numerous variantswere considered, e.g., routing
multiple searchers [6,22,15], models that impose additional constraints on the searcher, such as being tethered, i.e., attached
to the start vertex by a rope or cable of particular length [13], or having a tank of limited capacity which forces the searcher
to return periodically to the start for refueling [4,8], and exploration problems in graphs without unique labeling but with
some other additional information; see [25,23] and the literature therein.

Our problem of exploring all vertices of a labeled undirected graph is in some sense also a variant of the initial problem
in [11]. In particular, on trees the problem of exploring all vertices is equivalent to exploring all edges. Apart from the
aforementioned previous work on our problem in planar graphs [30] and cycles [35,2], it has been studied on un-weighted
trees also for multiple synchronously moving searchers [15,14,22]. Here the objective is to minimize the total length of the
longest tour among all searchers. In this setting, the communication capability crucially influences the performance of such
collective exploration.

Even though the online graph exploration problem considered in this paper has the classical TSP as the corresponding
offline problem, another class of online problems is typically regarded as online TSP in the literature. Ausiello et al. [3]
introduced amodel in which the graph is given in advance and the vertices to be visited appear online over time. This means
that new vertices appear as the salesman proceeds independently of his current position, which is in strong contrast to our
model. The corresponding offline problem is a TSP with release dates. The online problem has been studied extensively in
the past decade for various cost functions and numerous generalizations such as dial-a-ride problems, bounded capacities,
multiple servers, and asymmetric variants. We refer the interested reader to the literature overviews in [9,29].

2. The exploration algorithm of Kalyanasundaram and Pruhs

We now discuss the algorithm ShortCut, that was proposed and analyzed by Kalyanasundaram and Pruhs [30].

Definition 1. A vertex is explored once it has been visited by the searcher. An edge is explored once both endpoints are
explored. A boundary edge (u, v) is an edge with an explored end vertex u and an unexplored end vertex v.

We adopt the convention that for a boundary edge, the first entry is always the vertex that has already been explored.
For a set of edges E ′ we let |E ′

| =


e∈E′ |e|.
Algorithm ShortCut can be seen as a sophisticated variant of DFS. The crucial ingredient is a blocking condition depending

on a fixed parameter δ > 0, which determines when to diverge from DFS.

Definition 2. At any point in time during the exploration of the graph, a boundary edge e = (u, v) is said to be blocked, if
there is a boundary edge e′

= (u′, v′) with u′ explored and v′ unexplored which is shorter than e (i.e., |e′
| < |e| ) and for

which the length of any shortest known path from u to v′ is at most (1 + δ) · |e|.

Intuitively, the exploration algorithm ShortCut performs a standard DFS but traverses a boundary edge only if it is not
blocked. Suppose the searcher is at a vertex u and considers traversing a boundary edge (u, v). If (u, v) is blocked then its
traversal is postponed, possibly forever; otherwise the searcher traverses (u, v). Traversing (u, v) and exploring v may cause
another edge (x, y), whose traversal was delayed earlier, to become unblocked. Then the shortest path from v to y is added
as a virtual edge (called a jump edge in [30]) to the graph and can be traversed virtually like any real edge.

It is important to carefully update the blocking-state of edges as the algorithm proceeds. In particular, an edge which has
become unblocked, after having previously been blocked, may become blocked again. This may be the case if a new shorter
path from an unblocked edge to another boundary edge is revealed. We argue in Example 1 that disregarding reblocking
will cause an unbounded worst case ratio, even for planar graphs.

Example 1 (Reblocking Example). Consider the planar graph depicted in Fig. 1.W.l.o.g. wemove first to vertex uw and follow
the chain of unit-weight edges until we reach z. Now, all heavy edges become blocked by the edge (vw, a). Notice that none
of the boundary edges incident to the start vertex block any heavy edge, since (1 + δ)w < (1 + δ)w + 3. We move back to
explore (vw, a), which unblocks all heavy edges. (The algorithm ShortCut would add the jump edges (a, vi), 1 ≤ i ≤ w − 1
to the graph.) One of the heavy edges, say (z, v1), is explored by first moving to z and then traversing (z, v1). (In ShortCut
this corresponds to traversing a jump edge.) Moving further to u1, a cycle of explored and boundary edges is closed and a
new shortest path from the unexplored endpoints ui, 2 ≤ i ≤ w to z (length w + 3) is revealed. These paths to z are short
enough such that the unit-weight boundary edges now block the heavy edges. This reblocking is crucial since otherwise all
heavy edges will be traversed which leads to a worst case ratio growing at least linearly in w.
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Fig. 1. Reblocking example. Given δ > 0, choose a weight w > max{1, 3/δ } such that (1 + δ) · w is integral. All edges have unit-weight except the
heavy (red) edges with weight w.

Algorithm 1 The exploration algorithm Blockingδ(G, y)
Input: A partially explored graph G, and a vertex y of G that is explored for the first time.

1: while there is an unblocked boundary edge e = (u, v), with u explored and v unexplored, such that u = y or such that e
had previously been blocked by some edge (u′, y) do

2: walk a shortest known path from y to u
3: traverse e = (u, v)
4: Blockingδ(G, v)
5: walk a shortest known path from v to y
6: end while

The example shows that we require means of reblocking edges. This important issue is not explicitly addressed in the
algorithm description in [30]. In particular, no means of blocking or removing jump edges after their creation are provided
therein. A closer study of the behavior of ShortCut on the example shows that the analysis of [30] implicitly assumes that at
the point in time when a jump edge is traversed, the corresponding original edge is not blocked.

In Algorithm 1, we formalize our interpretation of the algorithmic idea by Kalyanasundaram and Pruhs. To distinguish
it from [30] and since the (parameterized) blocking condition is a very subtle and key ingredient, we choose the name
Blockingδ . To explore the entire graph starting in vertex s, we call Algorithm 1 as Blockingδ(Gs, s), where Gs is the partially
explored graph in which only s has been visited so far.

Remark 1. In our exploration scenario, the online algorithm only has access to and knowledge of the explored vertices and
the boundary vertices of a partially explored graph and the edges induced by these vertices. However, to avoid having to
define partially explored graphs more formally, we assume that the algorithm interacts with the input graph G, and the
known data gets updated whenever new vertices are explored.

We now give a proof of the fact that Blockingδ has constant competitive ratio on planar graphs. Note that the algorithm
itself does not require planarity. Our proof differs from the one in [30] in using an additional argument which allows an
easier handling of the recurrence.

Theorem 1. Algorithm Blockingδ is 2(2 + δ)(1 + 2/δ)-competitive on planar graphs.

Proof. Since in every iteration of the while loop a new vertex is explored, the algorithm terminates. We first argue that all
vertices are eventually explored. Suppose otherwise.

Let e = (u, v) be a shortest boundary edge upon termination of the algorithm. Being a shortest boundary edge, it cannot
be blocked at the point of termination. However, it must have been blocked at some point, as otherwise it would have been
explored when u was explored. Thus, there is a last point in time at which e becomes unblocked due to the exploration of
some edge (x, y). Observe that by reaching y only edges having y as an endpoint become explored. But this contradicts the
fact that the call Blockingδ(G, y) does not trigger the exploration of v.

We let P be the set of edges that are traversed during some execution of Line 3.
For each iteration of the while loop, we charge all costs that occur in the execution of Lines 2, 3 and 5 to the edge in P

traversed in Line 3. Since any execution of Line 3 explores a new vertex, every edge is charged in at most one while loop
iteration.

The cost charged to any edge e is at most 2(2 + δ)|e|. Indeed, either the edge had previously not been blocked, in which
case the cost is simply 2|e|, or the edge e had previously been blocked by some edge ending in y, and therefore (by the
definition of blocking) the distance from y to the starting point of e is at most (1 + δ) · |e|. Thus Lines 2, 3 and 5 provoke
costs of at most (1 + δ) · |e|, |e|, and (2 + δ) · |e|, respectively.
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LetMST be a minimum spanning tree that shares a maximum number of edges with P . It suffices now to show that |P| ≤

(1 + 2/δ)|MST | in order to get an overall cost of at most 2(1 + δ)(1 + 2/δ)|MST |.

Claim 1. If an edge e ∈ P \ MST is contained in a cycle C in P ∪ MST , then the cycle C has length at least (2 + δ)|e|.

Proof. Suppose otherwise. On the cycle C , consider the edge e′
= (u, v) ∈ P \MST with |e′

| ≥ |e| that is charged the latest.
W.l.o.g. suppose e′ is traversed from u to v at the time it is charged. Due to the choice of MST , the edge e′ is strictly larger
than any edge in C ∩ MST . Otherwise we could replace e′ with an edge in MST to obtain a smaller minimum spanning tree
or to obtain a minimum spanning tree that shares more edges with P . At the time e′ is charged, e′ is a boundary edge, and
therefore not the whole cycle has been explored. Thus there is a boundary edge different from e′ on the cycle. Moreover at
this point in time e′ is not blocked. On the cycle C there are two paths from u to v, namely the edge e′ and the path C − e′.
Let e′′ be the first boundary edge encountered when traversing C − e′ starting from u towards v. Since we assume the cycle
has length less than (2 + δ)|e| ≤ (2 + δ)|e′

| and e′ is not blocked, we conclude that e′′ is not smaller than e′ and therefore
not in MST . This yields a contradiction to the fact that e′ is the edge in P \ MST with |e′

| ≥ |e| that is charged the latest and
shows the claim. �

(Note that, since we have not used the planarity of the graph, Claim 1 is true for any graph.)
Consider a planar embedding of the graph induced by the edges in P ∪ MST . We iteratively define for every edge e ∈

P \MST a cycle Ce in the following way. In each step we choose an edge that, together with edges inMST and edges to which
a cycle has already been assigned, closes a face cycle. Note that for two distinct edges e, e′

∈ P \MST the associated cycles Ce
and Ce′ are different.

Every edge in MST ∪ P is contained in at most two such cycles, since they form a set of distinct face cycles. For an edge
in P \ MST one of these cycles is Ce. In fact these cycles are exactly all face boundaries apart from the boundary of the outer
face.

Thus we get that

|P \ MST | ≤
1

1 + δ


e∈P\MST

|Ce − e| ≤
1

1 + δ
(2|MST | + |P \ MST |),

and therefore |P \ MST | ≤ (2/δ)|MST |.
Overall we conclude |P| ≤ |P \ MST | + |P ∩ MST | ≤ (2/δ + 1)|MST |. �

Choosing δ = 2 minimizes the term 2(2 + δ)(1 + 2/δ) in the theorem.

Corollary 1. Algorithm Blocking2 is 16-competitive on planar graphs.

3. Graphs of bounded genus

The proof of Theorem 1 can be generalized to show that Blockingδ is an exploration algorithmwith constant competitive
ratio on graphs of bounded genus. The genus of a graph is the least genus of an orientable closed surface on which the graph
can be embedded. Recall that the genus of the sphere is 0, while the genus of a torus is 1, the genus of a double torus is 2,
and so on.

We recall some basic definitions for graphs embedded on surfaces. For a thorough introduction to graphs on surfaces we
refer to [36]. A graph embeddedon a surface partitions the surface into vertices, edges and faces. The Euler characteristicχ(S)
of a closed surface S is the number of faces plus the number of vertices minus the number of edges in a triangulation of
the surface. It is a basic fact that all triangulations yield the same value. The genus of a connected orientable surface is
the maximum number of disjoint closed simple curves, cutting along which does not disconnect the surface. The Euler
characteristic of a closed orientable surface of genus g is 2 − 2g . We now extend the result from the previous section to
graphs of genus at most g .

Theorem 2. Algorithm Blockingδ is 2(2 + δ)(1 + 2/δ)(1 + 2g)-competitive on graphs of genus at most g.

Proof. To show this we define the set P of charged edges as in the proof of Theorem 1. Recall that each edge in P is charged
with a cost of at most 2(2 + δ)|e|. Let again MST be a minimal spanning tree that intersects a maximum number of edges
of P . Consider an embedding of the input graph on an orientable closed surface of genus g . We chooseMST ′

⊆ MST ∪P to be
a maximal superset of MST obtained by repeatedly adding edges that do not separate two faces, i.e., are incident with only
one face. (Topologically this can also be viewed as adding a set of non-separating cycles, after contracting MST to a single
point.) Since the addition of a non-separating edge increases the Euler characteristic of the surface bounded by the edges,
and a surface of genus g has Euler characteristic 2 − 2g , there are at most 2g edges in MST ′

\ MST .
In case MST ′ does not bound a topological disk, we artificially add non-separating edges each of weight |MST | to the

graph induced by P , to obtain a supersetMST ′′ ofMST ′ that bounds a topological disk. These edges are artificial in the sense
that they do not need to be edges of G. By the Euler characteristic argument above, there are at most 2g edges inMST ′′

\MST
in total.

All edges in P , and thus, all edges in MST ′′
\ MST have a weight not larger than |MST |, since otherwise they would be

blocked, until the whole minimum spanning tree has been explored. This implies |MST ′′
| ≤ |MST | + 2g|MST |.
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We adapt the claim of the planar case:

Claim 2. If an edge e ∈ P \ MST ′′ is contained in a cycle C in P ∪ MST ′′, then the cycle C has length at least (2 + δ)|e|.

Proof. To show the claimwe distinguish two cases. If, on the one hand, C does not contain an edge inMST ′′
\MST ′ then C is

a cycle in the original graph and the claim follows as in the proof of Theorem 1, since planarity was not used to show Claim 1.
If, on the other hand, C contains an edge fromMST ′′

\ MST ′ then C has length at least |MST | + |e|. SinceMST is a minimum
spanning tree, the edge e is also contained in a different cycle C ′ that runs entirely in MST ∪ {e}. From the previous case it
now follows that (2 + δ)|e| ≤ |C ′

| ≤ |C |, which proves the claim. �

SinceMST ′′ bounds a disk, as before, we iteratively define for every edge e ∈ P \MST ′′ a cycle Ce in the following way. In
each step we choose an edge that together with edges inMST ′′ and edges to which a cycle has already been assigned closes
a face cycle. As in the proof of Theorem 1, the cycles Ce and Ce′ are different, if e and e′ are different. Furthermore, every edge
in P ∪ MST ′′ is contained in at most two cycles, and for edges in P \ MST ′′ one of these cycles is Ce. Therefore,

|P \ MST ′′
| ≤

1
1 + δ


e∈P\MST ′′

|Ce − e| ≤
1

1 + δ
(2|MST ′′

| + |P \ MST ′′
|),

and thus |P \ (MST ′′)| ≤ (2/δ)|MST ′′
|.

Finally, we conclude that |P| ≤ (1 + 2/δ)|MST ′′
| ≤ (1 + 2/δ)(1 + 2g)|MST |. Overall, with the same arguments as in the

proof of Theorem 1, we conclude that Blockingδ is 2(2 + δ)(1 + 2/δ)(1 + 2g)-competitive on graphs of genus g . �

Choosing δ = 2 optimizes the upper bound.

Corollary 2. Algorithm Blocking2 is 16(1 + 2g)-competitive on graphs of genus at most g.

4. A lower bound construction

We now show that there is no δ > 0 for which Algorithm Blockingδ has constant competitive ratio on arbitrary graphs.
To this end, we construct graphs on which the competitive ratio of the algorithm is unbounded. The graphs only contain
edges of weight 1 and edges of weight w > 1, called heavy edges.

Overview of the construction. Our construction relies on a base graph H which is a bipartite graph with large girth and large
degree. Each vertex of the base graph is replaced by a gadget containing edges of negligible weight. More precisely, the
vertices in the one bipartition class are replaced by a so-called release gadget, while the vertices in the other bipartition
class are replaced by a so-called collection gadget. For each edge e of the base graph there is a heavy weight edge in the final
construction connecting the gadgets corresponding to the endpoints of e. The order in which the vertices are traversed is
controlled by the interaction between the gadgets, eventually forcing the algorithm to traverse all heavy weight edges. In
the construction, the high girth of the base graph prevents unwanted blocking of edges, while the high degree ensures that
the number of heavy edges is large, leading to excessive cost for the algorithm.

We now describe the construction in detail. To show that Blockingδ does not have constant competitive ratio, it suffices
to use base graphs with arbitrarily large girth and arbitrarily large minimum degree. However, to obtain an explicit lower
bound for the competitive ratio of Blockingδ we need graphswith specific bounds on girth and degree. The existence of these
graphs is guaranteed by the following lemma, which extends a classical construction of Erdős [17].

Lemma 1. For all d̄ ∈ N and δ ∈ R+ there exists a connected bipartite graph H that has O(d̄δ+2) vertices with minimum degree
at least d̄, maximum degree at most 2d̄, and a girth of g ≥ δ + 2.

Proof. For d̄ ≤ 1 the statement is trivial. For d̄ ≥ 2, the existence of a graph H ′ on at most O(d̄δ+2) vertices with minimum
degree at least d̄, maximum degree at most 2d̄ and girth g ≥ δ + 2 follows from Erdős’ bound on the size of cages [18]
(see [19] for an English translation).

Given such a graphH ′, we constructH as follows.We replace each vertex v inH ′ by an in-vertex vin and an out-vertex vout.
For every edge {u, v} of H ′ we insert the edges {uin, vout} and {vin, uout}. Now, H has a girth which is at least as large as the
girth of H ′, since any cycle in the new graph projects to a closed walk with no immediate backtracking and without trivial
steps, which contains a cycle in the original graph. Note thatH is bipartite and that the degree of both the in- and out-vertices
is equal to the degree of the vertex they replace. Note that, since every vertex is replaced by two other vertices, the final
number of vertices is in O(d̄δ+2). If H is not connected, we replace it by one of its connected components. �

Let H be a connected bipartite n′-vertex graph with minimum degree at least d̄, maximum degree at most 2d̄, and
girth at least δ + 2 as given by Lemma 1. Suppose the partition classes have size n1 and n2. We fix orders (u1, . . . , un1)
and (v1, . . . , vn2) for the vertices in each of the bipartition classes. As in the proof of Lemma 1 we call the vertices in the
bipartition classes in-vertices and out-vertices respectively.

We order the edges by the lexicographical ordering that satisfies {u, v} < {u′, v′
} if v < v′ or (v = v′ and u < u′).

In H we now replace each in-vertex and each out-vertex by a release gadget and collection gadget, respectively. Our final
construction will have edges with two types of weights, namely 1 and w > max{1, (2d̄ + 1)/(δ + 1)}.
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Fig. 2. The release gadget for a vertex of degree d = 4. The left part and the right part are connected by a center path of length (δ + 1)w − d consisting
of unit-weight edges. This path is depicted as a double edge. The gadget is also connected to the left and right to other release gadgets by blocking path of
length (δ + 1)w with unit weights. These paths are depicted as triple edges.

Fig. 3. The collection gadget for a vertex of degree d = 5. The left part has a vertex of degree d and is the end of d paths of length two. The right part consists
of d vertices that lie on a path. Each vertex on the path has an additional neighbor. The two parts are connected by a blocking path in the center. A blocking
path joins each part with another collection gadget.

Description of the release gadgets. Fig. 2 depicts a release gadget for a vertex of degree 4. In general a release gadget consists
of two parts, which we call the left part and right part. A gadget replacing a vertex of degree d consists in the left part of d
vertices forming a path. Each of these vertices is attached to a heavy (red) edge of weight w that has an endpoint in some
collection gadget. The right part contains d vertices forming a path. Each of these vertices is incident with an attached release
path of length d − 1. The endpoints of these paths are incident with a (blue) edge that ends in a collection gadget. The two
parts are joined by a center path of length ⌊(δ + 1)w − d⌋ (depicted by a double edge) with unit-weight edges. Finally, each
part has a blocking path (depicted as triple edges) of length ⌊(δ + 1)w⌋ with unit-weight edges, by which it is connected to
other release gadgets.

The crucial property of a release gadget is the following. The length of the center path is chosen such that the i-th heavy
edge may be blocked by the first edge of the i-th release path, but not by the (i + 1)-th release path (both times counting
from the left to right). Once the exploration of a release path has begun, the algorithm will finish the exploration of the
entire release path before exploring any other edges.

Thus, the i-th heavy edge of the gadget is blocked if one of the release paths 1, . . . , i has not yet been explored. If a
release path has been completely explored, we also say that the release has been triggered. Suppose in some release gadget
all releases 1, . . . , i have been triggered, but the i-th heavy edge is still blocked. This situation implies that there is a path to
some unit-weight boundary edge which exits the gadget via another heavy edge. Indeed, the blocking paths are sufficiently
long to prevent other release gadgets from interfering with this fact. We will show later that at the moment release i is
triggered such paths exiting via heavy edges do not exist.

It will be clear later that when a release gadget is entered for the first time, this happens via the blocking path to the
right of the gadget. Assuming this for now, we can require that the online algorithm traverses the gadget from right to left,
without entering the release paths. Indeed, whenever there is a choice among edges of equal weight, we can adversarially
choose the edge that is traversed next.

Description of the collection gadgets. Fig. 3 depicts a collection gadget for a vertex of degree 5. In general a collection gadget
consists of a left and a right part. For a gadget replacing a vertex of degree d, the left part has one vertex of degree d incident
with d paths of length 2. The ends of these paths are incident with heavy (red) edges emanating from release gadgets. The
right part of a collection gadget contains d vertices inducing a path. Each vertex on the path is adjacent to another vertex
which itself is incident with a (blue) edge emanating from a right part of a release gadget.

Three blocking paths (triple edges) of length ⌊(δ +1)w⌋ join the parts with each other and with other collection gadgets.
We will see that when a collection gadget is first entered, this happens via the blocking path to the left. We can then

require adversarially that the online algorithm traverses from the left part directly to the right without exploring the left
part. Then, on entering a vertex in the right, it deviates from the main path to explore the respective blue edge. We will
argue that the algorithm will then return via a corresponding heavy edge. It then backtracks and subsequently explores the
next vertex of the right part, and so on. Before leaving the gadget to the right, the gadget has been completely explored.
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Fig. 4. The assembly of the gadgets. A base graph H (left), and the resulting graph with linked replacement gadgets (right) showing release gadgets on top
and collection gadget at the bottom.

Fig. 5.A snap-shot during an execution ofBlocking executed on the graph from Fig. 4. Unexplored boundary vertices and boundary edges are shown dashed.
Two collection gadgets have been completely explored, the green vertex (with dashed boundary) has been explored last. It releases the second edge of its
release gadget (shown partially green, partially dashed).

Assembly of the gadgets according to the base graph H. To assemble the gadgets using the base graph H (see Fig. 4), we join
the release gadgets according to the order of in-vertices along the blocking paths (triple lines). The same is done with the
collection gadgets, with respect to the order of out-vertices. The right blocking path of the last (rightmost) release gadget
is connected to a single vertex, the starting vertex, that we add to the graph. The left blocking path of the first (leftmost)
release gadget and the first (leftmost) collection gadget are joined by two added, adjacent vertices.

The (red and blue) edges that run between the gadgets correspond to the edges in H . Heavy (red) edges of weight w run
from a left part of a release gadget to a left part of a collection gadget. Blue edges of weight 1 run from a right part of a release
gadget to a right part of a collection gadget.

In the lexicographical order of the edges defined above, we insert for each edge of H a heavy (red) edge and a blue edge.
To insert a heavy edge corresponding to the edge (u, v) of H , we connect the leftmost unused vertex in the left part of the
release gadget corresponding to u with the leftmost unused vertex in the left part of the collection gadget of v. To insert
the blue edge, we connect the leftmost unused vertex in the right part of the release gadget corresponding to u with the
leftmost unused vertex of the right part of the collection gadget of v.

Inserting the heavy edges in this ordering has the consequence that the ordering of the edges is exactly the ordering of
their end vertices in the collection gadgets from left to right. Furthermore, within each release gadget, the heavy edges from
left to right are also in the lexicographic order.

The tour traversed by the algorithm. Beginning at the starting vertex, we may require adversarially that the algorithm first
traverses all release gadgetswithout exploring any release path. Then, via the two additional vertices on the left, the leftmost
collection gadget is entered from the left, and the exploration continues into its right part. Subsequently release paths are
triggered, one at a time. In the following we prove that the algorithm traverses all heavy edges of H . The lexicographic order
defined on the edges is the order in which these edges are traversed. All of them are traversed from a release gadget to a
collection gadget. The blue edges, each used to trigger a traversal of a heavy edge, are traversed from a collection gadget to
a release gadget. Recall that due to the length of the center path connecting the right and left parts of a release gadget, a
heavy edge is blocked, unless its corresponding release has been triggered.

Lemma 2. The heavy (red) edges are traversed in the lexicographic order of the edges of the base graph. Whenever a release is
triggered, the corresponding heavy edge er becomes unblocked and is explored subsequently.

Fig. 5 shows a typical situation during the execution of the algorithm, when an edge becomes unblocked.

Proof of Lemma 2. Inductively we assume that all release paths that correspond to edges that appear earlier than er in the
ordering of edges have been completely explored, and all release paths that appear later than er are completely unexplored.
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Algorithm 2 Exploration algorithm hDFS(G, u, w)

Input: A partially explored graph G, a vertex u of G that is visited for the first time, and a weight w ∈ R≥0 ∪ {∞}.

1: while there is a weight w′ < w such that w′ occurs in comp(G≤w′ , u) but comp(G≤w′ , u) is not completely explored do
2: hDFS(G, u, w′)
3: end while
4: choose a minimal spanning tree of comp(G<w, u) and order all vertices according to a depth first search in this spanning

tree
5: while there is a boundary edge (u′, y′) of weight w with u′

∈ comp(G<w, u) do
6: let (u′, y′) be a boundary edge ofweightw with u′

∈ comp(G<w, u) such that u′ isminimalwith respect to the ordering
7: traverse a shortest path to y′

8: hDFS(G, y′, w)
9: end while

10: traverse a shortest path to u

A heavy weight edge can only be blocked by an edge of weight 1. Thus, for a heavy edge to be blocked, there has to be a
path of length at most (δ + 1)w − 1 to a boundary edge of weight 1. To show the claim, we show that no such path exists
for edge er .

To do so, we analyze where a hypothetical boundary edge of such a path may be situated in the graph. Observe that
the length of blocking paths (triple edge) is chosen such that they cannot be traversed to reach a boundary edge within a
distance of (δ + 1)w − 1. Thus, only two possibilities have to be ruled out:

1. There is a path to a boundary edge that can be reached by a path of length (1 + δ)w − 1, which traverses a center
path (double edge).

2. There is a path to a boundary edge that uses heavy edges, but otherwise is completely contained in left parts of gadgets.

To rule out Possibility 1, observe that any path that uses a double line to cross from a left part of a release gadget to a right
part, and then uses a complete release path is longer than (δ +1)w −1. Moreover, since release paths are either completely
explored or the corresponding heavy edge has by induction not been triggered, for every unexplored edge in the right part
of a release gadget, all explored heavy edges in the left part are further away than (δ + 1)w − 1.

To rule out Possibility 2, note that the only boundary edges of weight 1 situated in the left part of a gadget are contained
in the currently used collection gadget. All other left parts of gadgets have been completely explored or not explored at all.
Thus, any path staying in the left parts of the gadgets that leads to a boundary edge in the left part of the currently used
collection gadget will, together with er , project to a cycle in the graph H . Since the girth of H is at least δ + 2, the path has
to use at least δ + 1 heavy edges and is thus of length more than (δ + 1) · w.

We have shown that the heavy edge er becomes unblocked when its release is triggered. The algorithm thus explores er ,
returns to the release path corresponding to er , backtracks, and continues to trigger the release corresponding to the next
heavy edge. �

The previous lemma implies in particular that Algorithm Blocking traverses all heavy edges. This allows us to show that
the online algorithm does not have a constant competitive ratio.

Theorem 3. The competitive ratio of Blockingδ for δ ∈ R+ is in Ω(n1/(δ+4)).

Proof. Consider a graph that is obtained from the replacement construction from a base graph H on n′ vertices with
minimum degree d̄, maximum degree at most 2d̄, and girth at least δ + 2 (Lemma 1). Including blocking paths, the number
of unit-weight edges in a release gadget corresponding to a vertex v of degree d(v) is O(d(v)2)+O(δw) ⊆ O(d̄2)+O(δw).
This bound also holds for collection gadgets. Thus, for fixed δ, the resulting graph has a minimum spanning tree of size
O(n′d̄2) + O(n′w). Since Blockingδ traverses all heavy edges (Lemma 2), it incurs a cost of Ω(d̄n′w). Thus, its competitive
ratio is in Ω(d̄w/(d̄2 + w)). For fixed d̄ we can choose w ∈ Θ(d̄2) so that this ratio is Ω(d̄). Note that by fixing d̄ first,
we can additionally achieve that w > (2d̄ + 1)/(δ + 1), which is required for the center path to be of positive length and
thus necessary for the construction to be realizable. By Lemma 1 we can assume that n′

∈ O(d̄δ+2). Thus the final graph
has n ∈ O(d̄δ+2d̄2) vertices. Therefore, the competitive ratio is in Ω(d̄) ⊆ Ω(n1/(δ+4)). �

5. Graphs with a bounded number of distinct weights

We describe an algorithm that has constant competitive ratio, when the input graphs have a bounded number of distinct
weights. To do so, we first define components of graphs induced by edges of restricted weight.

Definition 3. For any graph G, weight w, and vertex u, let comp(G≤w, u) be the connected component of the subgraph of G
comprised of all edges of weight at most w containing u. The subgraph comp(G<w, u) is defined similarly using edges of
weight strictly less than w.
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Our algorithm hierarchical depth first search (hDFS), formally given by Algorithm 2, explores the graph comp(G≤w, u)
for any weight w. The weight w ∈ R≥0 ∪ {∞} is provided as a parameter. The algorithm is based on a depth first
search in the graph comp(G≤w, u). However, whenever a new vertex of this component is encountered, it first explores
comp(G<w, u). The algorithm then intuitively simulates the depth first search in the graph G/comp(G<w, u). Here G/H
denotes the graph obtained from G by contracting the subgraph H of G to a single point. To ensure that the total length
traversed within H = comp(G<w, u) is not too large, the boundary edges leaving H are explored according to a specific
order. This order is obtained by computing a depth first search on a minimum spanning tree of comp(G<w, u).

The computation of comp(G<w, u) can be reduced to recursive calls of the algorithm itself with parameters smaller
than w. This is possible due to the following basic observation:

Lemma 3. The component comp(G<w, u) is completely explored if and only if there is no boundary edge of weight smaller thanw
with an end-vertex in component comp(G<w, u).

To explore the entire graph starting in vertex s, we call Algorithm 2 as hDFS(Gs, s, ∞), where Gs is the partially explored
graph in which only s has been visited so far.

Theorem 4. Algorithm hDFS is 2k-competitive on graphs with at most k distinct weights.

Proof. We first show that all vertices are explored. To prove this it suffices to show that the call hDFS(G, s, w)
explores comp(G≤w, s). Suppose that there remain unexplored edgeswithweightw or less in component comp(G≤w, s) after
call hDFS(G, s, w). At least one of these edges is a boundary edge, say (u, v), with v unexplored and with weight w′

≤ w.
Consider the last call of Algorithm 2 for some node z ∈ comp(G≤w, s) with parameter w′′

≥ w′ before u is explored, i.e., we
consider the call hDFS(G, z, w′′). After node u is explored, the edge (u, v) with weight w′

≤ w′′ is known to be a boundary
edge in comp(G≤w′′ , z). Thus, continuing the execution of hDFS(G, z, w′′) eventually invokes the call hDFS(G, u, w′). This
call causes v to be explored and gives a contradiction.

LetMST be a minimum spanning tree of G. To show that the algorithm is 2k-competitive, we show that for each w < ∞

the sum of all traversals made in calls with parameterw is at most 2|MST |. For this it suffices to show: if F is a sub-forest of G
that contains edges of weight at most w such that for each vertex u the graph comp(F<w, u) is a minimum spanning tree of
comp(G<w, u), then F is contained in a minimum spanning tree of G. Finally note that the outer call with parameter w = ∞

does not incur any costs. �

The proof shows that the set of all edges traversed by hDFS forms a minimum spanning tree of G.
For graphs with arbitrary weights, we adapt the algorithm by rounding each edge weight to the nearest power of 2 and

simulating the exploration on this altered graph.

Theorem 5. Algorithm hDFS with weights rounded to powers of 2 has competitive ratio Θ(log(n)).

Proof. Let G′ be the graph obtained from an input graph G by rounding the edge weights up to the nearest power of 2.
Consider a minimum spanning tree MST ′ in G′. For i = 1, . . . , k, let wi denote the i-th smallest edge weight in MST ′, and
let ti denote the number of edges with weight wi in MST ′. By definition,

k
i=1 ti = n − 1, and |MST ′

| =
k

i=1 ti · wi. Note
that |MST ′

| is within a factor of two of the size of aminimum spanning tree of the original graphG, our standard lower bound
on the optimal tour.

The online algorithm traverses the edges of MST ′. The crucial observation is that an edge of i-th largest weight, wk−i+1,
is traversed at most 2i times. Thus, the total cost of the algorithm is at most

k
i=1 2(k − i + 1)ti · wi. We express this cost

as a function of |MST ′
| and show that it is in O(log(n) · |MST ′

|). In the case that k ≤ log(n), this is trivially true. For the case
that k > log(n), we bound the cost for small and large edges separately:

k
i=1

2(k − i + 1)ti · wi =

k−⌈log(n)⌉
i=1

2(k − i + 1)ti · wi +

k
i=k−⌈log(n)⌉+1

2(k − i + 1)ti · wi.

As a function of integers, (k − i + 1)wi is monotone increasing for i ≤ k. Thus, we can bound the first summand
by 2n(⌈log(n)⌉ + 1)wk−⌈log(n)⌉. Since the ratio between any two different weights wi and wj is at least 2i−j, we
have wk−⌈log(n)⌉ ≤ wk/n. Hence, the first summand is at most 2(log(n) + 2)wk ≤ 2(log(n) + 2) · |MST ′

|. The second
summand is bounded by 2⌈log(n)⌉ · |MST ′

| because
k

i=k−⌈log(n)⌉+1 ti · wi ≤ |MST ′
|, and thus the upper bound follows.

It remains to show that this upper bound is tight. Let L = 2k+1
− 2k, for some integer k > 1. Our lower bound graph is a

path with n = L+2k = 2k+1 vertices and k distinct weights. It is constructed as follows. The start vertex is the left endpoint
of a path of unit-weight edges of total length L − 1. At both ends of this path we repeatedly attach edges of geometrically
increasing weights 1, 2, 4, . . . , 2k−1. An optimal tour is obtained by exploring first the chain to the left of the start vertex,
then the one to the right, and returning to the origin. This tour traverses each edge exactly twice, and the tour thus has total
cost 2(L − 1) + 4

k−1
i=0 2i

≤ 2k+3.
For every i > 1 our algorithm explores both edges of weight 2i before exploring any edge of larger weight. In particular

the algorithm traverses the path of unit-weight edges of length L at least k − 1 times. Thus, the total cost for exploring the
entire graph is at least (k − 1)(2k+1

− 2k) ≥ (k − 1)2k.
This gives a worst case ratio linear in k, which implies the desired bound by our choice of n = 2k+1. �
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6. Concluding remarks

Our main result is a non-trivial graph construction which proves that Algorithm Blocking does not have a constant
competitive ratio on arbitrary graphs. This answers a longstanding open question. Nevertheless, the result does not generally
rule out online algorithms with constant competitive ratio. In particular, our construction involves only two distinct types
of weights, and thus our new Algorithm hDFS has constant competitive ratio. However, at present, there is no candidate for
an algorithm that may achieve a constant competitive ratio on general graphs. Of course showing that no such algorithm
exists might require a construction even more complicated than the one presented in this paper. For such a result it might
be helpful to use the fact that one can equivalently consider the exploration model in which the label of a vertex is only
revealed upon arrival at the vertex. This can be seen by replacing each vertex by a star with edges of small weight, and
linking the previous neighbors to the outer vertices of the star.
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