Theorem 6.9 (Universal hashing). Let m be prime and $r \in \mathbb{N}$. For $U=[b]^{r+1}$ where $[b]=\{0, \ldots, b-1\}$ and $M=[m]$ with $b \leq m, k=\left(k_{0}, \ldots, k_{r}\right) \in U$ and $a=\left(a_{0}, \ldots, a_{r}\right) \in[m]^{r+1}$, define

$$
h_{a}\left(k_{0}, \ldots, k_{r}\right)=\sum_{i=0}^{r} a_{i} \cdot k_{i} \quad \bmod m
$$

Then $\mathcal{H}:=\left\{h_{a}: a \in[m]^{r+1}\right\}$ is a universal family of hash functions.
Proof. For prime m, any linear function

$$
f_{\delta}(x):=x \cdot \delta \quad \bmod m
$$

with $x \in[m], \delta \neq 0$ is a bijection $[m] \rightarrow[m]$. All $x \in[m]$ have different images under f_{δ}, and every element of $[m]$ is the image of some $x \in[m]$.

Let $\left(k_{0}, \ldots, k_{r}\right)=k \neq l=\left(l_{0}, \ldots, l_{r}\right) \in U$, and consider

$$
\begin{aligned}
h_{a}(k)=h_{a}(l) & \Leftrightarrow & \sum_{i=0}^{r} a_{i} \cdot k_{i} \equiv \sum_{i=0}^{r} a_{i} \cdot l_{i} & \bmod m \\
& \Leftrightarrow & 0 \equiv \sum_{i=0}^{r} a_{i} \cdot\left(l_{i}-k_{i}\right) & \bmod m \\
& \Leftrightarrow & 0 \equiv \sum_{k_{i} \neq l_{i}} a_{i} \cdot\left(l_{i}-k_{i}\right) & \bmod m
\end{aligned}
$$

The terms where $k_{i}=l_{i}$ are 0 and so we can ignore them. Now define $\delta_{i}:=l_{i}-k_{i}$ and we get

$$
0 \equiv \sum_{k_{i} \neq l_{i}} a_{i} \cdot \delta_{i} \quad \bmod m
$$

Let $S:=\left\{i \in[m]: \delta_{i} \neq 0\right\} \neq \emptyset$ be the set of the indices of the non-vanishing terms. There are $m^{|S|}$ possibilities to choose the factors $\left\{a_{j}: j \in S\right\}$. If we choose the first $|S|-1$ factors, then due to the expression being linear, we have exactly 1 choice left for the last a_{j} to satisfy the equation. Altogether, we have $m^{|S|-1}$ choices for all a_{j} to satisfy the equation, and so our chance of picking an a that produces a collision is $\frac{m^{|S|-1}}{m^{|S|}}=\frac{1}{m}$.

