
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Concurrent Data Structures
Chapter 8

8/2

Overview

• Concurrent Linked List

– Fine-grained synchronization

– Optimistic synchronization

– Lazy synchronization

– Lock-free synchronization

• Hashing

– Fine-grained locking

– Recursive split ordering

8/3

Handling Multiple Threads

• Adding threads should not lower the throughput

– Contention effects can mostly be fixed by queue locks

• Adding threads should increase throughput

– Not possible if the code is inherently sequential

– Surprising things are parallelizable!

• How can we guarantee consistency if there are many threads?

8/4

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

– Mostly easy to reason about

– This is the standard Java model (synchronized blocks and methods)

• Problem: Sequential bottleneck

– Threads “stand in line”

– Adding more threads does not improve throughput

– We even struggle to keep it from getting worse…

• So why do we even use a multiprocessor?

– Well, some applications are inherently parallel…

– We focus on exploiting non-trivial parallelism

8/5

Exploiting Parallelism

• We will now talk about four “patterns”

– Bag of tricks …

– Methods that work more than once …

• The goal of these patterns are

– Allow concurrent access

– If there are more threads, the throughput increases!

8/6

Pattern #1: Fine-Grained Synchronization

• Instead of using a single lock split the concurrent object into

independently-synchronized components

• Methods conflict when they access

– The same component

– At the same time

8/7

Pattern #2: Optimistic Synchronization

• Assume that nobody else wants to access your part of the concurrent

object

• Search for the specific part that you want to lock without locking any

other part on the way

• If you find it, try to lock it and perform your operations

– If you don’t get the lock, start over!

• Advantage

– Usually cheaper than always assuming that there may be a conflict due to a

concurrent access

8/8

Pattern #3: Lazy Synchronization

• Postpone hard work!

• Removing components is tricky

– Either remove the object physically

– Or logically: Only mark component to be deleted

8/9

Pattern #4: Lock-Free Synchronization

• Don’t use locks at all!

– Use compareAndSet() & other RMW operations!

• Advantages

– No scheduler assumptions/support

• Disadvantages

– Complex

– Sometimes high overhead

8/10

Illustration of Patterns

• In the following, we will illustrate these patterns using a list-based set

– Common application

– Building block for other apps

• A set is a collection of items

– No duplicates

• The operations that we want to allow on the set are

– add(x) puts x into the set

– remove(x) takes x out of the set

– contains(x) tests if x is in the set

8/11

The List-Based Set

• We assume that there are sentinel nodes at the beginning (head) and end

(tail) of the linked list

• Add node b:

• Remove node b:

a c d

b

a b c

a c d

8/12

Coarse-Grained Locking

• A simple solution is to lock the entire list for each operation

– E.g., by locking the head

• Simple and clearly correct!

• Works poorly with contention…

a c d

b

8/13

Fine-Grained Locking

• Split object (list) into pieces (nodes)

– Each piece (each node in the list) has its own lock

– Methods that work on disjoint pieces need not exclude each other

• Hand-over-hand locking: Use two locks when traversing the list

– Why two locks?

a c d

b

8/14

Problem with One Lock

• Assume that we want to delete node c

• We lock node b and set its next pointer to the node after c

• Another thread may concurrently delete node b by setting the next

pointer from node a to node c

ba c

ba c

Hooray, I’m

not deleted!

8/15

Insight

• If a node is locked, no one can delete the node’s successor

• If a thread locks

– the node to be deleted

– and also its predecessor

• then it works!

• That’s why we (have to) use two locks!

8/16

Hand-Over-Hand Locking: Removing Nodes

• Assume that two threads want to remove the nodes b and c

• One thread acquires the lock to the sentinel, the other has to wait

Remove

node b!

a b c

Remove

node c!

8/17

Hand-Over-Hand Locking: Removing Nodes

• The same thread that acquired the sentinel lock can then lock the next

node

a b c

Remove

node b!

Remove

node c!

8/18

Hand-Over-Hand Locking: Removing Nodes

• Before locking node b, the sentinel lock is released

• The other thread can now acquire the sentinel lock

a b c

Remove

node b!

Remove

node c!

8/19

Hand-Over-Hand Locking: Removing Nodes

• Before locking node c, the lock of node a is released

• The other thread can now lock node a

a b c

Remove

node b!

Remove

node c!

8/20

Hand-Over-Hand Locking: Removing Nodes

• Node c can now be removed

• Afterwards, the two locks are released

Remove

node b!

Remove

node c!

a b c

8/21

Hand-Over-Hand Locking: Removing Nodes

• The other thread can now lock node b and remove it

Remove

node b!

a b

8/22

List Node

public class Node {
public T item;
public int key;
public Node next;

}

Item of interest

Usually a hash code

Reference to next node

8/23

Remove Method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();

...

} finally {
curr.unlock();
pred.unlock();

}
}

Start at the head and lock it

Lock the current node

Make sure that the

locks are released

Traverse the list and

remove the item
On the

next slide!

8/24

Remove Method

while (curr.key <= key) {
if (item == curr.item) {

pred.next = curr.next;
return true;

}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Search key range

If item found,

remove the node

Unlock pred and

lock the next node

Return false if the element is not present

8/25

Why does this work?

• To remove node e

– Node e must be locked

– Node e’s predecessor must be locked

• Therefore, if you lock a node

– It can’t be removed

– And neither can its successor

• To add node e

– Must lock predecessor

– Must lock successor

• Neither can be deleted

– Is the successor lock actually required?

8/26

Drawbacks

• Hand-over-hand locking is sometimes better than coarse-grained locking

– Threads can traverse in parallel

– Sometimes, it’s worse!

• However, it’s certainly not ideal

– Inefficient because many locks must be acquired and released

• How can we do better?

8/27

Optimistic Synchronization

• Traverse the list without locking!

a b d

Add

node c!

Found the

position!

8/28

Optimistic Synchronization: Traverse without Locking

• Once the nodes are found, try to lock them

• Check that everything is ok

a b d

Add

node c!

Lock them!

Is everything ok?

What could

go wrong…?

8/29

Optimistic Synchronization: What Could Go Wrong?

• Another thread may lock nodes a and b and remove b before node c is

added à If the pointer from node b is set to node c, then node c is not

added to the list!

a b d

Add

node c!

Remove b!

8/30

Optimistic Synchronization: Validation #1

• How can this be fixed?

• After locking node b and node d, traverse the list again to verify that b is

still reachable

a b d

Add

node c!
Node b can still

be reached!

8/31

Optimistic Synchronization: What Else Could Go Wrong?

• Another thread may lock nodes b and d and add a node b’ before node c

is added à By adding node c, the addition of node b’ is undone!

a b d

Add

node c!

Add b’!

b'

8/32

Optimistic Synchronization: Validation #2

• How can this be fixed?

• After locking node b and node d, also check that node b still points to

node d!

a b d

Add

node c!
The pointer is

still correct…

8/33

Optimistic Synchronization: Validation

private boolean validate(Node pred,Node curr) {
Node node = head;
while (node.key <= pred.key) {

if (node == pred)
return pred.next == curr;

node = node.next;
}
return false;

}

If pred is reached,

test if the

successor is curr

Predecessor not reachable

8/34

Optimistic Synchronization: Remove

private boolean remove(Item item) {
int key = item.hashCode();
while (true) {

Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {

if (item == curr.item)
break;

pred = curr;
curr = curr.next;

}
...

Retry on synchronization

conflict

Stop if we find the item

8/35

Optimistic Synchronization: Remove

...
try {
pred.lock(); curr.lock();
if (validate(pred,curr)) {

if (curr.item == item) {
pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Lock both nodes

Check for

synchronization conflicts

Remove node if

target found

Always unlock the nodes

8/36

Optimistic Synchronization

• Why is this correct?

– If nodes b and c are both locked, node b still accessible, and node c still the

successor of node b, then neither b nor c will be deleted by another thread

– This means that it’s ok to delete node c!

• Why is it good to use optimistic synchronization?

– Limited hot-spots: no contention on traversals

– Fewer lock acquisitions and releases

• When is it good to use optimistic synchronization?

– When the cost of scanning twice without locks is less than the cost of

scanning once with locks

• Can we do better?

– It would be better to traverse the list only once…

8/37

Lazy Synchronization

• Key insight

– Removing nodes causes trouble

– Do it “lazily”

• How can we remove nodes “lazily”?

– First perform a logical delete: Mark current node as removed (new!)

– Then perform a physical delete: Redirect predecessor’s next (as before)

b b

8/38

Lazy Synchronization

• All Methods

– Scan through locked and marked nodes

– Removing a node doesn’t slow down other method calls…

• Note that we must still lock pred and curr nodes!

• How does validation work?

– Check that neither pred nor curr are marked

– Check that pred points to curr

8/39

Lazy Synchronization

• Traverse the list and then try to lock the two nodes

• Validate!

• Then, mark node c and change the predecessor’s next pointer

Remove

node c!

Check that b and c

are not marked and

that b points to c

b ca

8/40

Lazy Synchronization: Validation

private boolean validate(Node pred,Node curr) {
return !pred.marked && !curr.marked &&
pred.next == curr;

}
Nodes are not

logically removed

Predecessor still

points to current

8/41

Lazy Synchronization: Remove

public boolean remove(Item item) {
int key = item.hashCode();
while (true) {

Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {

if (item == curr.item)
break;

pred = curr;
curr = curr.next;

}
...

This is the same as before!

8/42

Lazy Synchronization: Remove

...
try {
pred.lock(); curr.lock();
if (validate(pred,curr)) {

if (curr.item == item) {
curr.marked = true;
pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Check for

synchronization conflicts

If the target is found,

mark the node and

remove it

8/43

Lazy Synchronization: Contains

public boolean contains(Item item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {

curr = curr.next;
}
return curr.item == item && !curr.marked;

Traverse without locking

(nodes may have been

removed)

Is the element present and not marked?

8/44

Evaluation

• Good

– The list is traversed only once without locking

– Note that contains() doesn’t lock at all!

– This is nice because typically contains() is called much more often than add()
or remove()

– Uncontended calls don’t re-traverse

• Bad

– Contended add() and remove() calls do re-traverse

– Traffic jam if one thread delays

• Traffic jam?

– If one thread gets the lock and experiences a cache miss/page fault, every

other thread that needs the lock is stuck!

– We need to trust the scheduler….

8/45

Lock-Free Data Structures

• If we want to guarantee that some thread will

eventually complete a method call, even if other

threads may halt at malicious times, then the

implementation cannot use locks!

• Next logical step: Eliminate locking entirely!

• Obviously, we must use some sort of RMW method

• Let’s use CompareAndSet() (CAS)!

8/46

Remove Using CAS

• First, remove the node logically (i.e., mark it)

• Then, use CAS to change the next pointer

• Does this work…?

Remove

node c!

b ca

8/47

Remove Using CAS: Problem

• Unfortunately, this doesn’t work!

• Another node d may be added before node c is physically removed

• As a result, node d is not added to the list…

Remove

node c!

Add

node d!

b ca

d

8/48

Solution

• Mark bit and next pointer are “CASed together”

• This atomic operation ensures that no node can cause a conflict by adding

(or removing) a node at the same position in the list

Remove

node c!
Node c

has been

removed!

b ca

dd

8/49

Solution

• Such an operation is called an atomic markable reference

– Atomically update the mark bit and redirect the predecessor’s next pointer

• In Java, there’s an AtomicMarkableReference class

– In the package Java.util.concurrent.atomic package

address false mark bitReference

Updated atomically

8/50

Changing State

private Object ref;
private boolean mark;

public synchronized boolean compareAndSet(
Object expectedRef, Object updateRef,
boolean expectedMark, boolean updateMark) {

if (ref == expectedRef && mark == expectedMark) {
ref = updateRef;
mark = updateMark;

}
}

The reference to the next

Object and the mark bit

If the reference and the mark are as

expected, update them atomically

8/51

Removing a Node

• If two threads want to delete the nodes b and c, both b and c are marked

• The CAS of the red thread fails because node b is marked!

• (If node b is not marked, then b is removed first and there is no conflict)

Remove

node b!

remove

node c!

b ca

CASCAS

8/52

Traversing the List

• Question: What do you do when you find a “logically” deleted node in

your path when you’re traversing the list?

8/53

Lock-Free Traversal

• If a logically deleted node is encountered, CAS the predecessor’s next

field and proceed (repeat as needed)

CAS!

b ca

CAS

8/54

Performance

• The throughput of the presented techniques has been measured for a

varying percentage of contains() method calls

– Using a benchmark on a 16 node shared memory machine

Ops/sec (32 threads)

Lock-free

Lazy

Coarse Grained

Fine Grained

% contains()

106

8·106

0 10 20 30 40 50 60 70 80 90

8/55

Low Ratio of contains()

Lock-free

Lazy

Coarse Grained

Fine Grained

Threads

Ops/sec (50% read)

0 5 10 15 20 25 30

3.5·106

3·106

2.5·106

1.5·106

5·105

2·106

1·106

• If the ratio of contains() is low, the lock-free linked list and the linked list

with lazy synchronization perform well even if there are many threads

8/56

High Ratio of contains()

Lock-free
Lazy

Coarse Grained
Fine Grained

0 5 10 15 20 25 30

Threads

1.2·107

1·107

8·106

6·106

4·106

2·106

Ops/sec (90% reads)

• If the ratio of contains() is high, again both the lock-free linked list and the

linked list with lazy synchronization perform well even if there are many

threads

8/57

“To Lock or Not to Lock”

• Locking vs. non-blocking: Extremist views on both sides

• It is nobler to compromise by combining locking and non-blocking

techniques

– Example: Linked list with lazy synchronization combines blocking add() and

remove() and a non-blocking contains()

– Blocking/non-blocking is a property of a method

8/58

Linear-Time Set Methods

• We looked at a number of ways to make highly-concurrent list-based sets

– Fine-grained locks

– Optimistic synchronization

– Lazy synchronization

– Lock-free synchronization

• What’s not so great?

– add(), remove(), contains() take time linear in the set size

• We want constant-time methods!

– At least on average…

How…?

8/59

Hashing

• A hash function maps the items to integers

– h: items ® integers

• Uniformly distributed

– Different items “most likely” have different hash values

• In Java there is a hashCode() method

8/60

0

1

2

3

16

9

h(k) = k mod 4
buckets

Sequential Hash Map

• The hash table is implemented as an array of buckets, each pointing to a

list of items

• Problem: If many items are added, the lists get long à Inefficient

lookups!

• Solution: Resize!

7

4

15

28

8/61

0

1

2

3

16

9

h(k) = k mod 8

Resizing

• The array size is doubled and the hash function adjusted

7

4

15

28

4

5

6

7

Grow the array

New hash function

8/62

0

1

2

3

16

9

h(k) = k mod 8

Resizing

• Some items have to be moved to different buckets!

7

4

15

28

4

5

6

7

4 28

4 28

7 15

7 15

8/63

Hash Sets

• A hash set implements a set object

– Collection of items, no duplicates

– add(), remove(), contains() methods

• More coding ahead!

8/64

Simple Hash Set

public class SimpleHashSet {
protected LockFreeList[] table;

public SimpleHashSet(int capacity) {
table = new LockFreeList[capacity];
for (int i = 0; i < capacity; i++) {

table[i] = new LockFreeList();
}

}

public boolean add(Object key) {
int hash = key.hashCode() % table.length;
return table[hash].add(key);

} …

Array of lock-free lists

Initial size

Initialization

Use hash of object to pick a bucket

and call bucket’s add() method

8/65

Simple Hash Set: Evaluation

• We just saw a

– Simple

– Lock-free

– Concurrent

hash-based set implementation

• But we don’t know how to resize…

• Is Resizing really necessary?

– Yes, since constant-time method calls require constant-length buckets and a

table size proportional to the set size

– As the set grows, we must be able to resize

8/66

Set Method Mix

• Typical load

– 90% contains()

– 9% add ()

– 1% remove()

• Growing is important, shrinking not so much

• When do we resize?

• There are many reasonable policies, e.g., pick a threshold on the number

of items in a bucket

• Global threshold

– When, e.g., ≥ ¼ buckets exceed this value

• Bucket threshold

– When any bucket exceeds this value

8/67

Coarse-Grained Locking

• If there are concurrent accesses, how can we safely resize the array?

• As with the linked list, a straightforward solution is to use coarse-grained

locking: lock the entire array!

• This is very simple and correct

• However, we again get a sequential bottleneck…

• How about fine-grained locking?

8/68

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking

• Each lock is associated with one bucket

• After acquiring the lock of the list, insert the item in the list!

7

8

11

17

8/69

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking: Resizing

• Acquire all locks in ascending order and make sure that the table

reference didn’t change between resize decision and lock acquisition!

7

8

11

17

Table reference

didn’t change?

8/70

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking: Resizing

• Allocate a new table and copy all elements

7

8

11

17

8

4

9 17

11

7

0

1

2

3

4

5

6

7

8/71

0

1

2

3

h(k) = k mod 8

Fine-Grained Locking: Resizing

• Stripe the locks: Each lock is now associated with two buckets

• Update the hash function and the table reference

0

1

2

3

4

5

6

7

8

4

9 17

11

7

8/72

Observations

• We grow the table, but we don’t increase the number of locks

– Resizing the lock array is possible, but tricky…

• We use sequential lists (coarse-grained locking)

– No lock-free list

– If we’re locking anyway, why pay?

8/73

Fine-Grained Hash Set

public class FGHashSet {
protected RangeLock[] lock;
protected List[] table;

public FGHashSet(int capacity) {
table = new List[capacity];
lock = new RangeLock[capacity];
for (int i = 0; i < capacity; i++) {

lock[i] = new RangeLock();
table[i] = new LinkedList();

}
}

Array of locks

Array of buckets

Initially the same

number of locks

and buckets

8/74

Fine-Grained Hash Set: Add Method

public boolean add(Object key) {
int keyHash = key.hashCode() % lock.length;
synchronized (lock[keyHash]) {

int tableHash = key.hashCode() % table.length;
return table[tableHash].add(key);

}
}

Acquire the

right lock

Call the add() method of

the right bucket

8/75

Fine-Grained Hash Set: Resize Method

public void resize(int depth, List[] oldTable) {
synchronized (lock[depth]) {
if (oldTable == this.table) {

int next = depth + 1;
if (next < lock.length)

resize(next, oldTable);
else
sequentialResize();

}
}

}
}

Resize() calls

resize(0,this.table)

Acquire the next

lock and check

that no one else

has resized

Recursively acquire

the next lock
Once the locks are

acquired, do the work

8/76

Fine-Grained Locks: Evaluation

• We can resize the table, but not the locks

• It is debatable whether method calls are constant-time in presence of

contention …

• Insight: The contains() method does not modify any fields

– Why should concurrent contains() calls conflict?

8/77

Read/Write Locks

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

Return the associated read lock

Return the associated write lock

8/78

Lock Safety Properties

• No thread may acquire the write lock

– while any thread holds the write lock

– or the read lock

• No thread may acquire the read lock

– while any thread holds the write lock

• Concurrent read locks OK

• This satisfies the following safety properties

– If readers > 0 then writer == false

– If writer = true then readers == 0

8/79

Read/Write Lock: Liveness

• How do we guarantee liveness?

– If there are lots of readers, the writers may be locked out!

• Solution: FIFO Read/Write lock

– As soon as a writer requests a lock, no more readers are accepted

– Current readers “drain” from lock and the writers acquire it eventually

8/80

Optimistic Synchronization

• What if the contains() method scans without locking…?

• If it finds the key

– It is ok to return true!

– Actually requires a proof…

• What if it doesn’t find the key?

– It may be a victim of resizing…

– Get a read lock and try again!

– This makes sense if it is expected(?) that the key is there and resizes are rare.

– Better: Check if the table size is the same before and after the method call!

We won’t discuss

this in this lecture

8/81

Stop The World Resizing

• The resizing we have seen up till now stops all concurrent operations

• Can we design a resize operation that will be incremental?

• We need to avoid locking the table…

• We want a lock-free table with incremental resizing!

How…?

8/82

Lock-Free Resizing Problem

• In order to remove and then add even a single item, “single location CAS”

is not enough…

0

1

2

3

16

9

7

4

15

28

4

5

6

7

We need to extend the table!

4 28

4 28

8/83

Idea: Don’t Move the Items

• Move the buckets instead of the items!

• Keep all items in a single lock-free list

• Buckets become “shortcut pointers” into the list

0

1

2

3

16 4 28 5 9 15

8/84

Recursive Split Ordering

• Example: The items 0 to 7 need to be hashed into the table

• Recursively split the buckets in half:

• The list entries are sorted in an order that allows recursive splitting

0

1

1/2

2

3

1/4 3/4

0 4 2 6 1 5 3 7

How…?

8/85

Recursive Split Ordering

• Note that the least significant bit (LSB) is 0 in the first half and 1 in the

other half! The second LSB determines the next pointers etc.

0

1

LSB = 1

2

3

LSB = 0

0 4 2 6 1 5 3 7

LSB = 00 LSB = 10 LSB = 01 LSB = 11

8/86

Split-Order

• If the table size is 2i:

– Bucket b contains keys k = b mod 2i

– The bucket index consists of the key's i least significant bits

• When the table splits:

– Some keys stay (b = k mod 2i+1)

– Some keys move (b+2i = k mod 2i+1)

• Whether a key moves is determined by the (i+1)st bit

– counting backwards

8/87

A Bit of Magic

• We need to map the real keys to the split-order

• Look at the reversed binary representation of the keys and the indices

• The real keys:

• Split-order:

• Just reverse the order of the key bits in order to get the index!

0 1 2 3 4 5 6 7

0 4 2 6 1 5 3 7

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111

Real key 1 is at index 4!

8/88

Split Ordered Hashing

• After a resize, the new pointers are found by searching for the right index

• A problem remains: How can we remove a node by means of a CAS if two

sources point to it?

0

1

2

3

0 4 2 6 1 5 3 7

000 001 010 011 100 101 110 111

Order according to reversed bits

2 pointers to some nodes!

8/89

Sentinel Nodes

• Solution: Use a sentinel node for each bucket

• We want a sentinel key for i

– before all keys that hash to bucket i

– after all keys that hash to bucket (i-1)

0

1

2

3

0 16 4 1 9 3 7 15

8/90

Initialization of Buckets

• We can now split a bucket in a lock-free manner using two CAS() calls

• Example: We need to initialize bucket 3 to split bucket 1!

0

1

2

3

0 16 4 1 9

3

7 15

8/91

Adding Nodes

• Example: Node 10 is added

• First, bucket 2 (= 10 mod 4) must be initialized, then the new node is

added

0

1

2

3

0 16 4 1 9 3 7 15

2 10

8/92

Recursive Initialization

• It is possible that buckets must be initialized recursively

• Example: When node 7 is added, bucket 3 (= 7 mod 4) is initialized and

then bucket 1 (= 3 mod 2) is also initialized

• Note that ≈ log n empty buckets may be initialized if one node is added,

but the expected depth is constant!

0

1

2

3

0 8 12 1 73

n = number of nodes

8/93

Lock-Free List

private int makeRegularKey(int key) {
return reverse(key | 0x80000000);

}

private int makeSentinelKey(int key) {
return reverse(key);

}

Set high-order bit

to 1 and reverse

Simply reverse

(high-order bit is 0)

8/94

Split-Ordered Set

public class SOSet{
protected LockFreeList[] table;
protected AtomicInteger tableSize;
protected AtomicInteger setSize;

public SOSet(int capacity) {
table = new LockFreeList[capacity];
table[0] = new LockFreeList();
tableSize = new AtomicInteger(1);
setSize = new AtomicInteger(0);

}

This is the lock-free

list with minor

modifications

Track how much of

the table is used and

the set size so that

we know when to

resize

Initially use 1 bucket

and the size is 0

8/95

Split-Ordered Set: Add

public boolean add(Object object) {
int hash = object.hashCode();
int bucket = hash % tableSize.get();
int key = makeRegularKey(hash);
LockFreeList list = getBucketList(bucket);
if (!list.add(object,key))

return false;
resizeCheck();
return true;

}

Pick a bucket

Non-sentinel

split-ordered key

Get pointer to

bucket’s sentinel,

initializing if

necessary

Try to add with

reversed key

Resize if

necessary

8/96

Recall: Resizing & Initializing Buckets

• Decision to Resize

– Divide the set size by the total number of buckets

– If the quotient exceeds a threshold, double the table size up to a fixed limit

• Initializing Buckets

– Buckets are originally null

– If you encounter a null bucket, initialize it

– Go to bucket’s parent (earlier nearby bucket) and recursively initialize if

necessary

– Constant expected work per bucket!

8/97

Split-Ordered Set: Initialize Bucket

public void initializeBucket(int bucket) {
int parent = getParent(bucket);
if (table[parent] == null)

initializeBucket(parent);
int key = makeSentinelKey(bucket);
table[bucket] = new

LockFreeList(table[parent],key);
}

Find parent,

recursively

initialize if needed

Prepare key for

new sentinel

Insert sentinel if not present and

return reference to rest of list

8/98

Correctness

• Split-ordered set is a correct, linearizable, concurrent set

implementation

• Constant-time operations!

– It takes no more than O(1) items between two dummy nodes on average

– Lazy initialization causes at most O(1) expected recursion depth in

initializeBucket()

8/99

Empirical Evaluation

• Evaluation has been performed on a 30-processor Sun Enterprise 3000

• Lock-Free vs. fine-grained optimistic locking (“Lea”)

• 10
6

operations: 88% contains(), 10% add(), 2% remove()

Low load: High load:

o
p

s/
ti

m
e

threads

locking

lock-free

o
p

s/
ti

m
e

threads

locking

lock-free

8/100

Empirical Evaluation

• Expected bucket length

– The load factor is the capacity

of the individual buckets

• Varying The Mix

– Increasing the number of updates

o
p

s/
ti

m
e

Load factor

locking

lock-free

o
p

s/
ti

m
e

locking

lock-free

More reads More updates

8/101

Additional Performance

• Additionally, the following parameters have been analyzed:

– The effects of the choice of locking granularity

– The effects of the bucket size

8/102

Number of Fine-Grain Locks

(Lea = fine-grained optimistic locking)

8/103

Lock-free vs. Locks

8/104

Hash Table Load Factor

(load factor = nodes per bucket)

8/105

Varying Operations

8/106

Summary

• We talked about techniques to deal with concurrency in linked lists

– Hand-over-hand locking

– Optimistic synchronization

– Lazy synchronization

– Lock-free synchronization

• Then we talked about hashing

– Fine-grained locking

– Recursive split ordering

8/107

Credits

• The first lock-free list algorithms are credited to John Valois, 1995.

• The lock-free list algorithm discussed in this lecture is a variation of

algorithms proposed by Harris, 2001, and Michael, 2002.

• The lock-free hash set based on split-ordering is by Shalev and Shavit,

2006.

8/108ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

That’s all!
Questions & Comments?

