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Abstract. In this paper we survey some results concerning balls-into-
bins-games and the power of two choices. We present a unified and rather
elementary analysis for models in the parallel as well as in the sequential
setting which is based on witness trees.

1 Introduction

For the balanced allocation of resources in a distributed environment randomized
strategies often turn out to achieve good results. Among such strategies so-called
balls-into-bins-games play a major role.

The common characteristics of balls-into-bins-games can be summarized as
follows: A set of jobs is to be allocated to a set of processing units (short: units)
in such a way that the maximum load, also called congestion at a single unit
is minimized. The general strategy for doing this is to first choose a set of d
candidate units for each job in a random manner. An appropriate protocol then
allocates each job to exactly one of its candidate units. Such a protocol depends
heavily on the model under consideration, but it should be intuitively obvious
that a smaller d reduces the communication overhead within the protocol, but
increases the resulting maximum load.

Surprisingly, it turns out that already the cases d = 1 and d ≥ 2 are funda-
mentally different. For d ≥ 2 it is often possible to achieve much better results.
Consider for example the allocation of n jobs at n units where the jobs arrive
sequentially and choose d units uniformly at random. The job is then allocated
at a candidate unit with minimum load breaking ties arbitrarily. It is well known
that the maximum load for d = 1 is about lnn/ ln lnn (see e. g. [10] or [17]). It
came as quite a surprise when it was shown in [2] that for d = 2 the maximum
load is exponentially smaller, namely about ln lnn/ lnd. This phenomenon is
often referred to as the power of two choices [15].

There is a rather broad literature on this phenomenon. An early application
of the power of two choices can be found in PRAM simulations on Distributed
Memory Machines (see e. g. [11,8]). Until now many different models for balls-
into-bins-games and related problems have been presented and various aspects
have been analysed.
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Two main techniques for the analysis of balls-into-bins games have emerged:
layered induction and witness trees. In this paper we will concentrate on witness
tree proofs since they are applicable to a larger variety of scenarios and often
yield results which are more robust against modifications of the model.

Organization of the Paper. This paper is organized as follows. In Sect. 2 we
present the basic models for parallel and sequential allocation problems. In
Sect. 3 we introduce our generalized proof technique which is based on witness
trees. In Sect. 4 and Sect. 5 this technique is applied to parallel and sequential
balls-into-bins-games.

2 Two Basic Models

Among the wide variety of different balls-into-bins-games that have been anal-
ysed in the literature two fundamentally different models can be distinguished:
Parallel and sequential arrival of the jobs. In the sequel we introduce these two
variants using classic examples which will also serve as basis for a unified anal-
ysis. For simplicity’s sake we concentrate on the case when there are exactly n
jobs and n units.

2.1 Parallel Arrival

In this model the jobs arrive in parallel and may communicate with the units
before they choose their final destination. The communication proceeds in syn-
chronous rounds and the objective is to achieve low congestion using only a small
number of communication rounds.

This model and similar variants have achieved much attention in the litera-
ture (see e. g. [11,8,9,6,12,13,1,18]). We will consider the model and the algorithm
from [18].

A distributed protocol, the so-called collision protocol is used to balance the
load among the units: Every job chooses d ≥ 2 candidate units uniformly at
random. Then the following steps are repeated until no active, i. e., unassigned
jobs remain:

– Every unassigned job j sends a request for allocation to its candidate units.
(Due to this one-to-one correspondence between candidate units and requests
we will use these terms interchangeably.)

– If the number of jobs which want to be allocated at a certain unit exceeds
a fixed threshold c then the congestion at this unit is too high and the
requests cannot be satisfied. Otherwise the unit sends an acknowledgment
to the pending requests. If a jobs receives one or more acknowledgments it is
allocated at one of the candidate units that sent them (making an arbitrary
choice in case there is more than one possibility) and becomes inactive.

Note that the number of communication rounds for this protocol is not bounded
and that, in principle, the protocol may not terminate either. However, it can



Simplified Witness Tree Arguments 73

be shown that for appropriate values of c and t with high probability all jobs are
allocated after t rounds. In other word, the protocol finds an assignment with
maximum load at most c in at most t time steps.

2.2 Sequential Arrival

In this model the jobs arrive sequentially and each job has to be assigned to
a processing unit immediately after its arrival. The arriving jobs may commu-
nicate with the units before they choose their final destination. However, the
amount of communication should be kept small. Here we focus on the following
simple and natural strategy: each job chooses d ≥ 2 candidate units randomly
and checks their current load. Then the job is allocated at a unit with lowest
load. This model was introduced in [2], slight variants and improvements can
e. g. be found in [2,1,4,19,3]. [14,16,7] consider some related models.

3 A Generalized Approach Using Witness Trees

In this section we introduce the technique that we will later use for the analysis
of allocation processes.

3.1 Allocation Graphs

The allocation of the jobs at the units can naturally be modelled by an allocation
graph G = (J ∪ U,E), where J is the set of jobs and U is the set of units. G
is bipartite, i. e., the edges in E only connect jobs to units. An edge e = (j, u)
corresponds to a job j with candidate unit u. We will also assume that e is
labelled with the number r(e) ∈ {1, . . . , d} of the request which is modelled
by e.

3.1.1 Existence of Witness Subgraphs. If high congestion arises in the
final allocation then a treelike witness subgraph can be found in G. Consider for
example the collision protocol for the parallel arrival. Assume that the protocol
does not terminate within t rounds. Then there must be at least one job j which
survives the tth round. This can only be the case if all of its requests are not
accepted. In other words, for any candidate unit u of the d candidate units
chosen by j there must be c other jobs (which are active in the tth round) which
all issue a request that conflicts with job j at unit u. The fact that these d · c
jobs are still active in the tth round implies that they must have survived round
t−1. We can thus repeat the above argument for each of these d ·c jobs1 yielding
(d · c)2 many jobs which must have survived round t− 2 and so on.
1 In fact we have to modify the argument a bit because the d · c neighbors of the first
job are only adjacent to (d−1) units which are not yet part of the witness subgraph.
But we will neglect that for the moment.
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The basic idea behind proofs using witness subgraphs is the following: First
it is shown, as we sketched before, that high congestion implies the existence
of a (large) witness subgraph in the allocation graph. Then such large witness
subgraphs are shown to arise with very small probability.

If the witness subgraph were indeed a tree then the analysis would be rather
simple. The difficulty of this proof strategy stems from the fact that some of these
jobs might actually be identical. That is, instead of (d · c)-ary witness trees of
depth t we get treelike witness graphs where some branches occur multiple times
or where cross-edges introduce awkward dependencies. In previous approaches
this usually has been taken care of by extracting a witness tree from the witness
subgraph using a kind of breadth-first traversal which stops when it runs into
cross edges.

3.1.2 Proof Strategy. In this note we propose a different approach. We
directly analyse the allocation graph, which is a random graph where the random-
ness comes from the jobs choosing their candidate units randomly. Our method
for the analysis of witness trees consists of the following steps:
– First we show that high congestion implies the existence of a large witness

subgraph in the allocation graph.
– Then we analyse the structure of the allocation graph and show that it is

locally “treelike” with high probability. More precisely, we show that all
cycles in a “small” radius can be destroyed by deleting just a few edges.

– In a last step we prove that we can still find a large witness tree after the
destruction of the cycles. Such witness trees are then shown to occur with
very small probability.

The bounds on the probability will be deduced using the well-known First
Moment Method which is formulated for our purposes in the following lemma.
Lemma 1 (First Moment Method). Consider a random graph G defined
on an arbitrary probability space. Let N denote the number of subgraphs which
satisfy a certain property Q. If E[N ] = O(n−α) for α > 0 then

Pr[∃H ⊆ G : H satisfies Q] = Pr[N �= 0] = O(n−α) .

Proof. Follows directly from Markov’s inequality: Pr[N ≥ 1] ≤ E[N ]. �

3.2 Multicycles

In this section we introduce a notion which captures the idea that the allocation
graph looks “almost like a tree” in a small radius.
Definition 1. A k-multicycle at vertex v of depth at most t is a tree with root v
and exactly k cross edges such that the following holds:
– The depth of the tree is at most t.
– All leafs are incident to cross edges.

Obviously, the following simple facts hold for a k-multicycle of depth at
most t: The degree of the root is bounded from above by 2k. The number of
vertices is at most 2kt and n−m = 1 − k.
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Fig. 1. A 4-multicycle of depth 3

3.2.1 Counting Multicycles. If the edges in the multicycle occur indepen-
dently with probability p, the expected number E[Mk,t] of k-multicycles of depth
at most t can be estimated quite easily. Consider first the multicycles with
exactly s vertices, where s ≤ 2kt. To bound the number of possible multicy-
cles we first choose the vertices in the multicycle (at most ns possibilities). Then
we fix the edges of the multicycle (at most 2s2

possibilities) and we label the
edges with the number of the corresponding request (at most ds−1+k possibili-
ties). As the edges were assumed to occur independently with probability p, each
such multicycle occurs with probability exactly ps−1+k. All in all we get

E[Mk,t] ≤
2kt∑
s=1

ns · 2s2 · ds−1+k · ps−1+k .

For our applications we will usually have that t = O(log logn), d = O(1) and
p = O(1/n). This suffices to show that k-multicycles of depth at most t do not
occur with probability 1− n−α for k ≥ α+ 2 due to the First Moment Method.

3.2.2 Turning Graphs into Trees. The next lemma shows that subgraphs
of graphs without large multicycles can be turned into trees by deleting just
a small number of edges at the root.

Lemma 2. Assume that a graph G = (V,E) contains no multicycles of depth
at most t with more than k cross edges. Furthermore, consider a subgraph H =
(V ′, E′) of G with a root vertex v ∈ V ′ where every vertex w ∈ V ′ has distance
at most t from v in G. Then this subgraph can be turned into a forest by deleting
at most 2k edges at the root.

Proof. Traverse H with a BFS starting at v and mark all cross edges C in H .
The edges in C together with the paths inside the BFS-tree from the end points
of the edges to the root v define a multicycle (which also has root v). Hence,
it follows that |C| ≤ k. The root of the multicycle has degree at most 2k and
we get a forest H ′ ⊆ H by deleting all ≤ 2k edges at v that belong to the
multicycle. �
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3.3 Putting Everything Together

Now we are in a position to give a detailed description of the steps which are
used in our analysis method: For an arbitrary load balancing problem we intend
to show that the following claims hold for suitable values of l and α.

1. Finding Witness Trees. If the maximum load caused by the allocation algo-
rithm is at least l then we can find a witness subgraph Tl. The depth of Tl

is bounded from above by a suitable function t = t(n).
2. Turning Graphs Into Trees. After the deletion of 2k edges at the root of

a witness subgraph Tl we can still find a graph Tl−k′ which is really a tree
for suitable constants k and k′.

3. Counting Multicycles. Let M denote the event that the allocation graph
contains a k-multicycle of depth at most t. Then Pr[M] ≤ 1

2n
−α.

4. Counting Witness Trees. Let T denote that event that the allocation graph
contains a witness tree Tl−k′ . Then Pr[T ] ≤ 1

2n
−α.

From that we can conclude that the maximum load caused by the allocation
algorithm is less than l with probability n−α by the following reasoning: It holds
that Pr[M ∪ T ] ≤ n−α by claim 3 and claim 4. Assume that neither M nor
T occur and that the maximum load is l′ ≥ l. Then we can find a witness
subgraph Tl by claim 1. This witness subgraph can be turned into a witness
tree Tl−k′ by claim 2. This yields a contradiction, since we assumed that T did
not occur.

4 Parallel Allocation

Now we turn to the first application of our proof strategy.

4.1 Model and Algorithm

We consider the same model as in [18]: n jobs arrive in parallel and must be
allocated at n units. The jobs may communicate with the units in synchronous
rounds before their allocation. We try to minimize the maximum congestion
executing only few communication rounds. This is achieved using the collision
protocol, which we have already described in Sect. 2.1.

We intend to prove the following theorem which is very similar to the result
in [18]:

Theorem 1. Let α > 0, β := α + 4.5 and 2 ≤ t ≤ 1
β ln lnn. Assume that n

is sufficiently large that c
4e2 ≤ n0.1. Then the c-collision protocol with d = 2

terminates after at most t rounds for the threshold

c = max

{(
βt lnn
ln lnn

)1/(t−1)

, 5 + 2α, 4e2 + 1

}

with probability at least 1 − n−α.
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4.2 Finding Witness Subgraphs

For the moment we will concentrate on the structure of the witness subgraph
and neglect duplication of vertices.

We call a unit active in round t′ if it still takes part in the collision protocol
in round t′. Assume that the collision game does not terminate after t rounds
and consider a unit y which is active in round t + 1. At time t there are at
least c + 1 jobs incident to y. These jobs have not been allocated until round t
and, thus, the other d− 1 units where they are connected to must still be active
in round t. Hence, the witness tree exhibits a regular recursive structure (see
Fig. 2), i. e., the witness tree Tt for t rounds is composed of c(d − 1) witness
trees Tt−1. The leafs of the witness tree consist of a single unit since all units
are active in round 1. Note that the resulting tree is c-ary but not (c + 1)-ary
because only the unit at the root has c+1 children. We ignore one of its children
in order to get a simple regular structure.

Tt

Tt−1Tt−1

c

d − 1 d − 1

t

t − 1

unit

job

. . .

Fig. 2. Witness tree for collision games

Let jt denote the number of jobs and ut the number of units in a witness
tree Tt. It follows that

jt = c+ c(d− 1) · jt−1 ; j1 = 0
ut = 1 + c(d− 1) · ut−1 ; u1 = 1 .

One easily checks that

jt =
ct(d− 1)t−1 − c

c(d− 1) − 1
; ut =

ct(d− 1)t − 1
c(d− 1)− 1

.

We deduce for the number of edges rt in Tt that rt = d · jt since every job
has degree d. Furthermore, Tt contains jt/c units as inner vertices as each such
vertex is incident to c jobs.
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4.3 Turning Graphs into Trees

Let Tt denote a witness subgraph which certifies that the unit at its root is
still active after t rounds of the collision game. Since the root of the witness
subgraph has degree c (see Fig. 2) we conclude that we can still find a witness
subgraph Tt−1 after the deletion of 2k edges at the root if c > 2k. Hence, if there
are no k-multicycles and the collision game does not terminate after t rounds
then we can find a witness tree Tt−1.

4.4 Counting Multicycles

Counting k-multicycles as shown in Sect. 3.2 we obtain

E[Mk,t] ≤
2kt∑
s=1

ns · 2s2 · ds−1+k · ps−1+k .

Using the assumptions on d and t and the fact that p = 1/n it follows easily
that there are no k-multicycles with probability 1− 1

2n
−α for k ≥ 2 + α.

4.5 Counting Witness Trees

Using the values of jt, ut and rt we will now calculate the expected number of
witness trees Tt. For simplicity’s sake we drop the subscripts of jt, ut and rt.

There are at most nj+u possibilities to choose the vertices. After we have
fixed the number of the requests (at most dr possibilities) every edge occurs
with probability 1/n. Furthermore, we take into account (1/c!)j/c · (1/(d− 1)!)j

tree automorphisms. Finally, we deduce that

E[Tt] = nj+u ·
(
d

n

)r

·
(

1
c!

)j/c

·
(

1
(d− 1)!

)j

≤ nj+u−r ·
[
e

c
·
(

e

d− 1

)d−1

· dd

]j

= n ·
[
e

c
·
(

e

d− 1

)d−1

· dd

] ct(d−1)t−1−c
c(d−1)−1

.

To see this note that j+u−r = 1 because j+u and r correspond to the number
of vertices resp. edges in the witness tree.

For d = 2 this expression is similar to the results in [18]. It holds that

E[Tt] ≤ n ·
(e
c
· 4e

) ct−c
c−1 ≤ n ·

(
4e2

c

)ct−1−1

.

Similar calculations as in [18] show that E[Tt] ≤ 1
2n

−α. Theorem 1 then follows
by the arguments given in Sect. 3.3.
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Our analysis also yields a result for the case d ≥ 3 without much additional
effort. Note that

γ :=
ct(d− 1)t−1 − c

c(d− 1)− 1
≥ (c(d− 1))t−1 − 1

d
≥ (c(d− 1))t−1

2d
.

Furthermore, it is easy to check that (d− 1)2/d ≥ 1 and, thus,

γ ≥ 1
2
ct−1(d− 1)t−3 ≥ (c(d− 1))t−3 .

Hence, we obtain

E[Tt] ≤ n ·
[
e

c

(
e

d− 1

)d−1

· dd

](c(d−1))t−3

≤ n ·
[
ded

c

(
d

d− 1

)d−1
](c(d−1))t−3

≤ n ·
[
d · ed+1

c

](c(d−1))t−3

.

This enables us to show the following theorem.

Theorem 2. Let α > 0, β := α + 2 lnd + d + 2 and 2 ≤ t ≤ 1
β ln lnn. Then

the c-collision protocol with d ≥ 3 terminates after at most t rounds for the
threshold

c = max

{
1

d− 1
·
(
βt lnn
ln lnn

)1/(t−3)

, 5 + 2α, ded+1 + 1

}

with probability at least 1 − n−α.

Using the definition of c and the bound on t we deduce that

E[Tt] ≤ n ·
[
d2ed+1 ·

(
ln lnn
βt lnn

) 1
t−3

]βt ln n
ln ln n

≤ n ·
[
(d2ed+1)t · ln lnn

βt lnn

] β ln n
ln ln n

≤ n ·
[
(d2ed+1)

1
β ln lnn

lnn

] β ln n
ln ln n

= n · (d2ed+1)lnn

nβ
= n2 ln d+d+2−β = n−α .

5 Sequential Allocation

5.1 The Classic d = 2 Strategy

5.1.1 Model and Algorithm. We consider the same model as in [2]: n jobs
are sequentially allocated at n units. Every job chooses d units independently
and uniformly at random and is allocated at a unit with minimum load. Ties
are broken arbitrarily.

Theorem 3. [2] For the sequential allocation process with d independent choices
it holds that the maximum load is at most ln lnn

ln d +O(1) with probability 1−n−α.
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5.1.2 Finding Witness Subgraphs. For the moment we ignore cross edges
and duplication of vertices. Let l denote the load after the allocation of all jobs.
We say that a job j is on level l′ if l′ − 1 other jobs have been allocated at the
same unit as j before j’s arrival.

Now we show how a witness tree Tl for a unit x with load l after the allocation
of the last job can be constructed. Consider the job j on level l allocated at x.
This job has issued requests to d− 1 units y1, . . . , yd−1 different from x and all
these units must have had load at least l − 1 at the time when j was allocated.
Hence, we can find a witness tree Tl−1 at y1, . . . , yd−1. Furthermore, we can also
find a witness tree Tl−1 at x certifying that x had load l−1 before j was allocated
(see Fig. 3). Finally, we define that T1 consists of single unit and a single job
joined by an edge.

Tl

Tl−1 Tl−1 Tl−1

Tl−1

T1

d
unit

job

Fig. 3. Witness tree for sequential allocation

We use the variables jl, ul and rl for the witness tree Tl as in the previous
section and obtain the following recurrences:

jl = 1 + d · jl−1 ; j1 = 1
ul = d · ul−1 ; u1 = 1 .

We easily deduce that

jl =
dl − 1
d− 1

; ul = dl−1 .

Jobs which belong to a T1 are called leaf jobs and we denote their number by hl.
Since a leaf job is allocated on level 1 and each unit contains exactly one such
job it holds that hl = ul = dl−1.

5.1.3 Turning Graphs into Trees. Consider the witness subgraph Tl of
a unit u with load l. u contains jobs j1, . . . , jl where ji is allocated on level i.
For i ≥ 2 it holds that ji has d − 1 incident units different from u with load



Simplified Witness Tree Arguments 81

at least i − 1 before the insertion of ji. Hence, it is connected to d − 1 witness
subgraphs Ti−1 for i = 2, . . . , l. Fig. 4 shows this view on the recursive structure
of the witness subgraph, where only one of the d − 1 witness subgraphs Ti−1 is
drawn for each job ji.

l

. . .

Tl

Tl−1 Tl−2 T1

Fig. 4. Different view on witness tree for sequential allocation

From this structure it follows that after the deletion of 2k edges at the we
can still find a witness tree Tl−2k.

5.1.4 Counting Multicycles. We count multicycles as in Section 3.2:

E[Mk,l] ≤
2kl∑
s=1

ns · 2s2
· ds−1+k · ps−1+k .

As p = 1/n it again follows easily that for l = O( ln lnn
ln d ) there are no k-multicycles

with probability 1− 1
2n

−α for k ≥ 2 + α.

5.1.5 Counting Witness Trees. In order to show that large witness trees
occur with small probability we apply a technique from [19]: We construct the
witness tree ignoring jobs on level 1, 2 and 3. If the maximum load after the
allocation process amounts to l+3 we can find a witness tree Tl which contains
only jobs on level 4 and above.

A witness tree is called active if its leaf jobs indeed reside on level 4 and above.
At any time during the allocation process there are at most n/3 units containing
at least three jobs. Henceforth, we call these units heavy. A witness tree can only
be active if all its leaf jobs choose the d−1 units which don’t belong to the witness
tree among the heavy units. This happens with probability 3−(d−1)hl . Note that
for every job this bound holds deterministically regardless of the random choices
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of the other jobs. Hence, this probability is independent from the choices of the
requests inside the witness tree.

We renounce taking the tree automorphisms into consideration and, thus, we
may bound the number of choices for the jobs and units by nj · nu and assume
that the labelling of the requests for non-leaf jobs is implicit in the order of
the chosen vertices. For the labelling of the requests belonging to leaf jobs we
have to adjoin the factor dhl . Each request in the tree occurs independently with
probability 1/n. This leads to

E[Tl] ≤ njl · nul ·
(

1
n

)rl

· dhl · 3−(d−1)hl ≤ n · 2−hl = n · 2−dl−1
.

Choosing l = logd log2 nα+1 + 2 = ln lnn
lnd + O(1) completes the proof of the

theorem.

5.2 Always-Go-Left

5.2.1 Model and Algorithm. In this section we will consider the sequen-
tial allocation strategy from [19] which surprisingly still improves on the result
from [2] by introducing a slight asymmetry. At first sight this may seem rather
unintuitive, but the analysis will show that asymmetry helps in making the
witness trees larger and, thus, their occurence already becomes improbable for
smaller maximum load.

The n units are divided into d groups of almost equal size, i. e., with Θ(n/d)
units per group. For simplicity’s sake we will henceforth assume that each group
comprises exactly n/d units.

The unit for the ith request of a job is chosen from the ith group. Then
the ball is, as usual, allocated at a unit with minimum load. If there is a draw
the unit belonging to the group with the smallest number, i. e., the “left-most”
group is selected. In [19] this algorithm is thus called “Always-Go-Left”.

Theorem 4. For α > 0 the Always-Go-Left algorithm achieves maximum load
at most ln lnn/(d lnΦd) +O(1) with probability 1 − n−α.

The constant Φd is defined with the help of generalized Fibonacci numbers.
Define Fd(k) = 0 for k ≤ 0, Fd(1) = 1, and Fd(k) =

∑d
i=1 Fd(k − i) for k ≥ 2.

Let φd = limk→∞ k
√
Fd(k), so that Fd(k) = Θ(φ k

d ). Then 1.61 . . . = φ2 < φ3 <
· · · < 2.

5.2.2 Finding Witness Trees. The recurrences for the witness trees from
Sect. 5.1 must slightly be modified as we have to consider to which of the d
groups the units belong. In this section we deviate somewhat from the previ-
ous notation and number the groups by 0, . . . , d − 1 instead of 1, . . . , d. The
reasons for that will become clear shortly. Let Tl,i denote a witness tree for
a job on level l which is placed in a unit of group i. The adjacent witness trees
are Tl,0, . . . , Tl,i−1, Tl−1,i, . . . , Tl−1,d−1. This recurrence also holds for l = 1 if
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we assume that the trees T0,1, . . . , T0,d−1 are empty. T1,0 is defined to consist of
a single job and a single unit which are joined by an edge (see Fig. 6 for the gen-
eral recursive structure and Fig. 5 for the small cases; the numbers correspond
to the groups of the units).

T1,0 T1,1 T1,2 T2,1

0

0

0

0

00 00

1111

22

Fig. 5. Small witness trees for always-go-left allocation with d = 3

Observe that this construction implies that all leaves are connected to a unit
in group 0, i. e., their incident edge is labelled with 0.

Tl,i

Tl,0 Tl,i−1

Tl−1,i

Tl−1,i+1 Tl−1,d−1

d − 1

d

0 i − 1 i+ 1

unit

job

. . .. . .

Fig. 6. Witness tree for sequential always-go-left allocation
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In order to simplify the recurrence we let Tx := T�(x+d)/d�,x mod d for x =
0, 1, . . . and may rewrite the adjacent witness trees of Tx as Tx−1, . . . , Tx−d.

5.2.3 Turning Graphs into Trees. By the recursive structure of the witness
tree (as presented in Sect. 5.1) it follows that after the deletion of 2k edges at
the root of a witness tree Tl,i we can still find a witness tree Tl−2k,i′ (with i′ �= i)
which is at least as large as a Tl−2k,0 (see Fig. 6 and Fig. 4).

5.2.4 Counting Multicycles. Multicycles are counted as in Sect. 5.1 for the
classic d = 2 case

E[Mk,l] ≤
2kl∑
s=1

ns · 2s2 · ds−1+k · ps−1+k.

Note that due to the fact that we choose exactly one unit in each group the
probability for the edges changes from 1/n to d/n. However, one easily checks
that the additional factor ds−1+k is asymptotically negligible and we still obtain
that for l = O( ln lnn

ln d ) there are no k-multicycles with probability 1 − n−α for
k ≥ 2 + α.

5.2.5 Counting Witness Trees. We get the following recurrences for the
witness tree Tx using the same definition for T1,0 as for T1 in Sect. 5.1 (a single
unit and a single job joined by an edge):

jx = 1 +
∑d

i=1 jx−i ; j−(d−1) = · · · = j−1 = 0, j0 = 1
ux =

∑d
i=1 ux−i ; u−(d−1) = · · · = u−1 = 0, u0 = 1 .

Let hx denote the number of leaf jobs in Tx. For hx we deduce the recurrence

hx =
d∑

i=1

hx−i ; h−(d−1) = · · · = h−1 = 0, h0 = 1 .

Recall that Fd(k) = 0 for k ≤ 0, Fd(1) = 1 and Fd(k) =
∑d

i=1 Fd(k − i) for
k ≥ 2. Following the argumentation of [19], it holds that Fd(k) ≥ Φk−2

d . Thus,
we conclude that hx = Fd(x) ≥ Φk−2

d .
The next step is to estimate the number of jobs of jx in comparison to the

number of leaves hx. By induction we prove that hx ≥ 1
4jx + 1

4 .
The basis of the induction is shown as follows: T0 only contains one job which

is a leaf job and, thus, we have (j−h) = 0 and h = 1. For the trees T1, . . . , Td−1

we deduce by induction that j − h = h. When we compose a tree Ti for i =
1, . . . , d− 1 the non-leaf job that connects the trees T0, . . . , Ti−1 is compensated
by the tree T0 which contains one leaf job but no non-leaf job. Hence, for 0 ≤
x < d it holds that hx ≥ 1

2jx ≥ 1
4jx + 1

4 .
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Now we prove the induction step. A tree Tx with x ≥ d is composed of
subtrees Tx−d, . . . , Tx−1 and contains one additional non-leaf job. Hence, it holds
that

hx =
d∑

i=1

hx−i ≥
1
4

d∑
i=1

jx−i +
1
4
d ≥ 1

4
(jx − 1) +

1
2

=
1
4
jx +

1
4
,

completing the proof of the induction step.
The expected number of witness trees Tx is estimated as before. We have

at most nj · (n/d)u possibilities to choose the jobs and the units in the tree.
Note that the order of the choices fixes the group where a certain unit belongs
to. Hence, we have only n/d instead of n choices per unit. Every edge occurs
independently with probability d/n.

As in Sect. 5.1 we call a witness tree active, if for each leaf job the d−1 units
that do not belong to the witness tree (that is the units in groups 1, . . . , d−1) are
heavy. For technical reasons we have to strengthen the definition of heavyness
and call a unit heavy if it has load at least 80. We claim that the probability that
the d−1 units are all heavy is bounded from above by 20−(d−1−�d/4�). The proof
proceeds as follows. Consider an arbitrary distribution of n balls. Let ξ denote
the number of groups in which at least 1

20
n
d units contain at least 80 balls. From

ξ · 1
20

n
d · 80 ≤ n we deduce ξ ≤ �d/4�. That is, at least d − 1 − �d/4� units are

choosen in groups with at most 1
20

n
d heavy units. Hence,

E[Tx] ≤ nj ·
(n
d

)u

·
(
d

n

)r

· 20−(d−1−�d/4�)h ≤ n · dj−1 · 20−(d−1−�d/4�)h

≤ n · d4h−1 · 20−(d−1−�d/4�)h ≤ n · 2(4 log2 d−(d−1−�d/4�) log2 20)h

≤ n · 2− 1
4h ≤ n · 2− 1

4Φx−2
d .

A tree Tl,i for i = 0, . . . , d− 1 is at least as large as a tree Tl,0 ≡ T(l−1)d and we
obtain that

E[Tld] ≤ 2−
1
4Φld−2

d .

This estimate is similar to the bound in [19]. Setting l := logΦd
(4 log2 nα)/d+2 =

ln lnn/(d lnΦd)+O(1) yields the desired result. (Note that the constants in this
section can be significantly improved. In particular, the inequality hx ≥ 1

4jx + 1
4

is rather weak and can be improved by more careful argumentations.)

6 Conclusion

We have presented a unified view on witness tree proofs for various balls-into-
bins games. We feel that the uniform approach for the different models faciliates
the understanding of the results and also provides intuitive insight.
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