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Summary

Objective: An imbalanced diet elevates health risks for many chronic diseases
including obesity. Dietary monitoring could contribute vital information to lifestyle
coaching and diet management, however, current monitoring solutions are not
feasible for a long-term implementation. Towards automatic dietary monitoring, this
work targets the continuous recognition of dietary activities using on-body sensors.
Methods: An on-body sensing approach was chosen, based on three core activities
during intake: arm movements, chewing and swallowing. In three independent
evaluation studies the continuous recognition of activity events was investigated
and the precision-recall performance analysed. An event recognition procedure was
deployed, that addresses multiple challenges of continuous activity recognition,
including the dynamic adaptability for variable-length activities and flexible deploy-
ment by supporting one to many independent classes. The approach uses a sensitive
activity event search followed by a selective refinement of the detection using
different information fusion schemes. The method is simple and modular in design
and implementation.
Results: The recognition procedure was successfully adapted to the investigated
dietary activities. Four intake gesture categories from arm movements and two food
groups from chewing cycle sounds were detected and identified with a recall of 80—
90% and a precision of 50— 64%. The detection of individual swallows resulted in 68%
recall and 20% precision. Sample-accurate recognition rates were 79% for movements,
86% for chewing and 70% for swallowing.
Conclusions: Body movements and chewing sounds can be accurately identified using
on-body sensors, demonstrating the feasibility of on-body dietary monitoring. Further
investigations are needed to improve the swallowing spotting performance.
# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Daily dieting behaviour strongly influences the risk
for developing disease conditions. The most preva-
lent disease associated to an imbalanced diet is
obesity. Current estimations account for over one
billion of overweight and 400 million obese patients
worldwide. This still increasing trend was attributed
to the rapid changes in society and behavioural
patterns in the last decades [1]. However, obesity
is not a unique diet-related disease that decreases
healthy life-years in many populations. Rather, it
surges the risk for related diseases, including dia-
betes mellitus, different types of cancer and cardio-
vascular diseases. Often the diseases confound or
overlay each other, preventing accurate accounting.

Several key risk factors have been identified, that
are controlled by dieting behaviour. These include
the timing of food intake and integration into daily
schedule. For example, intermediate snacking was
found to add a major part to the daily energy intake
[2]. Another critical aspect is the food selection.
High-energy food can be replaced by lower energy
densities, such as fruits and vegetables. This
improves the diet quality and lowers body weight
[3].

Minimising individual risk factors is a preventive
approach to systematically fight the origin of diet-
related diseases. It is themost promising solution for
improving quality of life in the future. Since nutri-
tion is an inherent part of daily activities, the
adoption of a healthy diet requires individual life-
style changes. These changes need to be implemen-
ted and maintained over periods of months and
years. For this purpose, a convenient long-term
monitoring of dietary behaviour could become a
vital tool to assess eating disorders and support diet
modifications through feedback and coaching.

1.1. Dietary behaviour monitoring

No single-sensor solution exist that could capture
the process of food intake and is simple to imple-
ment for diet management. Currently, dietary activ-
ities are studied manually by entering the
information into food intake questionnaires. Mobile
devices and Internet appliances are used to support
the information entry, e.g. by taking pictures of the
food [4] and estimating calories from entered data
[5]. Further approaches to simplify data entry
include the scanning of shopping receipts [6] as well
as bar codes or recording voice logs [7].

These manual acquisition methods require a con-
siderable effort of study participants, primarily to
remember entering the information into the ques-
tionnaire, and study managers, to verify and analyse

the data. Typically, this method is prone to errors
such as imprecise timing due to back-filling, missing
food item details, e.g. when using voice recordings
[7] and low user compliance, especially for paper-
based diaries [8].

Many dietary parameters such as the rate of
intake (in g/s) or the number of chews for a food
piece are rarely assessed because adequate sensing
facilities are only available in laboratory settings.
However, these parameters are related to palat-
ability, satiety and speed of eating [9]. Behavioural
investigations have utilised weighting tables in con-
trolled settings to measure the amount and rate of
food intake during the consumption of individual
meals [10]. An oral implant sensors was developed
to acquire information about these parameters [11].
However, these techniques certainly influences the
user’s behaviour and are not feasible for long-term
monitoring.

All noninvasive dietary monitoring techniques
suffer from estimation errors regarding the exact
amount and calories of every consumed food item.
However, a rough estimation for relevant para-
meters such as ratio of fluid and solid foods, food
category and timing information, such as eating
schedule and meal intake durations over the day,
will provide a solid basis for behavioural coaching.
We believe that much of this information can be
extracted from on-body sensors.

1.2. Paper contributions and outline

In this work, we evaluate on-body sensing methods
to automatically monitor dietary intake behaviour.
In particular, three core aspects of dietary activity
(sensing domains) were investigated by on-body
sensors:

(1) Characteristic arm and trunk movements asso-
ciated with the intake of foods, using inertial
sensors.

(2) Chewing of foods, monitored by recording the
food breakdown sound with an ear microphone.

(3) Swallowing activity, acquired by a sensor-collar
containing surface Electromyography (EMG)
electrodes and a stethoscope microphone.

We derive pattern models for specific activity
events using the sensor data of each domain and
analyse the event recognition performance. For
example, individual chews are considered as events
in the domain chewing. In particular, the paper
makes the following contributions:

(1) We present a flexible event spotting method
that can be applied either to an individual sen-
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sing modality or a combination of several. The
approach obtains its adaptivity from a variable-
length feature pattern search. Its selective
power originates from competitive and suppor-
tive fusion of event spottings with largely inde-
pendent sources of errors. We summarise the
domain-specific adaptations of the procedure.
The pattern description is achieved by using
time and frequency-domain features that model
the temporal characteristics of an event. Using
this approach, more complex algorithms, like
hidden Markov models (HMMs) were avoided.

(2) We analyse the recognition of individual arm
movements as well as chewing and swallowing
activities from the intake of different food
items. For each domain, we describe the activ-
ity sensing approach, the domain-specific recog-
nition constraints and the conducted case
studies to obtain naturalistic evaluation data.
Since our work targets a combined detection
and classification of the activity events, we
present quantitative results for both, indicating
a good performance and the feasibility of the
sensing approaches for automatic dietary mon-
itoring.

The evaluations are performed on data from
three different studies. To analyse the recognition
performance under realistic conditions, the data
sets included other common activities, e.g. conver-
sations and arbitrary movements.

2. Dietary activity domains and
related work

Activity monitoring and recognition has attracted
researchers from many backgrounds, including
machine vision and more recently pervasive and
wearable computing. An exhaustive review of the
literature is beyond the scope of this work. Instead,
we focus on systems for behaviour and automatic
dietary monitoring as well as research on the three
sensing domains considered in this work.

Approaches towards automatic dietary monitor-
ing typically build on intelligent infrastructures.
Chang et al. [12] developed a monitoring table to
detect activities in a dining scenario. The table is
partitioned into several sensing sections equipped
with radio-frequency-identification (RFID) readers
to identify food containers and weight sensors to
track food transport between containers and perso-
nal plates. The precision of the system is bound to
the spatial resolution of table sensing sections and
requires static assignment of food containers to
these sections. The concept of load sensing on a

table surface for user activity detection was intro-
duced earlier by Schmidt et al. [13]. In their
approach, coarse object movements were esti-
mated from a single sensing section.

Beigl et al. [14] equipped household objects with
sensing capabilities. In the presented example, a
cup was chosen to identify activities carried out
with it.

For dietary monitoring applications, RFID tech-
nology has great potential as a combined wearable
and environmental sensing modality. Patterson
et al. [15] attached tags to 60 household objects.
The detection was restricted to morning activities,
recorded by an RFID reader worn at the user’s hand.
The activities included, using the bathroom, pre-
paring breakfast foods and eating breakfast.

The infrastructure sensing approaches provide
valuable information on various user activities were
sensors can be easily attached or hidden. However,
the approaches generally suffer from the user iden-
tification problem: while one user may prepare the
foods, several others can consume them. Wearable
sensors can bridge this gap and associate the user
directly to the activities. Moreover, since worn at
the body, the sensors can reveal more detailed
information that otherwise would require labora-
tory setups.

2.1. Movement recognition

Movements and gestures related to dietary intake
can be roughly discriminated into a preparation
phase of the food or beverage items, such as unpack-
ing, opening, cooking and plate or cup filling, and
the actual feeding. The feeding movements target
the fine-cutting, loading, and manoeuvring of the
prepared piece to the mouth. In the feeding phase
specific tools, such as fork and knife can be used.

Our focus is to recognise intentional arm and
upper body movements during the feeding phase.
These movements are a result of handling the tool in
the hand(s) and the food material properties visc-
osity and size. These properties relate directly to
the food category. For example, a soup is usually
feed with a spoon while a glass, cup, or bottle is used
for drinking. Hence, all relevant movement events
can be characterised as directed gestures of the left
or right arm, supported by the upper body.

A large base of existing works addressed the
problem of classification on well-defined sequences
or previously isolated gestures, e.g. for Kung Fu
moves [16] or in a worker assembly scenario [17].
Works that targeted the continuous recognition used
explicit segmentation steps or implicit segmenta-
tion capabilities of algorithms, such as HMMs. Lee
and Kim [18] used HMMs and introduced a threshold

Recognition of dietary activity events 123



Author's personal copy

model to eliminate detection noise. The threshold
model is constructed from all trained gesture mod-
els. Explicit segmentation was used by Ward et al.
[19] in an assembly task. Recognition was achieved
by fusing classifier outputs. Lee and Yangsheng [20]
used acceleration thresholds in combination with
HMMs. In previous works of the authors on intake
gesture recognition, HMMs were used together with
an explicit data-adaptive segmentation [21].

While HMMs are helpful to model the temporal
structure of movements, they were avoided in this
work to minimise the complexity of the search
procedure for both training and actual search.

2.2. Chewing recognition

Chewing targets simultaneous food breakdown and
lubrication to form a food bolus that can be swal-
lowed. A chewing sequence starts after the food
piece is transferred to the mouth. The food break-
down is composed of arbitrary tongue movements
and cyclic opening and closing of the jaw (chewing
cycle). During the material breakdown sounds are
emitted that are partially audible by air-conduction
in the near vicinity, but effectively transmitted by
bone-conduction from teeth and jawbone to the
skull and the ear canal.

The emitted sounds are related to the food mate-
rial texture. Interaction of chewing with the acous-
tic sensation and perception of food items has been
investigated to study food preferences. Typically,
studio recording setups were used to analyse air-
conducted chewing sounds [22] and laboratory
installations to assess the deformation sounds with
a destruction instrument [23]. The loudness of a
food item during chewing depends mainly on its
inner structure, the arrangement of cells, impurities
and existing cracks [24]. Wet cellular materials,
such as apples and lettuce, are termed wet-crisp
since the cell structures contain fluids, whereas dry-
crisp products, such as potato chips have air inclu-
sions [25].

The food deformation in a chewing cycle is under-
stood as a gradually decomposition of the material
structure, observed as a decline of the sound level
[26]. Initial attempts were made by DeBelie et al.
[27] to discriminate two classes of crispness in
apples by analysing principal components in the
sound spectrum of the initial bite. In a followup
work DeBelie et al. [28] classified the sound emis-
sions from the initial bite of different dry-crisp
snacks. Both works addressed the isolated classifi-
cation. In our previous work, the microphone posi-
tioning and classification of four different foods was
investigated [29]. The ear canal provided the best
signal (chewing) to noise (user speaking) ratio. This

sensor positioning can be comfortable and socially
acceptable for continuous monitoring, comparable
to mobile headsets or hearing aids.

In this work, following our recognition approach,
the identification of individual chewing cycles
from food breaking sounds was targeted. The food
category is subsequently classified from the sound
pattern of the cycle.

2.3. Swallowing recognition

Swallowing is a frequent activity during food intake.
It is mostly performed unconsciously and when
initiated, controlled by a pattern of muscle activa-
tions [30]. The swallowing act is often partitioned
into (1) oral preparation phase (food in the mouth),
(2) pharyngeal phase (food bolus in the throat) and
(3) esophageal phase (food propulsion towards the
stomach) [31]. After transforming the food to a
allowable bolus in the oral phase, the swallowing
reflex is initiated by the tongue, starting the phar-
yngeal phase. In this phase a sequence of muscle
activations is used to transport the bolus and protect
the respiratory tract.

A number of clinical assessment methods have
been developed to analyse the complex interaction
of swallowing, phonation and respiration at the
pharynx and diagnose abnormal swallowing in the
pharyngeal phase. The assessment methods can be
broadly grouped as invasive methods, that require a
strict laboratory or clinic setting and a variety of
noninvasive sensing methods. In the latter category,
the following main approaches were taken: sensing
muscle activations by surface EMG, e.g. [32], listen-
ing to the throat sounds using a stethoscope [33] as
well as stethoscope-like acoustic transducers or
sealed microphones [34].

A large share of research works targeted the basic
understanding of the swallowing process, only few
addressed the continuous monitoring. Danbolt et al.
[35] used sensors to detect hyoid movement at the
throat. It was found that the sensor incurs heavy
measurement artifacts from neck and tongue move-
ments as well as from speaking. Limdi et al. [36]
tracked muscle contraction intensity based on sur-
face EMG to inform the user of elevated swallowing
rates. Sukthankar et al. [37] used surface EMG
and vibration sensors and targeted applications
in dysphagia rehabilitation. Both latter works did
not present a performance evaluation for their
approaches to the continuous recognition problem.
In our previous work [38], swallowing was analysed
from surface EMG and sound for the isolated classi-
fication of swallowed bolus types, e.g. solid or fluid.
Moreover, an initial investigation towards the con-
tinuous detection was made. The approach is taken
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forward in the present evaluation by extending the
swallowing study and evaluating the performance of
different fusion methods.

3. Recognition and evaluation
methods

The envisioned system shall be continuously worn
during daily routine. In all sensing domains relevant
activity events occur only sporadically, often
embedded into a large set of other, non-relevant
activities (NULL class). For example, stethoscope-
like sound recordings intended to record swallowing
sounds at the throat, inherently pick up speaking, or
even environmental noises.

A method that targets the spotting of relevant
activity events should be effective in retrieving
correct events while omitting NULL class data. How-
ever, the sensing domains considered in this work
have very few constraints, resulting in a highly
variable NULL class. As a consequence of this diver-
sity, it is not feasible to derive a model for NULL
(garbage model) without integrating assumptions
about these random activities. Moreover, training
of the relevant event model(s) should be critically
reviewed for its dependency on NULL.

Another challenge is the variable length of the
activities, leading to duration variances in the rele-
vant events. Consider for example a intake gesture
using fork and knife where the food must be cut into
appropriate sized pieces before manoeuvring it to
the mouth. This indicates that a simple, fixed sliding
window search would not be able to identify the
gestures accurately.

Our approach to detecting and classifying dietary
activities is based on three main steps: (1) an expli-
cit segmentation of signals to define search bounds,
(2) a sensitive event detection using a feature simi-
larity search algorithm with an adaptive, dynami-
cally defined window size, and (3) a selective fusion
of detection results exploiting independent sources

of error to filter out false positives and obtain an
event classification in the same step. Fig. 1 outlines
the components of our event detection and classi-
fication method.

3.1. Event recognition procedure

In the first step, a segmentation is obtained that
specifies the bounds for the following search. Var-
ious data-adaptive methods or a fixed distance can
be used for this purpose. In this work, we used the
latter approach with a domain-specific distance
setting.

3.1.1. Event detection using feature similarity
search
The event detection step utilises the segmentation
points to search for potential activity event sections
using a similarity-based algorithm. The search is
performed by comparing features of a data section
under investigation to a previously trained pattern.

The following search principle is illustrated in
Fig. 2. For a given segmentation point, the history
of sensor data is analysed between a lower and
upper search bound. These bounds are determined
in the training step from the overlapping of manu-
ally annotated events and the segmentation points.
For each search section the similarity of a feature
set to a pre-trained set is quantified by computing
the Euclidean distance (DEvent) between them. A
distance threshold (DThres), also obtained during
the training, is used to remove unlikely sections.
The similarity search works as a detector that
returns a list of event sections associated with a
distance to the training pattern.

One benefit of this algorithm is that it can operate
as a single pattern detector, when applied to
retrieve one relevant type from continuous sensor
data only. Using the feature similarity search, multi-
ple detector instances can be combined to indepen-
dently spot different classes. This permits an
independent feature set for each class. Further-
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Figure 1 Event detection and classification procedure used in the work. The detector instances (1 to n) can be trained
to spot activity event patterns of specific classes or individual modalities. The event fusion can combine events of
different type (competitive) or modalities for one type (supportive). Both concepts are presented in this work.
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more, as we will show for the detection of swallow-
ing, instances trained from independent sensing
modalities can be used to detect one event type
in parallel.

3.1.2. Competitive and supportive event
fusion
By selecting an appropriate distance threshold
(DThres), the similarity search is configured to spot
most of the activities in the sensor data. Conse-
quently it can incur false positives. In the fusion
step different class- or modality-specific event
detectors are combined to reduce these errors.
This improvement originates from the indepen-
dent sources of error of each detector and mod-
ality.

For multiple detectors a competitive fusion strat-
egy was used to select the final events. A supportive
strategy was deployed to combine the modality-
specific detection of one activity type, since here
the detectors could reinforce each other.

In this work, we evaluated different fusion meth-
ods: (1) comparison of the events, keeping the event
with the highest confidence (COMP), (2) agreement
of the detectors (AGREE) and (3) re-weighting of the
detection by logistic regression (LR). The methods
are commonly used to combine classifier outputs
[39,19]. In this work, COMP corresponds to the
competition strategy and AGREE implements a sup-
portive approach. LR can be used for both strate-
gies.

To select the most probable from concurrently
reported events, the competitive fusion compares a

confidence associated to each event. This confi-
dence was derived from the similarity search dis-
tances (DEvent) by normalisation using the distance
threshold (DThres) in each detector instance
(Eq. (1)).

Confidence ¼ DThres � DEvent

DThres
(1)

A sliding buffer of candidate events is used and
continuously updated as new events are entering
from the detector instances. For each entering
event the collision (temporal overlapping of the
event section with events already in the buffer) is
resolved according to the selected fusion strategy.
The events are released from the buffer after a
timeout as final result of the procedure.

3.2. Feature computation

The temporal structure of many complex activities
is a key element for their pattern modelling and
subsequent machine recognition. For example,
movements are frequently modelled with HMMs
and time-continuous features to capture this
effect.

In this work, we integrated the temporal struc-
ture of the activity events in individual single-value
features. The features were computed for prede-
fined sections of an event. We spitted the event in
two or four slices. This solution provided an accep-
table trade-off between temporal description and
total number of features. The solution permits a
combination of sliced features and features for the
entire event. Moreover, this approach can simplify
bothmodelling and event search, compared to time-
continuous features. We used it with the recognition
approach presented above. The similarity search is
then performed using the features to describe each
event and search every section.

3.3. Evaluation procedure

3.3.1. Experimental concept
The analysis of each sensing domain was based on
experimental data, individually acquired for each
domain. Fig. 3 indicates the sensor attachment at
the body for all domains. For the recording of move-
ments a commercial motion acquisition system
based on inertial sensors was used. Customised
systems were utilised for the chewing (ear micro-
phone) and swallowing (sensor collar) recordings.
Table 1 provides a detailed description of the sen-
sors used. In each study the activities were manually
annotated by an observer. The study procedures are
further detailed in the evaluation sections for each
sensing domain.
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Figure 2 Schematic of the activity event search step.
The segmentation is indicated by the dotted line. The
search is performed by computing feature sets from the
sensor data (not shown) between lower and upper search
bounds. The search sections are evaluated by comparing
their feature sets to a pre-trained pattern. (Please refer
to the text for more details).
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3.3.2. Soft alignment procedure
In order to account an event as recognised, the
detection procedure must return a valid begin and
end of an activity section and its identity (for multi-
class detections). The section boundaries were com-
pared to begin and end of the annotated events.
However, the boundaries do not match exactly since
the manual annotation was not accurate on the
granularity of each sample and the segmentation
algorithm can introduce a small alignment error in
the detection.

For the feasibility in the envisioned dietary mon-
itoring application the exact alignment is not a
critical aspect, if the event is associated to the true
activity at all. Hence, we applied a soft alignment
matching, following the concept of a boundary
jitter. Eq. (2) describes the accounting of correct
events.

Recognised

¼ true; if j � max
jABegin � EBeginj
AEnd � ABegin

;
jAEnd � EEndj
AEnd � ABegin

� �

false; otherwise

8<
:

(2)

The parameters ABegin and AEnd correspond to start
and stop sample of the manual annotation and like-
wise, EBegin andEEnd to the retrieved event. The jitter
parameter j can be set, depending on the acceptable
jitter for an application. The jitter j ¼ 0 corresponds
to an exact matching of the boundaries and j ¼ 1
would allow a jitter in size of the event duration.
Moreover, this accounting procedure assures that
large events, covering more than the annotation
section, will be rejected as well, if their begin and
end do not conform to Eq. (2). Multiple counts of
matches and misses were especially avoided.

For the evaluation in this work a jitter of j ¼ 0:5
was chosen. We believe that this is an adequate
accuracy for applications in dietary monitoring.

3.3.3. Performance measurement
To account for variations in the acquired data sets, a
fourfold cross-validation procedure was used to
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Figure 3 Schematic sensor positioning at the body (see
Table 1 for a detailed description).

Table 1 List of sensors systems used in the dietary activity studies

Sensor type Sensor description Sensing domain

Inertial sensors Sensor modules containing acceleration sensors,
gyroscopes (rate of turn) and compass sensors
(magnetic field), each in three dimensions.
The modules were attached to the user’s arms.
Manufacturer: XSens, model: MTi

Movement activity

Ear microphone Electret miniature condenser microphone.
The microphone was embedded into an ear
pad foam and worn at the ear canal.
Manufacturer: Knowles Acoustics,
model: TM-24546

Chewing activity

Stethoscope microphone Electret condenser microphone. The microphone
was attached with medical tape or worn in a
collar below the hyoid. Manufacturer: Sony,
model: ECM-C115

Swallowing activity

Electromyogram (EMG) Electromyogram electrodes and acquisition
system. Electrodes were directly attached
or worn in a collar at the infra-hyoid throat
position. Manufacturer: MindMedia,
model: Nexus-10
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determine training and testing set for the perfor-
mance analysis. For training, three of four data
parts were used. Evaluation was performed on the
left-out data part. This procedure was repeated
until all four parts were used for testing once.
The partition boundaries were adapted to avoid
intersecting the manually annotated event sections.
The choice of four partitions reflects an empirical
trade-off between processing effort, the need for
enough training observations in all combinations of
the partitions and the intended averaging effect for
the final results. An additional performance gain
could be achieved by higher iteration counts, poten-
tially using more events for training.

To analyse the recognition performance, we used
the metrics Precision and Recall, commonly used for
information retrieval assessments. These metrics
are derived as follows:

Recall ¼ Recognised events

Relevant events
;

Precision ¼ Recognised events

Retrieved events

(3)

Relevant events corresponds to the manually
annotated number of actually occurred event
instances. Retrieved events represents the number
of events returned by the event recognition proce-
dure. Finally, Recognised events refers to the cor-
rectly returned number of events. Bothmetrics have
a value range of [0,1]. A recall value of one indicates
a perfect accuracy of a method (all relevant events
are recognised), while a precision value of one
indicates that the method does not return false
positives (insertion errors).

4. Movement recognition

4.1. Study description

To evaluate our recognition approach for move-
ments, a case series was recorded, utilising com-
mercially available inertial sensors. Table 1 specifies
the sensors used. The inertial sensors were attached
onto a jacket at the lower and upper arm as well as
the upper back. Fig. 3 illustrates the sensor posi-
tions.

The movements of the arms and upper body was
recorded with a sampling rate of 100 Hz from four
right-handed volunteers (1 female, 3 male, aged
between 25 and 35 years). The participants were
seated in front of a table carrying the food items and
tools. They were instructed to eat and drink as they
would normally do.

Intake sessions were recorded from each partici-
pant on separate days. Four intake activities were

recorded for each session: (1) eating meat lasagne
with fork and knife (cutlery, CL), (2) fetching a glass
and drinking from it (DK), (3) eating a soup with a
spoon (SP), and (4) eating slices of bread with one
hand only (HD). All meals were served at adequate
temperature for normal eating/drinking. Table 2
summarises the acquired data which was inspected
and annotated.

In order to enrich diversity of the data set and
avoid long periods without movements, the partici-
pants were asked to conduct a set of other, non-
relevant movements and gestures. Besides arbitrary
movements of the participants the following addi-
tional arm gestures have been recorded and anno-
tated to quantify the data set noise: scratching head
(96 times), touching chin (92 times), reading and
turning pages of newspaper (99 times), using tissue
(89 times), glancing at the watch (92 times) and
answering a simulated mobile phone call (90 times),
all total numbers of the data set.

4.2. Evaluation results

The event recognition procedure was adapted to the
movement domain in the following way:

(1) A time constant of 0.5 s was used for segmenta-
tion.

(2) For each of the four gesture categories an event
detector instance was trained. Using the Euler
angles of the lower arms, features such asmean,
variance and signal sum in four sliced sections
and for the complete gesture were computed.
By visually inspecting test recordings we found
that the upper arm and the back sensors could
not support the recognition without construct-
ing a more complex body model. Hence, they
were excluded from the analysis.

(3) The event fusion using the competitive strategy
was subsequently applied to the detector
instance results and the event category with
the highest confidence was selected as final
result. Due to variable lengths of gestures in
our data set, the candidate buffer was config-
ured to release events only after 30 s.

Fig. 4 shows precision-recall (PR) graphs for a
user-specific evaluation of the movement event

128 O. Amft, G. Tröster

Table 2 Movement study: statistics of acquired and
annotated intake gestures

Number of participants 4
Annotated gestures 1020
Relevant event share (min) 97.44 (34.7%)
Total length of data set (h) 4.68
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fusion using the COMP method. The curves were
created by evaluating the performance at various
confidence thresholds for every class and for every
participant (A—D). Best performance is found
towards the top-right corner (high precision, high
recall).

Both graphs indicate a good performance for the
movement event recognition. The best result was
achieved for the category DK, while HD performed
less. Since the latter gesture is very simple it was
often confused with other movements towards the
head. In contrast, DK is more complex (fetching,
drinking). The second graph shows that all partici-
pants performed similarly well.

Table 3 summarises the results obtained from the
event detection and the event fusion. For the SP
gestures, we observed that participants bend them-
selves over the bowl, to avoid spilling and to mini-
mise the movements. This affected the detection
performance, since only lower arm features were
used in the evaluation.

Table 4 shows a confusion matrix of the event
recognition, obtained by comparing the recognition
results to the annotation for each sensor data sam-
ple. Complementary to the soft alignment counting
scheme used for the results in Table 3, this repre-

sentation shows the sample-accurate result. For all
categories and NULL a recognition rate of 75—82%
was achieved. This rate was computed as class-
relative accuracy (correctC/relevantC).

5. Chewing recognition

5.1. Study description

For the evaluation of chewing sounds we used an ear
microphone as indicated in Fig. 3. The miniature
microphone was build into a standard type ear pad
and kept at the ear canal by an ear hook, as it is used
for mobile phone headsets. In a single case study the
chewing sounds from different foods were recorded
at 16 bit, 44 kHz from a male individual with natural
dentition (aged 29 years).

The participant was seated conveniently on a
chair close to a table carrying the foods. He could
still hear normal-level conversation in the room and
was allowed to move and speak during the recording
sessions. The room was controlled for a constant
noise level of an office environment (the recording
in a sound studio was avoided). Recordings were
made in individual sessions on separate days. The
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Figure 4 Movement study: user-specific PR analysis (confidence threshold sweep) of the event fusion results using the
COMPmethod. Best performance is found towards the top-right corner (high precision, high recall). (a) Analysis for every
category (CL: cutlery, DK: drink, SP: spoon, HD: hand only). (b) Analysis for every study participant (A—D).

Table 3 Movement study: summary for the user-specific performance for the event detection and the fusion method
COMP

Metric Event detection Event fusion (COMP)

CL DK SP HD CL DK SP HD Total

Relevant 276 245 266 233 276 245 266 233 1020
Retrieved 347 247 284 717 278 221 263 518 1280
Recognised 223 210 208 201 220 199 204 198 821
Deletions 53 35 58 32 56 46 62 35 199
Insertions 124 37 76 516 58 22 59 320 459

Recall 0.81 0.86 0.78 0.86 0.80 0.81 0.77 0.85 0.80
Precision 0.64 0.85 0.73 0.28 0.79 0.90 0.78 0.38 0.64
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participant took bites from the foods as he wished.
All of the foods belonged to his normal diet. The
food products included for the recognition analysis
were:

(1) Dry-crisp food: potato chips, approximately
3 cm in diameter

(2) Wet-crisp foods: (1) mixed lettuce, containing
endive, sugar loaf, frisée, raddichio, chicory,
arugula, and (2) raw carrots.

(3) Soft foods: (1) cooked chicken meat and (2)
pasta.

The foods evaluated in this work, contained many
chewing cycles. Manual annotation of every chewing
cycle was performed in a post-recording step by
reviewing thewaveforms and listening to the sounds.
This procedure is accurate in identifying every chew-
ing cycle until the food bolus is swallowed, however,
it makes the recordings very expensive.

The recordings included chewing sounds from
further food products (bread and chocolate), as well
as environmental conversation and speaking.
Table 5 summarises the acquired data which was
inspected and annotated.

5.2. Evaluation results

The event recognition procedure was adapted to the
chewing domain in the following way:

(1) A time constant of 125 ms was used for segmen-
tation. This choice was made based on the
average duration of a chewing sound (as anno-
tated) of 350 ms or less, depending on the food
type.

(2) Initially, for each of the three food categories a
feature similarity instance was trained. Using
the microphone data, spectral features such as
band energy, auto-correlation and cepstral
coefficients in four sliced sections were com-
puted. We observed during the evaluation, that
the detector for soft foods worked poorly,
resulting in many insertion errors. This beha-
viour was attributed to the low signal to noise
ratio. We omitted this model in the further
evaluation to demonstrate the good perfor-
mance of the dry and wet food detectors.

(3) The event fusion using the competitive strategy
was subsequently applied to the detected chew-
ing cycles and the category with the highest
confidence was selected as final result. We ana-
lysed the COMP and LR methods for the fusion.

The low-amplitude chewing sounds from the soft
foods (meat and pasta) created a special problem
for the detector. While a high recall was achieved,
the detection was very sensitive to other sounds (as
seen in the low precision in Table 6). COMP and LR
fusion of the three detectors did not solve this
problem, because the number of soft-food inser-
tions was too high.

For every intake cycle all chews were annotated
until the food bolus was swallowed and the normal
mouth cleaning phase began. In this phase, chews
were hard to observe in the sound waveform. How-
ever, the algorithm was still able to detect them.
Fig. 5 visualises an example waveform including a
chewing sequence of potato chips, the cleanup and
a conversation phase. For this food the chewing
cycles can be seen very well in the sound waveform.
The vertical bars indicate the annotation. In the
lower plot, the detected chewing events are shown
as horizontal bars. As the diagrams shows, addi-
tional events were reported for the cleanup phase.
We exemplarily verified that these chews were
correctly retrieved.

Since the actually existing chews in the cleanup
phase could not be automatically verified, they
were counted as insertion errors. The impact can
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Table 4 Movement study: confusion matrix of the final user-specific evaluation result using COMP fusion (duration in
seconds and ratios)

Predicted category

NULL CL DK SP HD

Actual category
NULL 8869 (81%) 613 (6%) 233 (2%) 305 (3%) 982 (9%)
CL 452 (17%) 2130 (82%) 0 (0%) 0 (0%) 8 (0%)
DK 302 (20%) 1 (0%) 1182 (78%) 0 (0%) 34 (2%)
SP 237 (22%) 19 (2%) 0 (0%) 807 (75%) 10 (1%)
HD 103 (16%) 20 (3%) 0 (0%) 0 (0%) 541 (81%)

Table 5 Chewing study: statistics of acquired and
annotated chewing sounds

Number of participants 1
Annotated chewing cycles 1947
Relevant event share (min) 10.50 (21.7%)
Total length of data set (h) 0.81
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be seen in the PR performance analysis in Fig. 6 and
the summary in Table 6. For both food categories the
COMPand LR fusion methods return good results. We
concluded from the quantitative summary in Table 6
that LR removes slightly more insertion errors and
has less deletions.

Table 7 shows the confusion matrix derived by
applying the LR method. Using the same procedure
as presented for the movement confusion analysis,
class-relative recognition rates of 85— 87% were
achieved. This indicates a very good performance.
Especially, a low confusion rate of the dry and wet
categories was observed.

6. Swallowing recognition

6.1. Study description

Swallowing was analysed from surface EMG electro-
des and a microphone sensor. The sensor positioning
was equal for all participants. For some participants
the sensors were embedded in a collar. The collar
helped to quickly attach the sensors to the correct

Recognition of dietary activity events 131

Table 6 Chewing study: summary for the user-specific performance for the event recognition (three categories) and
the fusion methods (COMP and LR)

Metric Event detection Event fusion

Dry Wet Soft COMP LR

Dry Wet Total Dry Wet Total

Relevant 187 979 781 187 979 1166 187 979 1166
Retrieved 1327 2098 3483 416 1693 2109 416 1687 2103
Recognised 186 909 460 152 722 874 184 900 1084
Deletions 1 70 321 35 257 292 3 79 82
Insertions 1141 1189 3023 264 971 1235 232 787 1019

Recall 0.99 0.93 0.59 0.81 0.74 0.75 0.98 0.92 0.93
Precision 0.14 0.43 0.13 0.37 0.43 0.41 0.44 0.53 0.52

The fusion results were derived using the food categories ‘‘Dry’’ and ‘‘Wet’’ only.

Figure 5 Chewing study: example waveform of a chew-
ing sequence of potato chips, cleanup and conversation
phases, indicated by the shaded areas. Upper plot: sound
waveform. Lower plot: chewing cycle detection result
(the detector correctly identified chewing cycles in the
cleanup phase, that were not annotated. Please see the
related text for more details).

Figure 6 Chewing study: user-specific PR analysis (confidence threshold sweep) of the event fusion stage. Best
performance is found towards the top-right corner (high precision, high recall). (a) Analysis for the two food categories
(‘‘dry’’ and ‘‘wet’’). (b) Analysis for the two competitive fusion methods (COMP and LR).
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throat region. The location of the EMG was con-
stantly verified, however, the collar supported the
stable positioning at the infra-hyoid position very
well. The microphone was situated at the lower part
of the throat, below the larynx. EMG was recorded
at 24 bit, 2 kHz and bandpass filtered. Sound data
was recorded at 16 bit, 22 kHz. Fig. 3 and Table 1
summarise positioning and setup of the sensors and
the collar.

Six volunteers (4 male, 2 female, aged 20—30
years) without known swallowing abnormalities
were instructed to eat and drink different food
items: 5 and 15 ml of water, spoonfuls of yoghurt
and pieces of bread (approximately 2 cm3). The
individuals were seated conveniently on a chair in
front of a table carrying the foods. They were
allowed to move, chew and speak normally during
the recording sessions. The room was controlled for
a normal and constant noise level of an office envir-
onment. To account for physiologic variations, two
intake sessions were recorded on different days. The
participants were asked to swallow the food items in
one piece after chewing and manipulating the bolus
as usual. None of the participants expressed a dislike
for any of the included foods nor problems to swal-
low the selected bolus sizes. Table 8 summarises the
acquired data that was inspected and annotated.

6.2. Evaluation results

The event recognition procedure was adapted to the
chewing domain in the following way:

(1) A time constant of 250 ms was used for segmen-
tation.

(2) Feature similarity instances were trained using
the EMG and microphone data individually. The

foods were initially grouped regarding their
expected bolus size into small (5 ml water,
spoonfuls of yoghurt and pieces of bread) and
large (15 ml water). This approach was dropped,
since no clear discrimination of the two cate-
gories was found. In the following, we targeted
the detection without further classification. We
concluded from early tests that the EMG is
disturbed by different muscle activations, inde-
pendent from swallowing. The investigated
hyoid muscle is covered by several layers of
other muscle tissue. We concentrated on a sim-
ple activity detection using time domain fea-
tures such as sum, maximum and peaks of the
signal. For the sound data, spectral features
such as band energy, auto-correlation coeffi-
cients and signal energy were used. An initial
test of sliced features did not lead to an
improvement in recognition.

(3) The event fusion using a supportive strategy was
subsequently applied to the detected swallow-
ing events from EMG and sound data. We ana-
lysed the performance of AGREE and LR
methods.

For the AGREE fusion all participants reached a
high recall, indicating that the detection procedure
was able to retrievemany events. Fig. 7 presents the
corresponding PR analysis. The evaluation revealed
two groups: for participants (C and D) the detection
performance was higher than for the others. How-
ever, these participants did neither belong to the
same gender, nor were they recorded with the collar.
We observed that many other participants exhibited
either a high EMG response or sound, for C and D both
sensors provided a consistent event pattern. Conse-
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Table 7 Chewing study: confusion matrix of the final
user-specific evaluation result using LR fusion (duration
in seconds and ratios)

Predicted category

NULL Dry Wet

Actual category
NULL 2791 (86%) 100 (3%) 344 (11%)

Dry 12 (13%) 76 (87%) 0 (0%)
Wet 57 (15%) 3 (1%) 332 (85%)

Table 8 Swallowing study: statistics of acquired and
annotated swallowing activity

Number of participants 6
Annotated swallows 1265
Relevant event share (min) 44.58 (9.3%)
Total length of data set (h) 7.93

Figure 7 Swallowing study: PR analysis (confidence
threshold sweep) for each study participant (A—F) using
the agreement fusion (AGREE). Best performance is found
towards the top-right corner (high precision, high recall).
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quently, both EMG and sound-based detection more
often returned a correct result for them,whereas for
the remaining participants no reduction of the inser-
tion errorswas achieved. Further investigation of this
issue is required.

On average for all participants, the AGREE fusion
method improved the precision. LR did not improve
the individual spotting results. Table 9 summarises
the results obtained from the event detection
instances and the fusion methods.

The sample-accurate detection result was deter-
mined from the AGREE fusion result. The swallowing
recognition rate was 64%, for the NULL class 75%
were obtained. This indicates that the detection
provides a sensible result.

7. Discussion

7.1. Methodology

The continuous recognition of dietary activity
events from sensor data patterns was evaluated in
this work. Spotting activity events in continuous
sensor data is a vital prerequisite for the deploy-
ment of activity detection in general. While the
targeted activities can be described by a domain
expert, the embedding data (NULL class) cannot be
modelled due to the degrees of freedom in the
human activities and the cost for large training data
sets. Consequently, assumptions about the embed-
ding should be minimised to achieve an acceptable
performance generalisation. We believe that the
current work is a step towards resolving this chal-
lenge, although the presented method is not com-
pletely free from assumptions. The most critical
aspects in this respect include the selection of
features and event detection thresholds.

A combination of individual single-value features
for activity event slices were used for the detection.

With this approach the temporal structure of the
activities was transformed into a spatial represen-
tation. This is a useful concept to model activities
for the continuous search. In an earlier work, we
applied this principle to the recognition of gaming
gestures only [40]. For each domain, features were
selected from visual inspection of the sensor wave-
forms and from previous experience.We expect that
the recognition performance could be improved by a
thorough feature search and selection strategy. This
will also help to identify sensors that can be omitted
or adjusted in its placement.

We introduced the scheme of competitive and
supportive event fusion to construct a selective
refinement step for spotted events. By design of
the recognition system, the choice of the fusion
strategy is made. The supportive strategy was
applied for spottings from independent sensors,
describing the same event type. Using competitive
fusion, we selected the most appropriate event
from different event type spottings. Both strategies
could be combined to more complex selection
schemes. In related works, they have been used
to combine classifier outputs mostly [19].

An advantage of our method is its ability to work
on single event detection classes with individual
feature sets. For the detection of one event type,
typically a supportive fusion strategy can still be
used, by deploying different sensors. An application
for detecting single event types in dietary monitor-
ing was shown in the swallowing evaluation. Further
applications are the detection of drinking gestures
to assess fluid consumption or using a single food
model to assess one category of foods in dietary
intake.

In order to describe the complexity of the event
detection as a search problem, we listed the embed-
ding size of the data sets. This size was expressed as
ratio of total annotated event duration over the
total length of the data set. For the data sets in
this work, the ratio was 34.7% for the movement,
21.7% for chewing and 9.3% for the swallowing study.
The ratio indicates the severity of the search: the
smaller the ratio, the more difficult it is to achieve a
good recognition results due to the large and poten-
tially diverse embedding data. However, we believe
that the high embedding size in the swallowing study
is not the unique reason for its weak precision.
Section 7.4 discusses the swallowing study in detail.

We introduced a soft alignment measure to
account for the variability in alignment between
annotation and event detection. A boundary jitter
normalised by the annotated length of the event was
defined as threshold, below which the event is
counted as recognised. The larger the jitter, the
more mismatch in alignment is allowed and an event
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Table 9 Swallowing study: summary for the user-
specific performance for the event detection using
muscle activity (EMG), audio (SND), and the fusion
methods (LR and AGREE)

Metric Event detection Event fusion

EMG SND LR AGREE
EMG+SND EMG+SND

Relevant 1265 1265 1265 1265
Retrieved 6046 8093 8085 4345
Recognised 955 834 824 861
Deletions 310 431 441 404
Insertions 5091 7259 7261 3484

Recall 0.75 0.66 0.65 0.68
Precision 0.16 0.10 0.10 0.20
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reporting that may otherwise be accounted as inser-
tion/deletion will be accepted as correct. In its
extreme, the counting of correct events could be
made by simply checking if an overlap with the
annotation exist at all. For the targeted applications
in dietary monitoring an exact match is less critical
as long as the activity is captured at all. Therefore,
we selected a jitter value that is neither too opti-
mistic (by permitting large alignment errors) nor
pessimistic (being overly strict in the boundary
match). The comparison with sample-accurate con-
fusion matrices confirms that the soft alignment is a
sensible solution for event spotting performance
analyses. For a more detailed analysis of detection
errors, the error distribution diagrams [41] could be
used.

7.2. Movement recognition

Different gesture types were defined, that occur
frequently in European and American diets, to eval-
uate the recognition of food intake movements. The
results indicate that all types could be recognised
from lower arm motion, most of them with good
accuracy. To improve the recognition of certain
gestures, information from inertial sensors at the
subject’s back could be added. The proposed event
fusion method is a valuable addition to the feature
similarity search for movement detection. In a
related work of the authors, a two-stage approach
based on a similarity search and HMMs was used [21].
While the HMMs proved valuable for refining the
detection result in the second stage, they add a
high complexity in both, initial design and para-
meter estimation. In comparison, the performance
achieved with the event fusion approach in the
current work could match the recall, but performs
approximately 10% lower in precision than the HMMs
on the same data set. Further refinement of fea-
tures and segmentation could close this gap. More-
over, we presented a rigorous evaluation framework
using cross-validation in this work, that was not
previously available.

7.3. Chewing recognition

For the recognition of chewing sounds, novel
achievements on a chew-accurate detection were
presented. Using the recognition procedure, indivi-
dual chewing cycles were identified in two food
categories with good performance. This result was
achieved by considering the chew as a non-station-
ary event and grouping the foods with similar tex-
tures. In comparison to our earlier investigation
[29], the current recognition rates are approxi-
mately 15% higher and a majority vote over multiple

chewing cycles could be avoided. However, for low-
amplitude chewing sounds, found in soft foods such
as cooked pasta or meat, a low detection perfor-
mance persists with the current approach. This
effect was attributed to the low signal to noise ratio
of these sounds. Moreover, the chewing sequence is
not consistent over the entire intake cycle as
assumed in the current approach [42]. This is
observed as a variability in the detection confi-
dences and hinders fusion methods such as LR to
achieve a higher performance. Consequently, food
models should include the sequence information
more carefully.

7.4. Swallowing recognition

The automatic detection of swallowing using EMG
and sound information was evaluated. We found
that swallows can be retrieved from continuous data
at high recall rates using both sensing sources. By
observing the final detection, we found that the
method is disturbed by neck movements and cough-
ing. In comparison to our previous work [38], we
presented results from additional fusion methods
(AGREE, LR) and an extended study. The AGREE
fusion was able to remove a large share of insertion
errors. The current results confirm the previous
findings: while the detection works to some extend
in controlled environments, it retrieved many false
positives in our evaluation. These errors could not
be completely removed by the currently applied
fusion techniques.

The collar worked well to standardise and main-
tain the sensor positioning. No differences in the
spotting results were observed for the collar-based
swallowing data. For a subgroup of two participants
an improved performance was achieved. The differ-
ence could not be explained by the available infor-
mation. A larger study with more participants could
reveal, whether the subgroups persist. Further
investigations are required to analyse options for
food bolus categorisation and to increase the algo-
rithm precision.

8. Conclusion

We presented novel approaches to monitor dietary
activities from body-worn sensors. Three sensing
domains were analysed, that are directly linked
to the sequence of dietary activities: intake move-
ments, chewing, and swallowing. We presented
evaluation results from studies in each domain using
an event recognition procedure, that supports the
detection and identification of specific activities in
continuous sensor data.

134 O. Amft, G. Tröster
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The recognition of natural movements, such as
for dietary intake, is a challenging task, since it is
strongly related to personal habits. The detection
procedure in combination with the simple compar-
ison fusion yielded good recognition results for dif-
ferent intake types. This is a valuable result for the
intended application, since the intake movements
help to categorise the consumed foods. Moreover,
the movement recognition could be used indepen-
dently. For example, the detection of drinking
movements can be used to monitor fluid consump-
tion and avoid dehydration.

Chewing is a very important part in the intake
process. In this work a successful continuous recog-
nition of two food types was achieved. This is a vital
result for a detailed analysis of food chewing. Based
on the presented approach, additional models can
be derived that reflect the mechanical properties of
foods. Besides the identification of consumed foods,
the chewing recognition permits the assessment of
dietary parameters, such as chews per food and
chewing speed. Both parameters can be used as
indications for too fast, or stress eating.

Swallowing concludes the intake cycle. The swal-
lowing frequency depends on the food category,
where foods containing fluid compartments require
elevated swallowing rates. The current detection
method, using sound and muscle activity at the
throat, still incurs many insertion errors. However,
it does provides an indication for swallowing events.
We plan to use this information in combination with
the previous sensing domains. Further works will
address different fusion strategies and additional
sensors.

The three domains provide a comprehensive pic-
ture of dietary activities and a broad amount of
information, that is vital for a long-term dietary
coaching and health management. This includes the
food type as well as intake timing and the overall
meal schedule.

We have shown in this work, how our recognition
procedure to spot sporadic activity events can be
slightly adapted to fulfil the requirements of very
different sensor modalities and activities. We
believe that the procedure is a helpful tool for
automatic dietary monitoring and similar applica-
tions in continuous activity recognition.
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