
Distributed
 Computing

HS 2012 Prof. R. Wattenhofer / C. Decker

Distributed Systems Part II
Exercise Sheet 10

1 Spin Locks

A read-write lock is a lock that allows either multiple processes to read some resource, or one
process to write some resource.

a) Write a simple read-write lock using only spinning, one shared integer and the CAS op-
eration. Do not use local variables (it is ok to have variable within a method, but not
outside).

b) What is the problem with your lock?

Hint: what happens if a lot of processes access the lock repeatedly?

We now build a queue lock using only spinning, one shared integer, one local integer per
process and the CAS operation.

c) To prepare for this task, answer the following questions:

i) Head and tail of the queue have to be stored in the shared integer. What is the “head”
and the “tail”, and how can they be stored in one integer?

Hint: could the head be a process id? Or is there a much easier solution?

ii) How could a process add itself to the queue?

Hint: you need the local integer of the process for this operation.

iii) When has a process acquired the lock?

iv) How does a process release the lock?

d) Write down the lock using pseudo-code. Do not forget to initialize all variables.

2 ALock2

Have a look at the source code below. It is a modified version of the ALock (slides 3/46 ff).

pub l i c c l a s s ALock2 implements Lock {
i n t [] f l a g s = { true , true , f a l s e , . . . , f a l s e } ;
AtomicInteger next = new AtomicInteger (0) ;
ThreadLocal<Integer> mySlot ;

pub l i c void lock () {
mySlot = next . getAndIncrement () ;
whi l e (! f l a g s [mySlot % n]) {}
f l a g s [mySlot % n] = f a l s e ;

}

pub l i c void unlock () {
f l a g s [(mySlot+2) % n] = true ;

}
}

a) What was the intention of the author of “ALock2”?

b) Will ALock2 work properly? Why (not)?

c) Give an idea how to repair ALock2.

Hint: don’t bother about performance.

3 MCS Queue Lock

See slides 3/65 ff.

a) A developer suggests to add an abort flag to each node: if a process no longer wants to
wait it sets this abort flag to true. If a process unlocks the lock, it may see the abort flag
of the next node, jump over the aborted node, and check the successor’s successor node.
Modify the basic algorithm to support aborts.

Optional: sketch a proof for your answer.

Hint: Be aware of race-conditions!

b) Assuming many processes may abort concurrently, does your answer from a) still work?
Explain why. If it does not work: modify your algorithm to allow concurrent aborts.

Optional: sketch a proof for your answer.

c) Instead of a locked and an aborted flag one could use an integer, and modify the integer
with the CAS operation. What do you think about this idea? How is the algorithm
affected? How is performance affected?

d) The CLH lock (slide 3/56) is basically the same as an MCS lock. Conceptually the only
difference is, that a process spins on the locked field of the predecessor node, not on its own
node. What could be an advantage of CLH over MCS and what could be a disadvantage?

2

