
Distributed
 Computing

HS 2013 Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 1

1 An Asynchronous Riddle

a) The crucial idea is to select one prisoner as a leader. The leader will turn the switch off,
whenever he enters the room and the switch is on. All other prisoner will turn the switch
on exactly once. So a prisoner who enters the room looks at the switch. If the switch is off
and the prisoner has never turned it on before, he will turn the switch on. If the switch is
already on or the prisoner already did turn the switch on during an earlier visit, he leaves
the switch as it was. The leader counts how many times he turns the switch off. If the leader
counted 99 times he can declare ”We all visited the switch room at least once”. Because he
knows, that each of the other 99 prisoners has turned the switch on and he himself has been
in the room as well.

b) If the initial position of the switch is unknown, the above protocol cannot be used, since the
leader may miscount by one. However, this can easily be fixed. If each prisoner turns the
switch on exactly twice, the leader can be sure that everyone visited the room after counting
up to 2 · 99 = 198 turns.

2 Communication Models

Some ideas are:

Delay There is no delay with shared memory, if one process writes the other processes can read
immediately. With messsage passing delay can happen (not necessarily in every model),
different messages may even have different delays.

Overriding With shared memory if a process writes to a register, another process may override
the value before anyone could read the register. In message passing this cannot happen. On
the other hand messages may be lost, or the inbox buffer of a process may overflow, leading
to similar results.

Consistency With message passing several message may be sent at the same time, and the order
of arriving message may be messed up. With shared memory the value of a register is always
the value that was written last.

3 Communication without Computers

Also remember the discussions during the exercise session as this list does not consider all aspects.

Postcard Clearly message passing. Messages may be lost, the order may be inconsistent and the
inbox may overflow.

Two people speaking Shared memory: one can speak (=write), the other can listen (=read).
Both speaking does not work, both listening neither.

Skype This could be modeled with message passing or with shared memory.

Message passing: the text to send is a message, it cannot be lost and their order is
consistent. However, it would be stored on the sender‘s site until the receiver is online.

Shared memory: there could also be an “inbox” register for each participant. The
sender writes into the others inbox register. The receiver clears its register once it has seen
the new text, the sender could then write into the register again.

Many people speaking Message passing: everyone is connected with everyone. If speaking
message are sent not only to the intended listener(s) but also randomly to other people. If
someone speaks loud, more messages are sent. The inbox of any person has limited size;
once it is full, arriving messages begin to override older messages. This models the fact that
one cannot listen to many speakers at the same time.

4 Consensus with an n-Register

We require 6 registers. We call the first three registers R0, R1 and R2. To the other three registers
we give the names R{0,1}, R{0,2} and R{1,2}. The goal is to find the fastest process and take its
input value as decision. In words, the protocol works as follows:

In a single step process i writes its id into Ri and into R{i,j} for i 6= j.
It then checks for all i 6= j whether process i was faster than process j:

If R{i,j} = −1 then neither i nor j have yet done anything.
Otherwise, if Ri = −1 then process j must be faster than i.
Otherwise, if Rj = −1 then process i must be faster than j.
Otherwise R{i,j} holds the id of the process which was slower.

With all this information, a process can calculate which process must have been the fastest.

Solution in pseudo code:

i n i t i a l i z e (){

// R are the shared r e g i s t e r s
R [] = [−1 , −1, −1, −1, −1, −1];
// the input , an array o f l ength 3
input [] = [random () , random () , random ()] ;

}

dec ide (){

id = t h i s . getThreadId () ;
// the i d e n t i f i e r s o f the other p r o c e s s e s
o the r s = [{0 ,1 ,2} without { id }] ;

// a tomica l l y wr i t e three r e g i s t e r s
wr i t e (R[id] = id , R[id , o the r s [0]] = id , R[id , o the r s [1]] = id) ;

2

// pa i rw i s e comparison o f process−speed
f a s t e s t 0 1 = f a s t e r (0 , 1 , id) ;
f a s t e s t 0 2 = f a s t e r (0 , 2 , id) ;
f a s t e s t 1 2 = f a s t e r (1 , 2 , id) ;

// f i n d the proce s s which i s f a s t e r than a l l the o the r s
s co r e [] = [0 , 0 , 0] ;
s c o r e [f a s t e s t 0 1] = sco r e [f a s t e s t 0 1]+1;
s co r e [f a s t e s t 0 2] = sco r e [f a s t e s t 0 2]+1;
s co r e [f a s t e s t 1 2] = sco r e [f a s t e s t 1 2]+1;
winner = max(s co r e) ;

i f (count [0] == winner)
d e c i s i o n = input [0]

e l s e i f (count [1] == winner)
d e c i s i o n = input [1] ;

e l s e // count [2] == winner
d e c i s i o n = input [2] ;

}

f a s t e r (i , j , id){

somethingHappened = true ;
whi l e (somethingHappened){

// We need to assure , that we read a c o n s i s t e n t memory s t a t e
// This i s s t i l l wait−f r e e , t h i s loop i s t r ave r s ed at most 3 t imes
r i j = R[i , j] ; r i= R[i] ; r j = R[j] ;
r i j S e cond = R[i , j] ; r iSecond = R[i] ; r jSecond = R[j] ;
i f (r i j == r i j S e cond && r i == riSecond && r j == rjSecond) {

somethingHappened = f a l s e ;
}

}
i f (r i j == −1){ // n e i t h e r o f i or j yet s tar ted , I am f a s t e r than both

return id ;
}
e l s e {

i f (r i == −1){
// i did not yet s ta r t , hence j must be f a s t e r
re turn j ;
}
i f (r j == −1){

// j did not yet s ta r t , hence i must be f a s t e r
re turn i ;

}
i f (r i j == i){

// value wr i t t en by j was overr idden by i
re turn j ;

}
e l s e { // r j == j

return i ;
}

}
}

3

5 Consensus for two Processes

The protocol works and achieves consensus. Let’s have a closer look at the code. The loop is
never executed more than twice and we can easily get rid of it, this also eliminates the variable
decisionMade. The simplified version looks like this:

// making the d e c i s i o n
dec ide (){

// the id o f t h i s process , 0 or 1
id = t h i s . getThreadId () ;

////////
// a∗
////////

value = s ;
i f (va lue == ’? ’){

s = input [id] ;
}
value = s ;

////////
// b∗
////////

i f (va lue != input [id]){

////////
// c1∗
////////

d e c i s i o n = value ;
}
e l s e {

////////
// c2∗
////////

i f (i . fetchAndInc () == 1){
d e c i s i o n = input [1− id] ;

}
e l s e {

d e c i s i o n = input [id] ;
}

}
}

4

All processes will pass a*, b*, and either c1* or c2*. If we look at a* and input[0] == input[1],
then the protocol trivially reaches consensus. For us only the cases where the inputs differ are
interesting. Out of symmetry it is enough to show that the protocol succeeds if input[0] == 0

and input[1] == 1. When reaching b* either both processes have read the same values or they
did not.

• In the case of value0 == value1 one process will enter the branch with c1*, the other the
branch with c2*. The one passing through c1* will change its decision, the other passing
through c2* will not hence both processes end with the same decision.

• In the case of value0 != value1 both processes have read their own input. In this case
both processes pass c2*. The second one will change its decision because i.fetchAndInc()

returns 1, the other one will not, hence both processes end with the same decision.

• The case where value0 != value1 and both processes have valuei != input[i] never hap-
pens. We prove this with an execution tree for the code between a* and b*.

T0 : value = s

T0 : s = input0

T0 : value = s

T1 : value = s

T1 : value = s

T0 : value = s

T1 : value = s

T0 : s = input0

T0 : value = s

T1 : s = input1

T1 : value = s

T1 : s = input1

T0 : value = s

T1 : value = s

T1 : value = s

T0 : value = s

input0 = 0
input1 = 1

symmetric

symmetric

value0 = 0
value1 = 0

value0 = 0
value1 = 0

value0 = 0
value1 = 1

value0 = 1
value1 = 1

value0 = 1
value1 = 1

Figure 1: Execution tree for the code between a* and b*.

1

Figure 1: Execution tree for the code between a* and b*.

5

