
Distributed
 Computing

HS 2013 Prof. R. Wattenhofer

Distributed Systems Part II
Exercise Sheet 4

1 Sequential Consistency: Warm Up

In the following, we consider executions of operations on a single non-replicated memory cell.
We assume that there are only two operations:

• v = read(): Reads the value currently stored in our memory cell and returns it in v.

• write(v): Writes the value v to the memory cell. The write is non-blocking, i.e. it does
not wait for the value to be written to the memory, but returns to the client immediately
after invocation.

Moreover, we assume that the values written by different invocations of write() are all different
and unique.

a) Let’s assume there is a single client A. Draw an execution E with two operations (both
invoked by A) that is not sequentially consistent.

b) Add a client B to E that invokes a single operation which makes the resulting execution
E′ sequentially consistent.

c) Add another operation invoked by client B to E′ such that the resulting execution E′′ again
becomes not sequentially consistent. Provide a formal proof that the resulting execution
is not sequentially consistent.

2 Sequential Consistency with 3 Clients

We make the same basic assumptions as in the previous exercise: single non-replicated memory
cell, the two operations read() and write() (as above), all writes write unique values.

Definition: Execution EX is the execution that results after removing client X, together with
all the operations invoked by X, from execution E. We thereby allow return values seen by
read() operations to differ in E and EX .

Draw an execution E with 3 clients (A, B, and C) that fulfills the following requirements:

• E is not sequentially consistent.

• EA, EB , and EC are all sequentially consistent.

3 Three Phase Commit

Three phase commit allows multiple processes to commit or abort a transaction simultaneously.
In this task, you have to think about error recovery for 3PC. We assume that processes can crash
any time but do not recover and there are no Byzantine processes. The network is asynchronous,
messages are neither lost nor reordered. A process crashing during a broadcast may send its
message to a subset of receivers. A process broadcasting requests can already receive replies
even if not all processes have yet received the request.
Processes are asked to make the final step together, this is called non-blocking property:

NB: if any operational process is uncertain, then no process can decide to commit.
Remember, 3PC runs in 6 steps:

1. The coordinator sends VOTE to all participants.

2. Participants answer with YES or NO.

3. The coordinator sends ABORT or PREPARE.

4. Participants send ACK or abort.

5. The coordinator sends COMMIT.

6. Participants commit.

a) For five of these steps, processes have to wait before they can execute them. Write down in
which steps which processes have to wait for what messages.

b) If a message does not arrive because its sender has crashed, the waiting process times out. For
each of the five steps where processes wait: how should the processes react to a timeout?
Make sure NB is not violated. Hint: Can they safely abort or do they have to commit?
Must they elect a new coordinator?

c) (optional) Open question for bored people: Assuming crashed processes recover and can
remember their last actions. Give a sequence of events where 3PC blocks (meaning: where
3PC gets in a state in which it is impossible to make a decision). Note: if no decision has
been made yet, then a newly elected coordinator may choose either to commit or to abort.
Once the protocol started it cannot be restarted.

2

