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1 Network Calculus

Recall that α fulfills the arrival curve property if

∀t ∀s : R(t)−R(s) ≤ α(t− s) ,

and β is a service curve if
∀t ∃s : R∗(t)−R(s) ≥ β(t− s) .

a) If R ≤ R⊗ α, then by definition for all t:

R(t) ≤ (R⊗ α)(t) = inf
u
{R(t− u) + α(u)}.

As this inequality holds for the infimum over all u, it will also hold for any u, especially
also for u = t− s with arbitrary s. With this, we get

R(t) ≤ R (t− (t− s)) + α(t− s)
=⇒ R(t)−R(s) ≤ α(t− s),

which is what we had to show for the first property: The inequality holds for all s and t.

b) Similarly, with the definitions from the lecture and the exercise sheet we get for all t

R∗(t) ≥ (R⊗ β)(t) = inf
u
{R(t− u) + β(u)}.

Let u0 be the u realizing the infimum, and let s := t− u0, i.e. u0 = t− s. Replacing u by
u0 and removing the infimum yields

R∗(t) ≥ R (t− (t− s)) + β(t− s)
=⇒ R∗(t)−R(s) ≥ β(t− s).

Thus, for all t there exists some s := t− u0 fulfilling the inequality, which is exactly what
we had to show.

2 Power-Down Mechanisms

As mentioned in the hint, we only focus on a single idle period because if we know that our
algorithm is c-competitive for any idle period, we also know that it is c-competitive for the
complete busy sequence.

a) Analogously to the 2-competitive ski-rental online algorithm, we consider an algorithm Alg
that powers down after D time units. To see that Alg is 2-competitive, we distinguish
two cases for the length of the current idle period T :



• T < D: The energy consumed by both algorithms is cAlg = cOpt = T , hence the
competitive ratio is c = T/T = 1.

• T ≥ D: We have cAlg = D+D since Alg waits D time units and then powers-down
and cOpt = D because Opt powers down immediately. Hence we get

c =
2D

D
= 2 .

b) Let Alg be any deterministic power down algorithm. Then the time tAlg after which
it powers down in an idle period is known in advance. The “worst” idle period ends
immediately after Alg has powered down, that is we have T = tAlg + ε. Again, we
distinguish two cases with respect to the time tAlg when Alg powers down.

• tAlg < D: We have cAlg = tAlg +D and cOpt = tAlg + ε, hence

c =
tAlg +D

tAlg + ε
= 1 +

D − ε
tAlg + ε

> 2 for ε→ 0

since tAlg < D.

• tAlg ≥ D: We have cAlg = tAlg +D again and cOpt = D, hence

c =
tAlg +D

D
= 1 +

tAlg

D
≥ 2 for ε→ 0

since tAlg ≥ D.

Hence, Alg cannot be better than 2-competitive.

c) Let Alg be a randomised algorithm that powers down at time 2
3D with probability 1

2 and
at time D otherwise. Let CAlg be a random variable for the cost incurred by the algorithm.
We again consider an arbitrary idle period of length T . We distinguish three cases:

• T < 2
3D: The energy consumption of both algorithms is cAlg = cOpt = T , hence

c = T/T = 1 < 2.

• 2
3D ≤ T < D: The expected energy consumption of Alg is

E[CAlg] =
1
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and further cOpt = T . Hence we get

c =
5
6D + 1

2T

T
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1
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• T ≥ D: We have for the expected energy consumption of Alg

E[CAlg] =
1

2
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and further cOpt = D. Hence we get

c =
11
6 D

D
=

11

6
< 2 .

Hence, the randomised algorithm is 11
6 -competitive which is better than any deterministic

algorithm.

Note: This result, however, is not optimal yet. The best randomised algorithm uses a con-
tinuous probability distribution for the shutdown time and thereby achieves a competitive
ratio of e/(e− 1) ≈ 1.58.
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