
Distributed
 Computing

HS 2014 Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 2

1 Communication without Computers

Also remember the discussions during the exercise session as this list does not consider all aspects.

Postcard Clearly message passing. Messages may be lost, the order may be inconsistent and
the inbox may overflow.

Two people speaking Shared memory: one can speak (=write), the other can listen (=read).
Both speaking does not work, both listening neither.

Skype This could be modeled with message passing or with shared memory.

Message passing: the text to send is a message, it cannot be lost and their order is
consistent. However, it would be stored on the sender‘s site until the receiver is online.

Shared memory: there could also be an “inbox” register for each participant. The
sender writes into the others inbox register. The receiver clears its register once it has seen
the new text, the sender could then write into the register again.

Many people speaking Message passing: everyone is connected with everyone. If speaking
message are sent not only to the intended listener(s) but also randomly to other people. If
someone speaks loud, more messages are sent. The inbox of any person has limited size;
once it is full, arriving messages begin to override older messages. This models the fact
that one cannot listen to many speakers at the same time.

2 Consensus with the Aid of a Wall

a) The Algorithm looks like this:

Choose the color of the place you want to meet.
Go to the Painter and instruct him to paint the wall in the corresponding color
Look at the “before and after” picture which you get from the painter.
if {the wall was white before} {

the meeting place is the one you have chosen
} else {

the meeting place is the place according to the “before color”
}

b) No. What Alice and Bob can do, is in a sense the same as the RMW-primitive swap. As
swap is overwriting its consensus number is two. So there is no way to ensure that more
than two persons can meet at the same place.

c) If the wall is in front of the painters’ shop it is basically the same as the RMW-primitive
Compare and Swap (because you would see if the painter is already painting, or if someone
is in the shop and instructing the painter to paint) which has consensus number ∞. This
means, that infinitely many persons could meet. The Algorithm would look like this:

Choose the color of the place you want to meet.
Go to the Painter
Look at the wall in front of the painters’ shop
if {the wall is white } {

enter the shop and instruct the painter to paint the wall in your color
the meeting place is the one you have chosen
} else {

the meeting place is the place according to the color of the wall
}

3 Consensus through “Fetch and Multiply”

I would tell him, that this is not possible. The method “Fetch and Multiply” he uses is commu-
tative, therefore the consensus number of his algorithm cannot exceed two.

2

4 Consensus for two Processes

The protocol works and achieves consensus. Let’s have a closer look at the code. The loop is
never executed more than twice and we can easily get rid of it, this also eliminates the variable
decisionMade. The simplified version looks like this:

// making the d e c i s i o n
dec ide (){

// the id o f t h i s process , 0 or 1
id = t h i s . getThreadId () ;

////////
// a∗
////////

value = s ;
i f (va lue == ’? ’){

s = input [id] ;
}
value = s ;

////////
// b∗
////////

i f (va lue != input [id]){

////////
// c1∗
////////

d e c i s i o n = value ;
}
e l s e {

////////
// c2∗
////////

i f (i . fetchAndInc () == 1){
d e c i s i o n = input [1− id] ;

}
e l s e {

d e c i s i o n = input [id] ;
}

}
}

3

All processes will pass a*, b*, and either c1* or c2*. If we look at a* and input[0] ==

input[1], then the protocol trivially reaches consensus. For us only the cases where the inputs
differ are interesting. Out of symmetry it is enough to show that the protocol succeeds if
input[0] == 0 and input[1] == 1. When reaching b* either both processes have read the
same values or they did not.

• In the case of value0 == value1 one process will enter the branch with c1*, the other the
branch with c2*. The one passing through c1* will change its decision, the other passing
through c2* will not hence both processes end with the same decision.

• In the case of value0 != value1 both processes have read their own input. In this case
both processes pass c2*. The second one will change its decision because i.fetchAndInc()
returns 1, the other one will not, hence both processes end with the same decision.

• The case where value0 != value1 and both processes have valuei != input[i] never
happens. We prove this with an execution tree for the code between a* and b*.

T0 : value = s

T0 : s = input0

T0 : value = s

T1 : value = s

T1 : value = s

T0 : value = s

T1 : value = s

T0 : s = input0

T0 : value = s

T1 : s = input1

T1 : value = s

T1 : s = input1

T0 : value = s

T1 : value = s

T1 : value = s

T0 : value = s

input0 = 0
input1 = 1

symmetric

symmetric

value0 = 0
value1 = 0

value0 = 0
value1 = 0

value0 = 0
value1 = 1

value0 = 1
value1 = 1

value0 = 1
value1 = 1

Figure 1: Execution tree for the code between a* and b*.

1

Figure 1: Execution tree for the code between a* and b*.

4

