Distributed Systems Part II

Exercise Sheet 11

Quiz

\qquad

1 Clock Synchronization

a) Prove or disprove the following statement: If the average local skew is smaller than x, then so is the average global skew.
b) Prove or disprove the following statement: If the average global skew is smaller than x, then so is the average local skew.

Basic

\qquad

2 Time Difference of Arrival

Assume you are located on a line $y=-x+8 k m$ in the two dimensional plane. You also receive the GPS signals from two satellites A and B. Both signals were transmitted exactly at the same time t by both satellites. You receive the signal from satellite $A 3.3 \mu s$ before the signal of satellite B. You also know that satellite A is located at $p^{A}=(6 \mathrm{~km}, 6 \mathrm{~km})$ and satellite B is located at $p^{B}=(2 k m, 1 k m)$, i.e. in the plane.
a) Formulate the least squares problem to find your location.
b) Are you more likely to be at position $(2 \mathrm{~km}, 6 \mathrm{~km})$ or ($4 \mathrm{~km}, 4 \mathrm{~km}$) ?
c) What is the time when receiving the signal from satellite B ?

Advanced

3 Clock Synchronization: Spanning Tree

Common clock synchronization algorithms (e.g. TPSN, FTSP) rely on a spanning tree to perform clock synchronization. In the TPSN protocol sender-receiver synchronization is performed along the edges of the tree while FTSP is flooding synchronization messages along a tree rooted at the reference node. Finding a good spanning tree for clock synchronization is not trivial. Nodes which are neighbors in the network graph should also be close-by in the resulting tree. Show that in a grid of $n=m \times m$ nodes there exists at least a pair of nodes with a stretch of at least m. The stretch is defined as the hop distance in the tree divided by the distance in the grid.

