
Distributed
 Computing

HS 2016 Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 1

1 An Asynchronous Riddle

a) The crucial idea is to select one prisoner as a leader. The leader will turn the switch off,
whenever he enters the room and the switch is on. All other prisoner will turn the switch
on exactly once. So a prisoner who enters the room looks at the switch. If the switch is off
and the prisoner has never turned it on before, he will turn the switch on. If the switch is
already on or the prisoner already did turn the switch on during an earlier visit, he leaves
the switch as it was. The leader counts how many times he turns the switch off. If the leader
counted 99 times he can declare ”We all visited the switch room at least once”. Because he
knows, that each of the other 99 prisoners has turned the switch on and he himself has been
in the room as well.

b) If the initial position of the switch is unknown, the above protocol cannot be used, since the
leader may miscount by one. However, this can easily be fixed. If each prisoner turns the
switch on exactly twice, the leader can be sure that everyone visited the room after counting
up to 2 · 99 = 198 turns.

2 Paxos Timeline

a) The timeline consists of five concurrent nodes, and the time progresses from top to bottom.
In Figure 1 you can see how both clients propose their values at first, but only the value of
client A gets accepted. Notice that A has a 1–second–timout and B has a 2–second–timeout,
and both clients increase their internal ticket counter t by 2 every time they ask for a ticket.
The protocol shows the following:

• T0 + 0.0: A sends a ask(1). As N1 and N2 have never stored a value, they reply with
ok(0, ⊥).

• T0 + 0.5: B sends a ask(2). As N2 and N3 have never stored a value, they reply with
ok(0, ⊥).

• T0 + 1.0: A sends a propose(1,22). This is acknowledged by N1 with success because
its Tmax = 1. N2 does not reply as its value Tmax = 2.

• T0 + 2.0: A sends a ask(3). As N2 has never stored a value it replies with ok(0, ⊥).
N1 returns the latest stored value: ok(1,22).

• T0 + 2.5: B sends a propose(2,33). This is acknowledged by N3 with success. N2

does not reply as its value Tmax = 3.

• T0 + 3.0: A sends a propose(3,22). This is acknowledged by N1 and N2 with success.

• T0 + 4.0: A sends a execute(22), since A now knows that a majority of the servers
stores 22. A returns and terminates.

• T0 + 4.5: B sends a ask(4). N3 sends back its latest accepted value ok(2,33). N2 also
sends back its latest accepted value ok(3,22).

• T0 + 6.5: B sends a propose(4,22) (B took the newest value (with the highest ticket
number)). Both clients N2 and N3 reply with an success. All servers have accepted
the same value.

• T0 + 7.5: B sends a execute(22), since B knows that a majority of the servers store
22 now. B returns and terminates. Now both clients and all servers store the same
command.

A BN1 N2 N3

ask(4)

ok(3, a)

ok(2, b)

T0

T0+1

T0+2

T0+3

T0+4

T0+2.5

T0+6.5

T0+4.5

T0+8.5

T0+0.5

ask(3)

ask(2)

ok(0, ⊥)

ok(0, ⊥)

propose(1, a)

success

ask(1)

ok(0, ⊥)

ok(1, a)

propose(3, a)

success

execute(22)

propose(2, b)

success

propose(4,a)

success

execute(a)

1

2

3

1

2

reject: 1 < 2

3

reject: 2 < 3

change
commaned
to a

4 4

(1,a)

(3,a) (3,a)

(2,b)

Figure 1: The timeline of the two clients running the given paxos-proposer-program with different
timeout values. The values Tmax and the tuples (Tstore, C) per server are denoted next to each
server’s line whenever they change.

2

b) A possible worst-case scenario is when all clients start their attempt to execute a command
(approximately) at the same time, use the same timeout and the same initial ticket number.

In that case it can happen that two clients always invalidate each others tickets, and no
clients ever succeeds with finding a majority for its proposal messages.

Remark: Of course there can be a lucky schedule, where one client succeeds: For example,
if all of its messages ask(t) are slow, and then all of its propose(t,c) are very fast and
immediately get accepted. However, the probability that such an event occurs is rather
small, and decreases with the number of servers involved.

3 Improving Paxos

a) Different initial ticket numbers might not be beneficial at all. Let H be the client with the
highest initial ticket number. Assume that H asks for a ticket h, and then crashes. In that
case, all other clients receive nack(h) and will try ticket h+ 1 in the next round. Hence the
ticket numbers of all clients will immediately be very close to each other again.

Remark: Different initial ticket numbers can lead to problems even if no machine crashes:
For example, it is likely that the client with the highest initial ticket number will always
execute its command, and others will experience starvation. In such a system, all users
which are using a client with a low initial ticket number will rarely see any progress, and
therefore the system as a whole becomes rather useless.

b) We can use an exponential backoff approach, as it is used for example in 802.11 wireless
networks.

We add a variable b (not to be confused with the command that B is supposed to send
in exercise 2a) to our code, and possibly a limit bmax. Every time an attempt to execute
fails, the client doubles the value of b, until b = bmax. At the start of every new execution,
the client waits for w seconds, where w is chosen uniformly at random from [0, b]. After w
seconds, it sends the next ask message and continues as before.

The modified algorithm is shown below. Changes are on Lines 1-4, 8 and 18. Note that
Lines 2-4 are required for that start, when b = 0. (Without those lines, b = 2b would not
increase the backoff time.)

Analysis

Assume that the first call of suggestValue is with a backoff time b = 0. Hence, if there is
only a single client trying to execute a command, it will be immediately executed, i.e., there
is no disadvantage by applying the backoff approach.

Assume that multiple clients try to execute a command. Recall that the time required for
a successful run of suggestValue is 2δ. Hence, as soon as b > 2δ, the probability that two
clients interfere with each other diminishes rapidly.

3

Algorithm 1 Paxos proposer algorithm with timeouts and backoff

/* Execute a command on the Paxos servers.
*
* N,N ′: The Paxos servers to contact.
* c: The command to exexcute.
* δ: The timeout between multiple attempts.
* t: The first ticket number to try.
* b: The backoff time to wait.
*
* Returns: c′, the command that was executed on the servers. Note that c′ might be
* another command than c, if another client already successfully executed a command.
*/
suggestValue(Node N , Node N ′, command c, Timeout δ, TicketNumber t, BackoffTime b) {

1: Wait for rand(0,b) seconds

2: if b = 0 then
3: b = bmin / Set b to a value larger than 0, such that the doubling can start
4: end if

Phase 1 .

5: Ask N,N ′ for ticket t

Phase 2 .

6: Wait for δ seconds

7: if within these δ seconds, either N or N ′ has not replied with ok then
8: return suggestValue(N , N ′, c, δ, t+ 2, min(2b,bmax))
9: else

10: Pick (Tstore, C) with largest Tstore
11: if Tstore > 0 then
12: c = C
13: end if
14: Send propose(t, c) to N,N ′

15: end if

Phase 3 .

16: Wait for δ seconds

17: if within these δ seconds, either N or N ′ has not replied with success then
18: return suggestValue(N , N ′, c, δ, t+ 2, min(2b,bmax))
19: else
20: Send execute(c) to every server
21: return c
22: end if

4

