
Distributed
 Computing

HS 2016 Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 2

1 Consensus with Edge Failures

a) f = n − 1. Remove all edges from a node – this node will not receive any messages and
cannot decide.

Proof why n− 2 is too small to prevent consensus:

Note that if f < n − 1 the remaining network is always connected. To prove that, assume
by contradiction, that you can split the network into two partitions by only removing n− 2
many edges.

In that case there are two groups of nodes K and L which do not have a remaining edge
between them: one containing k many nodes, and one containing l many nodes. Note that
k ≥ 1, l ≥ 1 and k + l = n.

K
L

Figure 1: n = 6 nodes partitioned into two groups K and L. Since they should be disconnected,
all edges between the two sets have to fail. (Edges within the groups are not drawn to avoid
cluttering up the drawing.)

Since the network is initially fully connected, there are initially k · l many edges between the
two groups. As we assumed that the two groups are disconnected, all of these edges have
failed, and for that k · l ≤ n− 2.

From k + l = n follows k = n− l. Plugging that into the inequality we know that

k · l = (n− l) · l = n · l − l2 ≤ n− 2

or
−l2 + nl − n + 2 ≤ 0

Since n is fixed, we need to see if there is an l which satisfies this inequality, subject to
l ∈ [1, n − 1]. The first derivative of the inequality (−2l + n) shows that there is only one
extreme point (l = n/2), and it is a local maximum (compare, e.g., the second derivative).
Since the function is continuous, it follows that it is minimal on the border cases for l, i.e.,
l = 1 or l = n− 1. Plugging in these values for l we see:

−1 + n− n + 2 ≤ 0

−(n− 1)2 + n · (n− 1)− n + 2 = −n2 + 2n− 1 + n2 − n− n + 2 = 1 ≤ 0

Which both do not hold. Hence the inequality is unsatisfiable, and the split into two parti-
tions is not possible1.

We showed that with only f = n − 2 many failures, the network always stays connected.
Thus, all nodes can – by routing messages via other nodes – always learn all initial values,
and then decide.

b) f = n(n−1)
2 − (n − 1) = n2−3n+2

2 . Remove all edges (n(n−1)
2) except a path which connects

all nodes (n− 1).

Figure 2: Smallest remaining connected network with n = 6.

c) Up to n− 1 time units.

Observe that the time to terminate is equal to the longest shortest path between two nodes
in the network. This path contains at most n nodes, since there are only n nodes in the
network, and a shortest path can never contain a loop. In b) we showed that such a scenario
can indeed happen, where we have two nodes in distance n−1. Hence, the algorithm requires
up to n− 1 time units.

2 Deterministic Random Conensus?!

We partition the nodes into two groups A and B. All nodes in A start with initial value 0, all
nodes in B with 1. Let A contain dn/2e+ 1 many nodes, and all other nodes are in B.

We show that – only with a bad scheduling, we do not even need any crash failures – it is
possible that the system remains in the identical distribution as before; and since there is no
randomness anymore, we can therefore deduce that the system will not reach consensus.

1) In the Propose phase only one node u ∈ A receives messages only from A. All other nodes
receive messages from both A and B. Hence, u proposes 0, and all other nodes propose ⊥.

1What did we do in this proof? We showed that there is no cut of size n− 2 in the fully connected graph with
n nodes.

2

2) In the Adapt phase all nodes from A receive the proposal of u, and all nodes from b do not
receive the proposal of u. Thus, all nodes in A set v = 0, and all nodes in B set v = 1. This
is exactly the same configuration as initially assumed!

Since our goal is to solve consensus in the worst-case scenario (allowing for a worst-case schedul-
ing), this scheduling might happen in every round and the algorithm does not terminate.

3 Consensus with Bandwidth Limitations

a) Note that we assumed that no nodes or edges crashed. Hence, we use a designated leader
decides for a value, and the only question is how fast can the leader distribute its value to
all nodes.

For readability we call one time unit a round.

It is obvious that the leader can distribute its value one by one to every other node, requiring
n− 1 rounds. But can we do better?

Yes: By having a carefully selected forwarding mechanism. Let u1 be the leader. In the first
round, u1 sends its value to u2. In the second round u1 sends the value to u3, and u2 to u4.
This pattern is easily generalized: Every node which receives the value in round i will send
it to nodes in all rounds i + 1, i + 2, Note that with this approach the number of nodes
which know the value doubles in every round.

Since the number of nodes which know the value of the leader doubles in every round, it
follows that the algorithm requires only log(n) many rounds.

b) It requires log(n) time units.

c) The task is that n nodes learn n− 1 values. Since we assumed that each message can only
contain one value, it follows that every node needs to receive at least n− 1 many messages.
Thus, there are in total at least n · (n − 1) many received messages. Of course the number
of received messages is equal to the number of sent messages (assuming no message loss).
Observe that in any round every node can send at most one message, thus, the number of
sent messages in a round is at most n. Therefore, any algorithm which requires n · (n − 1)
many sent messages requires at least n− 1 many rounds.

3

