
Introduction

What are Distributed Systems?

Today’s computing and information systems are inherently distributed. Many
companies are operating on a global scale, with thousands or even millions of
machines on all the continents. Data is stored in various data centers, computing
tasks are performed on multiple machines.

At the other end of the spectrum, also your mobile phone is a distributed
system. Not only does it probably share some of your data with the cloud, also
the phone itself contains multiple processing and storage units.

Moreover, computers have come a long way. In the early 1970s, microchips
featured a clock rate of roughly 1 MHz. 10 years later, in the early 1980s, you
could get a computer with a clock rate of roughly 10 MHz. In the early 1990s,
clock speed was around 100 Mhz. In the early 2000s the first 1 GHz processor
was shipped to customers. Just a few years later, in the Mid 2000s, one could
already buy processors with clock rates between 3 and 4 GHz. If you buy a
new computer today, chances are that the clock rate is still between 3 and 4
GHz, since clock rates basically stopped growing after about 2004. Clock speed
can apparently not be increased without running into physical issues such as
overheating.

In summary, today almost all computer systems are distributed, for different
reasons:

• Geography: Large organizations and companies are inherently geographi-
cally distributed.

• Parallelism: In order to speed up computation, we employ multicore pro-
cessors or computing clusters.

• Reliability: Data is replicated on different machines in order to prevent
loss.

• Availability: Data is replicated on different machines in order to allow for
fast access, without bottleneck, minimizing latency.

Even though distributed systems have many benefits, such as increased stor-
age, computational power, or even the possibility to connect spatially separated
locations, they also introduce challenging coordination problems. Some say that
going from one computer to two is a bit like having a second child. When you
have one child and all cookies are gone from the cookie jar, you know who did
it! Coordination problems are so prevalent, they come with various flavors and

1

2 INTRODUCTION

names: Consistency, agreement, consensus, blockchain, ledger, event sourcing,
etc.

Coordination problems will happen quite often in a distributed system. Even
though every single node (computer, core, network switch, etc.) of a distributed
system will only fail once every few years, with millions of nodes, you can expect
a failure every minute. On the bright side, one may hope that a distributed
system with multiple nodes may tolerate some failures and continue to work
correctly.

Course Overview

This course introduces some basic techniques when building distributed systems.
The focus of the course will be on fault-tolerance. We will study different
protocols and algorithms that allow for fault-tolerant operation, and we will
discuss practical systems that implement these techniques.

In this course, we will see different models (and even more combinations of
models) that can be studied. We will not discuss them in detail now, but simply
define them when we use them. Towards the end of the course a general picture
should emerge, hopefully!

The focus of the course is on protocols and systems that matter in practice.
In other words, in this lecture, we do not discuss concepts because they are fun,
but because they are practically relevant.

Nevertheless, have fun!

Chapter Notes

Many good text books have been written on the subject, e.g. [AW04, CGR11,
CDKB11, Lyn96, Mul93, Ray13, TS01]. James Aspnes has written an excellent
freely available script on distributed systems [Asp14]. Similarly to our course,
these texts focus on large-scale distributed systems, and hence there is some
overlap with our course. There are also some excellent text books focusing on
small-scale multicore systems, e.g. [HS08].

Some chapters of this course have been developed in collaboration with (for-
mer) Ph.D. students, see chapter notes for details. Many students have helped
to improve exercises and script. Thanks go to Pascal Bissig, Philipp Brandes,
Christian Decker, Klaus-Tycho Förster, Barbara Keller, Rik Melis, and David
Stolz (in alphabetical order).

Bibliography

[Asp14] James Aspnes. Notes on Theory of Distributed Systems, 2014.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.



BIBLIOGRAPHY 3

[CDKB11] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Distributed Systems: Concepts and Design. Addison-Wesley Pub-
lishing Company, USA, 5th edition, 2011.

[CGR11] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Intro-
duction to Reliable and Secure Distributed Programming. Springer
Publishing Company, Incorporated, 2nd edition, 2011.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Mul93] Sape Mullender, editor. Distributed Systems (2Nd Ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[Ray13] Michel Raynal. Distributed Algorithms for Message-Passing Sys-
tems. Springer Publishing Company, Incorporated, 2013.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Sys-
tems: Principles and Paradigms. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2001.


