Chapter 2

Consensus

2.1 Two Friends

Alice wants to arrange dinner with Bob, and since both of them are very re-
luctant to use the “call” functionality of their phones, she sends a text message
suggesting to meet for dinner at 6pm. However, texting is unreliable, and Alice
cannot be sure that the message arrives at Bob’s phone, hence she will only go
to the meeting point if she receives a confirmation message from Bob. But Bob
cannot be sure that his confirmation message is received; if the confirmation is
lost, Alice cannot determine if Bob did not even receive her suggestion, or if
Bob’s confirmation was lost. Therefore, Bob demands a confirmation message
from Alice, to be sure that she will be there. But as this message can also be
lost. ..

You can see that such a message exchange continues forever, if both Alice
and Bob want to be sure that the other person will come to the meeting point!

Remarks:

e Such a protocol cannot terminate: Assume that there are protocols
which lead to agreement, and P is one of the protocols which require
the least number of messages. As the last confirmation might be lost
and the protocol still needs to guarantee agreement, we can simply
decide to always omit the last message. This gives us a new protocol
P’ which requires less messages than P, contradicting the assumption
that P required the minimal amount of messages.

e Can Alice and Bob use Paxos?

2.2 Consensus

In Chapter 1 we studied a problem that we vaguely called agreement. We will
now introduce a formally specified variant of this problem, called consensus.

Definition 2.1 (consensus). There are n nodes, of which at most f might crash,
i.e., at least n— f nodes are correct. Node i starts with an input value v;. The
nodes must decide for one of those values, satisfying the following properties:

14

2.3. IMPOSSIBILITY OF CONSENSUS 15

e Agreement All correct nodes decide for the same value.
e Termination All correct nodes terminate in finite time.

e Validity The decision value must be the input value of a node.

Remarks:

e We assume that every node can send messages to every other node,
and that we have reliable links, i.e., a message that is sent will be
received.

There is no broadcast medium. If a node wants to send a message to
multiple nodes, it needs to send multiple individual messages.

Does Paxos satisfy all three criteria? If you study Paxos carefully, you
will notice that Paxos does not guarantee termination. For example,
the system can be stuck forever if two clients continuously request
tickets, and neither of them ever manages to acquire a majority.

2.3 Impossibility of Consensus

Model 2.2 (asynchronous). In the asynchronous model, algorithms are event
based (“upon receiving message ..., do ...”). Nodes do not have access to a
synchronized wall-clock. A message sent from one node to another will arrive
in a finite but unbounded time.

Remarks:

e The asynchronous time model is a widely used formalization of the
variable message delay model (Model 1.6).

Definition 2.3 (asynchronous runtime). For algorithms in the asynchronous
model, the runtime is the number of time units from the start of the execution
to its completion in the worst case (every legal input, every execution scenario),
assuming that each message has a delay of at most one time unit.

Remarks:

e The maximum delay cannot be used in the algorithm design, i.e., the
algorithm must work independent of the actual delay.

e Asynchronous algorithms can be thought of as systems, where local
computation is significantly faster than message delays, and thus can
be done in no time. Nodes are only active once an event occurs (a
message arrives), and then they perform their actions “immediately”.

We will show now that crash failures in the asynchronous model can
be quite harsh. In particular there is no deterministic fault-tolerant
consensus algorithm in the asynchronous model, not even for binary
input.



16 CHAPTER 2. CONSENSUS

Definition 2.4 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration C. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Definition 2.5 (univalent). We call a configuration C univalent, if the deci-
sion value is determined independently of what happens afterwards.

Remarks:

e We call a configuration that is univalent for value v v-valent.

e Note that a configuration can be univalent, even though no single
node is aware of this. For example, the configuration in which all
nodes start with value 0 is 0-valent (due to the validity requirement).

e As we restricted the input values to be binary, the decision value
of any consensus algorithm will also be binary (due to the validity
requirement).

Definition 2.6 (bivalent). A configuration C is called bivalent if the nodes
might decide for 0 or 1.

Remarks:

e The decision value depends on the order in which messages are re-
ceived or on crash events. Le., the decision is not yet made.

e We call the initial configuration of an algorithm Cy. When nodes are
in Cp, all of them executed their initialization code and possibly sent
some messages, and are now waiting for the first message to arrive.

Lemma 2.7. There is at least one selection of input values V' such that the
according initial configuration Cy is bivalent, if f > 1.

Proof. Note that Cp only depends on the input values of the nodes, as no event
occurred yet. Let V' = [vg, v1,...,v,—_1] denote the array of input values, where
v; is the input value of node i.

We construct n+1 arrays Vg, Vi, ..., V,, where the index i in V; denotes the
position in the array up to which all input values are 1. So, Vy = [0,0,0,...,0],
V1 =11,0,0,...,0], and so on, up to V,, = [1,1,1,...,1].

Note that the configuration corresponding to Vj must be O-valent so that the
validity requirement is satisfied. Analogously, the configuration corresponding
to V,, must be 1-valent. Assume that all initial configurations with starting val-
ues V; are univalent. Therefore, there must be at least one index b, such that the
configuration corresponding to V}, is 0-valent, and configuration corresponding
to Vpy1 is 1-valent. Observe that only the input value of the b node differs
from Vj, to Viy1.

Since we assumed that the algorithm can tolerate at least one failure, i.e.,
f > 1, we look at the following execution: All nodes except b start with their
initial value according to Vj respectively Vji1. Node b is “extremely slow”;
i.e., all messages sent by b are scheduled in such a way, that all other nodes
must assume that b crashed, in order to satisfy the termination requirement.

2.3. IMPOSSIBILITY OF CONSENSUS 17

Since the nodes cannot determine the value of b, and we assumed that all initial
configurations are univalent, they will decide for a value v independent of the
initial value of b. Since V}, is 0-valent, v must be 0. However we know that
Vi41 is 1-valent, thus v must be 1. Since v cannot be both 0 and 1, we have a
contradiction.

O

Definition 2.8 (transition). A transition from configuration C to a following
configuration C; is characterized by an event T = (u,m), i.e., node u receiving
message m.

Remarks:

e Transitions are the formally defined version of the “events” in the
asynchronous model we described before.

e A transition 7 = (u,m) is only applicable to C, if m was still in transit
in C.

o (. differs from C' as follows: m is no longer in transit, u has possibly
a different state (as u can update its state based on m), and there are
(potentially) new messages in transit, sent by u.

Definition 2.9 (configuration tree). The configuration tree is a directed tree
of configurations. Its root is the configuration Cy which is fully characterized by
the input values V. The edges of the tree are the transitions; every configuration
has all applicable transitions as outgoing edges.

Remarks:

e For any algorithm, there is exactly one configuration tree for every
selection of input values.

Leaves are configurations where the execution of the algorithm termi-
nated. Note that we use termination in the sense that the system as
a whole terminated, i.e., there will not be any transition anymore.

Every path from the root to a leaf is one possible asynchronous exe-
cution of the algorithm.

Leaves must be univalent, or the algorithm terminates without agree-
ment.

If a node u crashes when the system is in C, all transitions (u, *) are
removed from C' in the configuration tree.

Lemma 2.10. Assume two transitions 71 = (u1,my) and 7o = (uz,ms) for
uy # ug are both applicable to C. Let Cr ;, be the configuration that follows C'
by first applying transition 71 and then 12, and let C.,;, be defined analogously.
It holds that Cr,, = Cr,7, .

Proof. Observe that 7, is applicable to C,, since my is still in transit and 7
cannot change the state of uy. With the same argument 7y is applicable to C,,
and therefore both C;, -, and C.,,, are well-defined. Since the two transitions



18 CHAPTER 2. CONSENSUS

are completely independent of each other, meaning that they consume the same
messages, lead to the same state transitions and to the same messages being
sent, it follows that C, ., = Cr,r,. O

Definition 2.11 (critical configuration). We say that a configuration C' is crit-
ical, if C is bivalent, but all configurations that are direct children of C in the
configuration tree are univalent.

Remarks:

e Informally, C is critical, if it is the last moment in the execution where
the decision is not yet clear. As soon as the next message is processed
by any node, the decision will be determined.

Lemma 2.12. If a system is in a bivalent configuration, it must reach a critical
configuration within finite time, or it does not always solve consensus.

Proof. Recall that there is at least one bivalent initial configuration (Lemma
2.7). Assuming that this configuration is not critical, there must be at least one
bivalent following configuration; hence, the system may enter this configura-
tion. But if this configuration is not critical as well, the system may afterwards
progress into another bivalent configuration. As long as there is no critical con-
figuration, an unfortunate scheduling (selection of transitions) can always lead
the system into another bivalent configuration. The only way how an algo-
rithm can enforce to arrive in a univalent configuration is by reaching a critical
configuration.

Therefore we can conclude that a system which does not reach a critical
configuration has at least one possible execution where it will terminate in a
bivalent configuration (hence it terminates without agreement), or it will not
terminate at all.

O

Lemma 2.13. If a configuration tree contains a critical configuration, crashing
a single node can create a bivalent leaf; i.e., a crash prevents the algorithm from
reaching agreement.

Proof. Let C denote critical configuration in a configuration tree, and let 7’
be the set of transitions applicable to C. Let 79 = (ug,mg) € T and 71 =
(u1,my) € T be two transitions, and let Cr, be 0-valent and C7, be l-valent.
Note that 7" must contain these transitions, as C' is a critical configuration.

Assume that ug # uy. Using Lemma 2.10 we know that C' has a following
configuration C -, = Cr . Since this configuration follows C7, it must be 0-
valent. However, this configuration also follows C, and must hence be 1-valent.
This is a contradiction and therefore uy = 11 must hold.

Therefore we can pick one particular node u for which there is a transition
7 = (u,m) € T which leads to a 0-valent configuration. As shown before, all
transitions in 7" which lead to a 1-valent configuration must also take place on
u. Since C'is critical, there must be at least one such transition. Applying the
same argument again, it follows that all transitions in 7" that lead to a 0-valent
configuration must take place on u as well, and since C' is critical, there is no
transition in 7" that leads to a bivalent configuration. Therefore all transitions
applicable to C' take place on the same node u!

2.3. IMPOSSIBILITY OF CONSENSUS 19

If this node u crashes while the system is in C, all transitions are removed,
and therefore the system is stuck in C, i.e., it terminates in C. But as C' is
critical, and therefore bivalent, the algorithm fails to reach an agreement.

O

Theorem 2.14. There is no deterministic algorithm which always achieves
consensus in the asynchronous model, with f > 0.

Proof. We assume that the input values are binary, as this is the easiest non-
trivial possibility. From Lemma 2.7 we know that there must be at least one
bivalent initial configuration C'. Using Lemma 2.12 we know that if an algo-
rithm solves consensus, all executions starting from the bivalent configuration
C' must reach a critical configuration. But if the algorithm reaches a critical
configuration, a single crash can prevent agreement (Lemma 2.13). O

Remarks:

e If f =0, then each node can simply send its value to all others, wait
for all values, and choose the minimum.

e But if a single node may crash, there is no deterministic solution to
consensus in the asynchronous model.

e How can the situation be improved? For example by giving each node
access to randomness, i.e., we allow each node to toss a coin.



20 CHAPTER 2. CONSENSUS

2.4 Randomized Consensus

Algorithm 2.15 Randomized Consensus (Ben-Or)

1: v; € {0,1} < input bit
2: round = 1
3: decided = false

'S

: Broadcast myValue(v;, round)

: while true do

o

Propose

6:  Wait until a majority of myValue messages of current round arrived
7. if all messages contain the same value v then

8: Broadcast propose(v, round)
9: else
10: Broadcast propose(L, round)
11:  end if
12:  if decided then
13: Broadcast myValue(v;, round+1)
14: Decide for v; and terminate
15 end if
Adapt

16:  Wait until a majority of propose messages of current round arrived
17:  if all messages propose the same value v then

18: v = U

19: decide = true

20: else if there is at least one proposal for v then

21: v = v

22:  else

23: Choose v; randomly, with Prv; = 0] = Prlv; = 1] =1/2
24:  end if

25 round = round + 1
26:  Broadcast myValue(v;, round)
27: end while

Remarks:

e The idea of Algorithm 2.15 is very simple: Either all nodes start with
the same input bit, which makes consensus easy. Otherwise, nodes
toss a coin until a large number of nodes get — by chance — the same
outcome.

Lemma 2.16. As long as no node sets decided to true, Algorithm 2.15 always
makes progress, independent of which nodes crash.

Proof. The only two steps in the algorithm when a node waits are in Lines 6
and 15. Since a node only waits for a majority of the nodes to send a message,
and since f < n/2, the node will always receive enough messages to continue,
as long as no correct node set its value decided to true and terminates. |

2.4. RANDOMIZED CONSENSUS 21

Lemma 2.17. Algorithm 2.15 satisfies the validity requirement.

Proof. Observe that the validity requirement of consensus, when restricted to
binary input values, corresponds to: If all nodes start with v, then v must be
chosen; otherwise, either 0 or 1 is acceptable, and the validity requirement is
automatically satisfied.

Assume that all nodes start with v. In this case, all nodes propose v in the
first round. As all nodes only hear proposals for v, all nodes decide for v (Line
17) and exit the loop in the following round. |

Lemma 2.18. Algorithm 2.15 satisfies the agreement requirement.

Proof. Observe that proposals for both 0 and 1 cannot occur in the same round,
as nodes only send a proposal for v, if they hear a majority for v in Line 8.

Let u be the first node that decides for a value v in round r. Hence, it
received a majority of proposals for v in r (Line 17). Note that once a node
receives a majority of proposals for a value, it will adapt this value and terminate
in the next round. Since there cannot be a proposal for any other value in r, it
follows that no node decides for a different value in r.

In Lemma 2.16 we only showed that nodes make progress as long as no node
decides, thus we need to be careful that no node gets stuck if u terminates.

Any node v’ # u can experience one of two scenarios: Either it also receives
a majority for v in round r and decides, or it does not receive a majority. In
the first case, the agreement requirement is directly satisfied, and also the node
cannot get stuck. Let us study the latter case. Since u heard a majority of
proposals for v, it follows that every node hears at least one proposal for v.
Hence, all nodes set their value v; to v in round r. Therefore, all nodes will
broadcast v at the end of round r, and thus all nodes will propose v in round
7+ 1. The nodes that already decided in round r will terminate in r + 1 and
send one additional myValue message (Line 13). All other nodes will receive a
majority of proposals for v in 7+ 1, and will set decided to true in round r + 1,
and also send a myValue message in round r + 1. Thus, in round r + 2 some
nodes have already terminated, and others hear enough myValue messages to
make progress in Line 6. They send another propose and a myValue message
and terminate in r + 2, deciding for the same value v. [m|

Lemma 2.19. Algorithm 2.15 satisfies the termination requirement, i.e., all
nodes terminate in expected time O(2").

Proof. We know from the proof of Lemma 2.18 that once a node hears a majority
of proposals for a value, all nodes will terminate at most two rounds later. Hence,
we only need to show that a node receives a majority of proposals for the same
value within expected time O(2").

Assume that no node receives a majority of proposals for the same value.
In such a round, some nodes may update their value to v based on a proposal
(Line 20). As shown before, all nodes that update the value based on a proposal,
adapt the same value v. The rest of the nodes choses 0 or 1 randomly. The
probability that all nodes choose the same value v in one round is hence at
least 1/2™. Therefore, the expected number of rounds is bounded by O(2"). As
every round consists of two message exchanges, the asymptotic runtime of the
algorithm is equal to the number of rounds. [m|



22 CHAPTER 2. CONSENSUS

Theorem 2.20. Algorithm 2.15 achieves binary consensus with expected run-
time O(2") if up to f < n/2 nodes crash.

Remarks:
e How good is a fault tolerance of f < n/2?

Theorem 2.21. There is no consensus algorithm for the asynchronous model
that tolerates f > n/2 many failures.

Proof. Assume that there is an algorithm that can handle f = n/2 many fail-
ures. We partition the set of all nodes into two sets N, N’ both containing n/2
many nodes. Let us look at three different selection of input values: In Vj all
nodes start with 0. In V4 all nodes start with 1. In Vj.¢ all nodes in N start
with 0, and all nodes in N’ start with 1.

Assume that nodes start with Vj,s. Since the algorithm must solve consensus
independent of the scheduling of the messages, we study the scenario where
all messages sent from nodes in N to nodes in N’ (or vice versa) are heavily
delayed. Note that the nodes in N cannot determine if they started with V{, or
Vhatt- Analogously, the nodes in N’ cannot determine if they started in V) or
Vhatt- Hence, if the algorithm terminates before any message from the other set
is received, N must decide for 0 and N’ must decide for 1 (to satisfy the validity
requirement, as they could have started with Vi respectively V;). Therefore,
the algorithm would fail to reach agreement.

The only possibility to overcome this problem is to wait for at least one
message sent from a node of the other set. However, as f = n/2 many nodes
can crash, the entire other set could have crashed before they sent any message.
In that case, the algorithm would wait forever and therefore not satisfy the
termination requirement.

O

Remarks:

e Algorithm 2.15 solves consensus with optimal fault-tolerance — but it
is awfully slow. The problem is rooted in the individual coin tossing:
If all nodes toss the same coin, they could terminate in a constant
number of rounds.

Can this problem be fixed by simply always choosing 1 at Line 227!

This cannot work: Such a change makes the algorithm deterministic,
and therefore it cannot achieve consensus (Theorem 2.14). Simulating
what happens by always choosing 1, one can see that it might happen
that there is a majority for 0, but a minority with value 1 prevents
the nodes from reaching agreement.

Nevertheless, the algorithm can be improved by tossing a so-called
shared coin. A shared coin is a random variable that is 0 for all nodes
with constant probability, and 1 with constant probability. Of course,
such a coin is not a magic device, but it is simply an algorithm. To
improve the expected runtime of Algorithm 2.15, we replace Line 22
with a function call to the shared coin algorithm.

2.5. SHARED COIN 23

2.5 Shared Coin

Algorithm 2.22 Shared Coin (code for node u)
: Choose local coin ¢, = 0 with probability 1/n, else ¢, =1
: Broadcast myCoin(c,)

(S

3: Wait for n — f coins and store them in the local coin set C,,
: Broadcast mySet(C,,)

'S

: Wait for n — f coin sets

. if at least one coin is 0 among all coins in the coin sets then
return 0

else
return 1

10: end if

© oo o

Remarks:

e Since at most f nodes crash, all nodes will always receive n — f coins
respectively coin sets in Lines 3 and 5. Therefore, all nodes make
progress and termination is guaranteed.

e We show the correctness of the algorithm for f < n/3. To simplify
the proof we assume that n = 3f + 1, i.e., we assume the worst case.

Lemma 2.23. Let u be a node, and let W be the set of coins that u received in
at least f + 1 different coin sets. It holds that |W| > f+ 1.

Proof. Let C' be the multiset of coins received by u. Observe that u receives
exactly |C| = (n— f)? many coins, as u waits for n— f coin sets each containing
n — f coins.

Assume that the lemma does not hold. Then, at most f coins are in all n— f
coin sets, and all other coins (n — f) are in at most f coin sets. In other words,
the number of total of coins that u received is bounded by

Cl<f-n=)+ =1 F=2f(n=])

Our assumption was that n > 3f, i.e., n— f > 2f. Therefore |C| < 2f(n—f) <
(n— f)? = |C|, which is a contradiction. O

Lemma 2.24. All coins in W are seen by all correct nodes.

Proof. Let w € W be such a coin. By definition of W we know that w is in at
least f + 1 sets received by u. Since every other node also waits for n — f sets
before terminating, each node will receive at least one of these sets, and hence
w must be seen by every node that terminates. O

Theorem 2.25. If f < n/3 nodes crash, Algorithm 2.22 implements a shared
coin.

Proof. Let us first bound the probability that the algorithm returns 1 for all
nodes. With probability (1 — 1/n)" &~ 1/e ~ 0.37 all nodes chose their local



24 CHAPTER 2. CONSENSUS

coin equal to 1 (Line 1), and in that case 1 will be decided. This is only a lower
bound on the probability that all nodes return 1, as there are also other scenarios
based on message scheduling and crashes which lead to a global decision for 1.
But a probability of 0.37 is good enough, so we do not need to consider these
scenarios.

With probability 1 — (1 — 1/n)I"| there is at least one 0 in W. Using
Lemma 2.23 we know that [W| > f + 1 ~ n/3, hence the probability is about
1—(1—1/n)"? ~1—(1/e)'/? ~ 0.28. We know that this 0 is seen by all
nodes (Lemma 2.24), and hence everybody will decide 0. Thus Algorithm 2.22
implements a shared coin. O

Remarks:

e We only proved the worst case. By choosing f fairly small, it is clear
that f + 1 % n/3. However, Lemma 2.23 can be proved for [W| >
n —2f. To prove this claim you need to substitute the expressions
in the contradictory statement: At most n — 2f — 1 coins can be in
all n — f coin sets, and n — (n — 2f — 1) = 2f + 1 coins can be in at
most f coin sets. The remainder of the proof is analogous, the only
difference is that the math is not as neat. Using the modified Lemma
we know that |[W| > n/3, and therefore Theorem 2.25 also holds for
any f <n/3.

‘We implicitly assumed that message scheduling was random; if we
need a 0 but the nodes that want to propose 0 are “slow”, nobody is
going to see these 0’s, and we do not have progress.

Theorem 2.26. Plugging Algorithm 2.22 into Algorithm 2.15 we get a ran-
domized consensus algorithm which terminates in a constant expected number
of rounds tolerating up to f < n/3 crash failures.

Chapter Notes

The problem of two friends arranging a meeting was presented and studied under
many different names; nowadays, it is usually referred to as the Two Generals
Problem. The impossibility proof was established in 1975 by Akkoyunlu et
al. [AEHT5].

The proof that there is no deterministic algorithm that always solves con-
sensus is based on the proof of Fischer, Lynch and Paterson [FLP85], known
as FLP, which they established in 1985. This result was awarded the 2001
PODC Influential Paper Award (now called Dijkstra Prize). The idea for the
randomized consensus algorithm was originally presented by Ben-Or [Ben83].
The concept of a shared coin was introduced by Bracha [Bra87].

This chapter was written in collaboration with David Stolz.

Bibliography

[AEH75] EA Akkoyunlu, K Ekanadham, and RV Huber. Some constraints and
tradeoffs in the design of network communications. In ACM SIGOPS
Operating Systems Review, volume 9, pages 67-74. ACM, 1975.

BIBLIOGRAPHY 25

[Ben83] Michael Ben-Or. Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In Proceedings of the
second annual ACM symposium on Principles of distributed computing,
pages 27-30. ACM, 1983.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. Infor-
mation and Computation, 75(2):130-143, 1987.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM, 32(2):374—
382, 1985.



