Locking

Part 2, Chapter 9

t'i.‘ Q.& ?".

Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

Overview

e [ntroduction

e Spin Locks
— Test-and-Set & Test-and-Test-and-Set
— Backoff lock
— Queue locks

Introduction: From Single-Core to Multicore Computers

P
Desktop Computer:
Single core

& 0 W

[cache]

Server architecture:
The Shared Memory
Multiprocessor (SMP)

L All cores on W

the same chipJ

Sequential Computation

Concurrent Computation

multiple
threads
(processes)

/shared memory

@@=

object

Fault Tolerance & Asynchrony

-
<

threads

e Why fault-tolerance?

— Even if processes do not die, there are “near-death experiences”
e Sudden unpredictable delays:

— Cache misses (short)

— Page faults (long)

— Scheduling quantum used up (really long)

Example: Parallel Primality Testing

e Challenge

— Print all primes from 1 to 101°
e Given

— Ten-core multiprocessor

— One thread per processor
e Goal

— Get ten-fold speedup (or close)

e Naive Approach Problems with
— Split the work evenly this approach?

— Each thread tests range of 10°

1 10° 2i109

Issues

e Higher ranges have fewer primes
e Yetlarger numbers are harder to test
e Thread workloads

— Uneven
— Hard to predict

e Need dynamic load balancing

e Better approach
— Shared counter!

— Each thread takes a number

Procedure Executed at each Thread

Counter counter = new Counter(l);

void primePrint() { .
long j = 0; Shared counter object

while(j < 1019 {
[j = counter.getAndIncrement();

1f(isPrime(3j))
print(j);

Increment counter & test
if return value is prime

Counter Implementation

public class Counter {
private long value;

public Tong getAndIncrement() {
return value++;

}

What'’s the problem with
this implementation?

Problem

value...

2
|
|
read write read
1 2 2

read

time

N

write

Counter Implementation

public class Counter {
private long value;

public Tong getAndIncrement() {
[temp = value;

value = temp + 1; These steps must
return temp;

1 be atomic!

Recall: We can use Read-Modify-
Write (RMW) instructions!

We have to guarantee
mutual exclusion

Model

e The modelin this part is slightly more complicated

— However, we still focus on principles

l.e., multiprocessors

e \What remains the same?

— Multiple instruction multiple data (MIMD) architecture

e Whatis new?

Each thread/process has its own code and local variables

2L

There is a shared memory that all threads can access
| memory |

Typically, communication runs over a shared bus
(alternatively, there may be several channels)

Communication contention

Communication latency

<o
<o

Each thread has a local cache

QT O

%
<o
<o

Model: Where Things Reside

Counter counter = new Counter(l);

void primePrint() {
Tong j = 0;
while(j < 10%0) {
j = counter.getAndIncrement();

Local

/ variables

shared
memory

E.g., the shared
counter is here

Revisiting Mutual Exclusion

e We need mutual exclusion for our counter
e We are now going to study mutual exclusion from a different angle
— Focus on performance, not just correctness and progress

e We will begin to understand how performance depends on our software
properly utilizing the multiprocessor machine’s hardware,
and get to know a collection of locking algorithms!

e What should you do if you can’t get a lock?
e Keep trying
— “spin” or “busy-wait” Our focus
— Good if delays are short
e Give up the processor
— Good if delays are long
— Always good on uniprocessor

Basic Spin-Lock

Lock introduces
sequential bottleneck
= No parallelism!

Lock suffers

@ /} : from contention
\ 4’

> CS
. é
. spin critical Resets Igck
/ lock section upon exit

Huh?

Reminder: Test&Set

e Boolean value

e Test-and-set (TAS)
— Swap true with current value
— Return value tells if prior value was true or false

e (Can reset just by writing false
e Also known as “getAndSet”

Reminder: Test&Set

public c1ass|Atom1cBooTean!{
private boolean value;

public synchronized boolean
boolean prior = this.value;
this.value = true;
return prior;
} Get current value and set

value to true

java.util.concurrent.atomic

etAndSet() {

Test&Set Locks

e Locking
— Lock is free: value is false

— Lock is taken: value is true

e Acquire lock by calling TAS

— If result is false, you win
— Ifresult is true, you lose

e Release lock by writing false

Test&Set Lock

public class TASLock implements Lock {

AtomicBoolean state = new AtomicBoolean(false);
N\

public void lock() { Lock state is AtomicBoolean
while (state.getAndSet()) {}
} Keep trying until

public void unlock() { lock acquired
state.set(false);
}

} Release lock by resetting state to false

Performance

e Experiment
— nthreads
— Increment shared counter 1 million times

e How long should it take?
e How long does it take?

time

threads

Test&Test&Set Locks

e How can we improve TAS?

e Acrazy idea: Test before you test and set!

e Lurking stage

— Wait until lock “looks” free

— Spin while read returns true (i.e., the lock is taken)
e Pouncing state

— As soon as lock “looks” available

— Read returns false (i.e., the lock is free)

— Call TAS to acquire the lock

— If TAS loses, go back to lurking

Test&Test&Set Lock

public class TTASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (true) {

while(state.get()) {}

1f(!state.getAndSet())

return; o
} Then try to acquire it

}

Wait until lock looks free

public void unlock() {
state.set(false);

}
¥

Performance

e Both TAS and TTAS do the same thing (in our old model)
e So, we would expect basically the same results

TTAS lock

time

threads

e Why is TTAS so much better than TAS? Why are both far from ideal?

Opinion

e TAS & TTAS locks

— are provably the same (in theory)
— except they aren’t (in reality)

e Obviously, it must have something to do with the model...

e Let’s take a closer look at our new model and try to find a reasonable
explanation!

Bus-Based Architectures

Per-processor caches Shared bus

* Small * Broadcast medium

* Fast: 1 or 2 cycles * One broadcaster at a time

* Address and state information * Processors (and memory) “snoop”

i

cache cache | |

< = >

Random access memory
(tens of cycles)

Jargon Watch

e Load request

— When a thread wants to access data, it issues a load request
e (Cache hit

— The thread found the data in its own cache
e (Cache miss

— The data is not found in the cache

— The thread has to get the data from memory

Load Request

e Thread issues load request and memory responds

data...?

Got your

Another Load Request

e Another thread wants to access the same data. Get a copy from the cache!

| got data! data...?

Modify Cached Data

e Both threads now have the data in their cache

e What happens if the red thread now modifies the data...?

L

E

=

| What’s up with the other copies? |
\ T I

Cache Coherence

e We have lots of copies of data
— Original copy in memory
— Cached copies at processors
e Some processor modifies its own copy
— What do we do with the others?
— How to avoid confusion?

Write-Back Caches

e Accumulate changes in cache
e Write back when needed

— Need the cache for something else
— Another processor wants it
e On first modification
— Invalidate other entries
— Requires non-trivial protocol ...

e (Cache entry has three states:
— Invalid: contains raw bits
— Valid: | can read but | can’t write
— Dirty: Data has been modified

— Intercept other load requests
— Write back to memory before reusing cache

Invalidate

e Let'srewind back to the moment when the red processor updates its
cached data

e |t broadcasts an invalidation message > Other processor invalidates its
cache!

Cache loses
read
permission

Invalidate

e Memory provides data only if not present in any cache, so there is no need
to change it now (this is an expensive operation!)

e Readingis not a problem = The threads get the data from the red process

8 RS

cache data cache

Bus

==

Mutual Exclusion

e What do we want to optimize?
1. Minimize the bus bandwidth that the spinning threads use
2. Minimize the lock acquire/release latency
3. Minimize the latency to acquire the lock if the lock is idle

TAS vs. TTAS

e TAS invalidates cache lines
This is why TAS

e Spinners
P performs so poorly...

— Always go to bus
e Thread wants to release lock
— delayed behind spinners!!!

e TTAS waits until lock “looks” free
— Spin on local cache
— No bus use while lock busy

e Problem: when lock is released
— Invalidation storm ...

Huh?

Local Spinning while Lock is Busy

e While the lock is held, all contenders spin in their caches, rereading
cached data without causing any bus traffic

&

|
Bus >
==

<

On Release

e The lock is released. All spinners take a cache miss and call Test&Set!

TAS! TAS!

B

Time to Quiescence

e Every process experiences a cache miss @
— All state.get() satisfied sequentially = m_,
e Every process does TAS

— Caches of other processes are invalidated L] “‘—
e Eventual quiescence (“silence”) after @
acquiring the lock] l‘:’
e The time to quiescence increases
linearly with the number of processors for a bus architecture!

time

threads

Mystery Explained

e Now we understand why the TTAS lock performs much better than the
TAS lock, but still much worse than an ideal lock!

TTAS lock

time

threads

e How can we do better?

Introduce Delay

If the lock looks free, but | fail to get it, there must be lots of contention
It’s better to back off than to collide again!

e Example: Exponential Backoff

Each subsequent failure doubles expected waiting time

X\
/T
(‘_.

/

—

()
o

4d d spin lock

waiting time }

Exponential Backoff Lock

public class Backoff implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() { S
int delay = MIN_DELAY;— X minimum delay

while (true) {

while(state.get()) {} Back off for
1f (!state.getAndSet()) random duration,
return; but don’t swap out

“sleep”(random() % delay);

Gf (delay < MAX_DELAY)L
delay = 2 * delay;]\ Double maximum

} delay until an upper
} bound is reached

// unlock() remains the same

Backoff Lock: Performance

e The backoff lock outperforms the TTAS lock!
e Butitis still notideal...

TTAS lock

time

Backoff lock

threads

Backoff Lock: Evaluation

Good
— Easy to implement
— Beats TTAS lock

e Bad
— Must choose parameters carefully
— Not portable across platforms

e How can we do better?
e Avoid useless invalidations
— By keeping a queue of threads

e Each thread
— Notifies next in line
— Without bothering the others

ALock: Initially

e The Anderson queue lock (ALock) is an array-based queue lock
e Threads share an atomic tail field (called next)

idle

next

flags

ALock: Acquiring the Lock

e To acquire the lock, each thread atomically increments the tail field
e Ifthe flagis true, the lock is acquired
e Otherwise, spin until the flag is true

The lock
is mine!

acquired

next

flags

ALock: Contention

e If another thread wants to acquire the lock, it applies get&increment

=

acquired acquiring

e The thread spins because the flag is false

ALock: Releasing the Lock

e The first thread releases the lock by setting the next slot to true
e The second thread notices the change and gets the lock

The lock

released acquired =
is mine!

AlLock

One flag per thread

public class Alock implements Lock

}

boolean[] flags = {true,false,...,false};

AtomicInteger next = new AtomicInteger(0);

ThreadLocal<Integer> mySlot;b—1 o

Thread-local variable

public void lock() {

}

mySlot = next.getAndIncrement();L_

while (!flags[mySlot % n]) {} Take the next slot
flags[mySlot % n] = false;

public void unlock() {

}

flags[(mySTot+1l) % n] = true;L_

Tell next thread to go

AlLock: Performance

e Shorter handover than backoff
e Curve is practically flat

e Scalable performance

e FIFO fairness

TTAS lock

time

AlLock
ideal

threads

ALock: Evaluation

e Good
— First truly scalable lock
— Simple, easy to implement
e Bad
— One bit per thread
— Unknown number of threads?

ALock: Alternative Technique

e The threads could update own flag and spin on their predecessor’s flag

= =

acquiring acquiring

i i+1
flags
BERRGEIER

i-1 [

e This is basically what the CLH lock does, but using a linked list instead of
an array

e |sthisagoodidea? Not discussed
in this lecture

NUMA Architectures

e Non-Uniform Memory Architecture
e |llusion

— Flat shared memory
e Truth

— No caches (sometimes)

— Some memory regions faster than others

Spinning on local memory is fast: Spinning on remote memory is slow:

MCS Lock

Idea

— Use alinked list instead of an array = small, constant-sized space
— Spin on own flag, just like the Anderson queue lock

The space usage
— L =number of locks
— N = number of threads

of the Anderson lock is O(LN)
of the MCS lock is O(L+N)

MCS Lock: Initially

e The lock is represented as a linked list of QNodes, one per thread
e The tail of the queue is shared among all threads

idle

Queue tail

tail

—F—1n

MCS Lock: Acquiring the Lock

e To acquire the lock, the thread places its QNode at the tail of the list
by swapping the tail to its QNode

e Ifthereis no predecessor, the thread acquires the lock

acquired

The lock
is mine!
Swap tail
ﬁ
\ f

alse = lock

' -

(allocate QNode)

9/56

MCS Lock: Contention

e If another thread wants to acquire the lock, it again applies swap
e The thread spins on its own QNode because there is a predecessor

acquired acqumng

MCS Lock: Releasing the Lock

e The first thread releases the lock by setting its successor’s QNode to false

released acquired

The lock
is mine!

tail

7”
'“.

MCS Queue Lock

public class QNode {
boolean locked = false;
QNode next = null;

}

MCS Queue Lock

public class MCSLock 1mplements Lock {
AtomicReference tail;

public void lock() {

QNode gnode = new QNode();

QNode pred = tail.getAndSet(gnode);
(if (pred != null) {

gnode.locked = true; Add my node to the tail
. pred.next = gnode; o

whiTe (gnode.Tocked) {} Fix if queue was
} non-empty

}

MCS Lock: Unlocking

e |[fthereis a successor, unlockit. But, be cautious!

e Even though a QNode does not have a successor, the purple thread knows
that another thread is active because tail does not point to its QNode!

releasing acquiring

Waiting...

MCS Lock: Unlocking Explained

e Assoon as the pointer to the successor is set, the purple thread can

release the lock
Set my successor’s

QNode to false!

released acquired The lock

is mine!
tail

7”
'“.

MCS Queue Lock

public void unlock() { Missing successor?
if (gnode.next == null) {r ;

[1' f (tail.cAs(gnode, null))]> If really no successor,
return; tail = null

while (gnode.next == null) {}

}

gnode.next.locked = false; Otherwise, wait for
} I/— successor to catch up

} Pass lock to successor

Abortable Locks

e What if you want to give up waiting for a lock?
e For example
— Time-out

— Database transaction aborted by user

e Back-off Lock
— Aborting is trivial: Just return from lock() call!
— Extra benefit: No cleaning up, wait-free, immediate return

e (Queue Locks

— Can’tjust quit: Thread in line behind will starve
— Need a graceful way out...

Problem with Queue Locks

acquired aborted spinning

s O

released spinning

~[=8 B

Abortable MCS Lock

e A mechanism is required to recognize and remove aborted threads
— Athread can set a flag indicating that it aborted
— The predecessor can test if the flag is set Spinning on
remote object...?!
— If the flag is set, its new successor is the successor’s successor
— How can we handle concurrent aborts? This is not discussed in this lecture

acquired aborted spinning

Composite Locks

e Queue locks have many advantages
— FIFO fairness, fast lock release, low contention

but require non-trivial protocols to handle aborts (and recycling of nodes)
e Backoff locks support trivial time-out protocols
but are not scalable and may have slow lock release times

e A composite lock combines the best of both approaches!
e Short fixed-sized array of lock nodes

e Threads randomly pick a node and try
to acquire it

e Use backoff mechanism to acquire a node

e Nodes build a queue

e Use a queue lock mechanism to acquire the lock

One Lock To Rule Them All?

e TTAS+Backoff, MCS, Abortable MCS...
e Each better than others in some way
e There is not a single best solution

e Lock we pick really depends on
— the application
— the hardware

— which properties are important

Handling Multiple Threads

e Adding threads should not lower the throughput

— Contention effects can mostly be fixed by Queue locks

e Adding threads should increase throughput
— Not possible if the code is inherently sequential
— Surprising things are parallelizable!

e How can we guarantee consistency if there are many threads?

Coarse-Grained Synchronization

e Each method locks the object
— Avoid contention using queue locks
— Mostly easy to reason about

— This is the standard Java model (synchronized blocks and methods)

e Problem: Sequential bottleneck
— Threads “stand in line”
— Adding more threads does not improve throughput
— We even struggle to keep it from getting worse...

e So why do we even use a multiprocessor?
— Well, some applications are inherently parallel...
— We focus on exploiting non-trivial parallelism

Credits

e The TTAS lock is due to Kruskal, Rudolph, and Snir, 1988.
e Tom Anderson invented the ALock, 1990.

e The MCS lock is due to Mellor-Crummey and Scott, 1991.

That’s all!

Questions & Comments?

% ‘-G

Roger Wattenhofer

ETH Zurich — Distributed Computing — www.disco.ethz.ch

