
Distributed
 Computing

HS 2017 Prof. R. Wattenhofer

Distributed Systems Part II
Exercise Sheet 9

Quiz

1 Quiz

a) Locking and consensus seem closely related. What differences are there between the models
we have been studying for each?

b) Is it possible to achieve mutual exclusion without any RMW primitives?

c) What purpose does the extra test in a TTAS lock serve? Why is it still not scalable?

Basic

2 Spin Locks

A read-write lock is a lock that allows either multiple processes to read some resource, or one
process to write some resource.

a) Write a simple read-write lock using only spinning, one global shared integer and the
compare-and-set (CAS) operation. Do not use other global variables (it is ok to have a
variable within a method, but not outside). In Java compare-and-set can be used as shown
in the following example.

if (state.compareAndSet(expectedValue, newValue)) {
// successful

}

You can use the following template to implement your locking algorithm.

// the shared integer
AtomicInteger state = new AtomicInteger(0);

// acquire the lock for a read operation
void read_lock() {

...
}

// release the lock
void read_unlock() {

...
}

// acquire the lock for a write operation
void write_lock() {

...

}

// release the lock
void write_unlock() {

...
}

b) What is the problem with this lock?

Hint: What happens if a lot of processes access the lock repeatedly?

We now build a queue lock using only spinning, one shared integer, one global integer per process
and the compare-and-set (CAS) operation.

c) To prepare for this task, answer the following questions:

i) Head and tail of the queue have to be stored in the shared integer. What are the
“head” and the “tail”, and how can they both be stored in one integer?

Hint: Could the head be a process id? Or is there a much easier solution?

ii) How would a process add itself to the queue?

Hint: You need the global integer of the process for this operation.

iii) When has a process acquired the lock?

iv) How does a process release the lock?

d) Write down the lock using pseudo-code. Do not forget to initialize all variables.

Advanced

3 ALock2

Have a look at the source code below. It is a modified version of the ALock for capacity
processes (lecture notes page 150).

public class ALock2 implements Lock {
ThreadLocal<Integer> mySlotIndex = new ThreadLocal<Integer> () {
protected Integer initialValue() {
return 0;

}
};
AtomicInteger tail;
boolean[] flag;
int size;
public ALock2(int capacity) {

size = capacity;
tail = new AtomicInteger(0);
flag = new boolean[capacity];
flag[0] = true;
flag[1] = true;

}
public void lock() {
int slot = tail.getAndIncrement() % size;
mySlotIndex.set(slot);
while (! flag[slot]) {};

}
public void unlock() {
int slot = mySlotIndex.get();
flag[slot] = false;
flag[(slot + 2) % size] = true;

}
}

2

a) What was the intention of the author of “ALock2”?

b) Will ALock2 work properly? Is it still a FIFO queue? Why not?

c) Suggest a way to repair ALock2.

Hint: Don’t worry about performance.

Mastery

4 MCS Queue Lock

See lecture notes page 154 ff.

a) A developer suggests to add an aborted flag to each node: if a process no longer wants
to wait, it sets this aborted flag to true. If a process unlocks the lock, it may see the
aborted flag of the next node, jump over the aborted node, and check the successor’s
successor node. Modify the basic algorithm to support aborts.

Optional: sketch a proof for your answer.

Hint: Be aware of race-conditions!

b) Assuming many processes may abort concurrently, does your answer from a) still work?
Explain why. If it does not work: modify your algorithm to allow concurrent aborts.

Optional: sketch a proof for your answer.

c) Instead of a locked and an aborted flag one could use an integer, and modify the
integer with the CAS operation. What do you think about this idea? How is the algorithm
affected? How is performance affected?

d) The CLH lock is basically the same as an MCS lock. Conceptually the only difference is,
that a process spins on the locked field of the predecessor node, not on its own node.
What could be an advantage of CLH over MCS and what could be a disadvantage?

3

